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Abstract: The aim of this work was the synthesis of hybrid materials of iron (II)-based therapeu-
tic systems via the sol-gel method. Increasing amounts of polyethylene glycol (PEG 6, 12, 24,
50 wt%) were added to SiO2/Fe20 wt% to modulate the release kinetics of the drug from the sys-
tems. Fourier-transform infrared (FTIR) spectroscopy was used to study the interactions between
different components in the hybrid materials. The release kinetics in a simulated body fluid (SBF)
were investigated, and the amount of Fe2+ released was detected via ultraviolet-visible spectroscopy
(UV-Vis) after reaction with ortho-phenanthroline. Furthermore, biological characterization was
carried out. The bioactivity of the synthesized hybrid materials was evaluated via the formation of
a layer of hydroxyapatite on the surface of samples soaked in SBF using spectroscopy. Finally, the
potential antibacterial properties of seven different materials against two different bacteria—E. coli
and S. aureus—were investigated.

Keywords: ferrous citrate; sol-gel technique; FTIR spectroscopy; antibacterial activity

1. Introduction

The iron (II) citrate complex represents an effective solution for resolving iron-deficiency
anaemia in people with chronic kidney conditions. This complex is usually used to treat
low levels of iron in the blood. Iron is an important metal for human life because it is a
cofactor of many types of enzymes and cytochromes of the mitochondrial electron transport
chain, and it is part of the haemoglobin and myoglobin structures, which act as oxygen
transporters. The use of ferrous organic complexes, such as iron (II) citrate, represents an
excellent option to improve health care, since they increase bioavailability and solubility,
solving the iron deficiency problem [1–4]. At the physiological pH of blood (7.4), high
levels of Fe2+(aq) would theoretically result in the precipitation of iron (II) hydroxide.
Complexation by citrate allows an almost 30-fold increase in the amount of Fe2+ that can
be dissolved in the blood. Iron-based systems are also proven to be effective for antitumor
treatment. Daily uptake of iron through food is not sufficient to provide an adequate
level of this metal in the blood. Some nonspecific symptoms linked to iron deficiency are
impaired concentration, loss of energy, and fatigue. However, the most serious effects of
iron deficiency, such as anaemia, are associated with loss of hair, angular stomatitis, and
premature birth and bone resorption in pregnant women [5].

Iron deficiency can occur in surgical patients due to blood loss or pre-existing anaemia.
The encapsulation of the iron (II) citrate complex in porous silica biomaterials allows a slow
release of iron, thus resolving problems linked to the lowering of the iron levels in patients’
blood [6].
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Iron can also be toxic in excess; high concentrations of iron can promote pathogenic
bacterial growth and modify their metabolic pattern [7]. Therefore, by modulating the iron
concentration, it is possible to reduce bacterial growth.

Silica biomaterials have high biocompatibility, avoiding negative outcomes as a result
of their implantation in bodily tissues; in addition, it is known from the literature [8–10]
and from medical practice [11] that silica-based materials are able to form a hydroxyapatite
layer on their surface that improves the interaction between medical devices and tissue.
Drug trapping in its structure is enabled by its porosity [12].

One of the techniques that allow the synthesis of a hybrid biomaterial is the sol-gel
method. It is well known that the characteristics of the synthesis methodology have a
great influence on the structure, morphology, and chemical composition, as well as on the
mechanical, thermal, and optical properties of the resultant product.

The formation of a sol followed by gelation, starting from inorganic materials as
precursors, is the basis of the sol-gel technique. A three-dimensional network gel is formed
via the condensation of hydrolysed species in solution. Parameters such as temperature,
pH, water content, and precursor concentrations affect the structure of the initial gel and
the properties of the material [13]. The main advantage of using the sol-gel method for
biomaterial synthesis is the possibility of encapsulating different organic compounds and
other bioactive molecules that can be used as carriers for drug delivery [14–16]. Indeed, it
has been reported that gels can release drugs (such as anti-inflammatory agents, antibiotics,
and antitumor agents) in a controlled manner [17–20]. Sol-gel preparation can be done
with a wide variety of precursors, but silica-based carriers are preferred because they are
a well-known system, inexpensive, and biodegradable [21]. Moreover, it has also been
reported that silica/PEG hybrids allow us to obtain greater elasticity, to avoid particle
agglomeration, and to create a network that entraps many kinds of drugs and compounds
in only one step [22].

In this work, iron (II)-based biomaterials were synthesized via the sol-gel route.
The aim was the synthesis of several hybrid materials in which increasing amounts of
polyethylene glycol (PEG 6, 12, 24, 50 wt%) were added to SiO2/Fe20 wt%, while materials
with different percentages of ferrous citrate complex (Fe(II)C 5, 10, 15, 20 wt%) were added
to the silica matrix with 50 wt% of PEG.

2. Materials and Methods
2.1. Preparation of Materials

First, 25.0 g of citric acid monohydrate (>99.5%, Fluka, Munich, Germany) was dis-
solved in 500 mL of Milli-Q water under continuous stirring and heating. After reaching
90 ◦C, 6.0 g of iron powder (>99%, Sigma-Aldrich, St. Louis, MO, USA) was added to the
solution. After the complete iron reaction, the solution was cooled down to room tem-
perature, obtaining a grey/pearly precipitate that was washed with water, filtered under
vacuum, and freeze-dried at −20 ◦C [1]. The selectivity of Fe2+ was assessed by means
of the colorimetric assay with 1,10-phenantroline and sodium thiocyanate, as reported
elsewhere in [23].

2.2. Sol-Gel Synthesis

Silica matrices with different amounts of PEG (PEG, MW = 400, Sigma-Aldrich),
(6, 12, 24, 50%) and Fe(II)C (5, 10, 15, 20%) were synthesized via the sol-gel technique.
The inorganic silicate solutions were obtained by adding tetraethyl orthosilicate (TEOS,
Sigma-Aldrich, Darmstadt, Germany) to ethanol (EtOH, Sigma-Aldrich) under continuous
magnetic stirring.

Fe(II)C and PEG were added to silica solution (the molar ratios for the silica matrix
were H2O/TEOS = 26.6 and EtOH/TEOS = 6). After the gelation process was complete,
samples were dried at 50 ◦C for 24 h, obtaining glass materials that were finely grounded.
Figure 1 shows a flow chart of the sol-gel procedure used to synthesize the hybrid materials,
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which are summarized in Table 1. During the synthesis, the ferrous ions are stable, as the
authors have shown in a previous paper [23].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 12 
 

Figure 1 shows a flow chart of the sol-gel procedure used to synthesize the hybrid mate-96 
rials, which are summarized in Table 1. During the synthesis, the ferrous ions are stable, 97 
as the authors have shown in a previous paper [23]. 98 

  99 

Figure 1. Flow chart of sol-gel synthesis depicting the steps that lead to the formation of a gel from 100 
a liquid. 101 

Table 1. List of samples with the various percentage contents of PEG and Fe(II)C studied. 102 

Specimen PEG content (wt.%) Fe(II)C content (wt.%) 
SiO2/PEG6/Fe(II)C20 6 wt% 20 wt% 

SiO2/PEG12/Fe(II)C20 12 wt% 20 wt% 
SiO2/PEG24/Fe(II)C20 24 wt% 20 wt% 
SiO2/PEG50/Fe(II)C20 50 wt% 20 wt% 
SiO2/PEG50/Fe(II)C15 50 wt% 15 wt% 
SiO2/PEG50/Fe(II)C10 50 wt% 10 wt% 
SiO2/PEG50/Fe(II)C5 50 wt% 5 wt% 

2.3. FTIR Analysis 103 

Fourier-transform infrared (FTIR) analysis was carried out to investigate specific in-104 
termolecular interactions between organic and inorganic components. Transmittance 105 
spectra of samples were obtained using a Prestige 21 Shimadzu (Japan) instrument 106 
equipped with a DTGS KBr (deuterated triglycine sulphate with potassium bromide win-107 
dows) detector, with a resolution of 2 cm−1 (45 scans). FTIR spectra were recorded in the 108 
400–4000 cm−1 range, using a disk consisting of 2 mg of sample and 198 mg of KBr. The 109 
FTIR spectra were processed using Prestige software (IR solution). 110 

2.4. In Vitro Release of Fe2+  111 

The study of in vitro release was carried out to investigate the amounts of Fe2+ re-112 
leased from the hybrid glass materials. In particular, the release of Fe2+ from different ma-113 
terials was analysed at different release times using the normative reference A3500-Fe 114 
B,phenanthroline method. Powders of hybrid materials were soaked in 10 mL of SBF so-115 
lution. Afterwards, 1.00 mL of this mixture containing the hybrid materials was added to 116 
a solution composed of 10% hydroxylamine hydrochloride, 10% acetate sodium, 0.1% 117 
1,10-phenanthroline, and water. Release measurements, taken by means of a Shimadzu 118 
UV 700 Double-Beam Scanning UV-Vis spectrophotometer (Shimadzu, Kyoto, Japan), 119 
were repeated three times on each hybrid. The absorbance of Fe2+ released was obtained 120 
at a wavelength of 𝜆 = 520.0 nm. Means ± standard deviation were calculated for each 121 
measure. The calibration curve of absorbance versus concentration was determined in the 122 
range 0–4.99 mg L−1. Over this interval, the data fitted the Beer–Lambert law: 123 

A = 𝜀 l C = 1.265 C (1)

Figure 1. Flow chart of sol-gel synthesis depicting the steps that lead to the formation of a gel from a
liquid.

Table 1. List of samples with the various percentage contents of PEG and Fe(II)C studied.

Specimen PEG Content (wt.%) Fe(II)C Content (wt.%)

SiO2/PEG6/Fe(II)C20 6 wt% 20 wt%

SiO2/PEG12/Fe(II)C20 12 wt% 20 wt%

SiO2/PEG24/Fe(II)C20 24 wt% 20 wt%

SiO2/PEG50/Fe(II)C20 50 wt% 20 wt%

SiO2/PEG50/Fe(II)C15 50 wt% 15 wt%

SiO2/PEG50/Fe(II)C10 50 wt% 10 wt%

SiO2/PEG50/Fe(II)C5 50 wt% 5 wt%

2.3. FTIR Analysis

Fourier-transform infrared (FTIR) analysis was carried out to investigate specific inter-
molecular interactions between organic and inorganic components. Transmittance spectra
of samples were obtained using a Prestige 21 Shimadzu (Japan) instrument equipped with
a DTGS KBr (deuterated triglycine sulphate with potassium bromide windows) detector,
with a resolution of 2 cm−1 (45 scans). FTIR spectra were recorded in the 400–4000 cm−1

range, using a disk consisting of 2 mg of sample and 198 mg of KBr. The FTIR spectra were
processed using Prestige software (IR solution).

2.4. In Vitro Release of Fe2+

The study of in vitro release was carried out to investigate the amounts of Fe2+ re-
leased from the hybrid glass materials. In particular, the release of Fe2+ from different
materials was analysed at different release times using the normative reference A3500-Fe
B, phenanthroline method. Powders of hybrid materials were soaked in 10 mL of SBF
solution. Afterwards, 1.00 mL of this mixture containing the hybrid materials was added
to a solution composed of 10% hydroxylamine hydrochloride, 10% acetate sodium, 0.1%
1,10-phenanthroline, and water. Release measurements, taken by means of a Shimadzu UV
700 Double-Beam Scanning UV-Vis spectrophotometer (Shimadzu, Kyoto, Japan), were
repeated three times on each hybrid. The absorbance of Fe2+ released was obtained at a
wavelength of λ = 520.0 nm. Means ± standard deviation were calculated for each measure.
The calibration curve of absorbance versus concentration was determined in the range
0–4.99 mg L−1. Over this interval, the data fitted the Beer–Lambert law:

A = ε l C = 1.265 C (1)
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where A is absorbance, ε is the molar absorptivity coefficient (M−1 cm−1), l is the path
length in cm, and C is concentration (M).

2.5. Bioactivity Test

To investigate the formation of a hydroxyapatite layer on glass materials, 250 mg
of powder and 250 mg of disk (obtained from the powders) were soaked in 50 mL of
simulated body fluid (SBF) at 37 ◦C for 21 days. The SBF solution was replaced every
two days to avoid the depletion of ionic species. Finally, exposed samples were dried and
analysed using a Quanta 200 scanning electron microscope (SEM) equipped with electron
dispersion spectroscopy (EDS) and X-ray diffraction (XRD) analysis, along with a Philips
139 diffractometer equipped with a PW 1830 generator, tungsten lamp, and Cu anode,
where the source of the X-rays was given by Cu-Kα radiation (λ = 0.15418 nm). The ratio
between the total exposed surface and the volume of solution was chosen according to the
literature [24].

2.6. Antibacterial Activity

The Kirby–Bauer test was performed on the glass hybrid materials to evaluate their
possible use in preventing the proliferation of pathogenic bacteria. Escherichia coli (ATCC
25922) as Gram-negative bacteria (−) and Staphylococcus aureus (ATCC 25923) as Gram-
positive bacteria (+) were grown in the absence and presence of specimens. A total of
100 mg of each of the glasses were finely ground to a powder and irradiated with UV light
for 1 h for sterilization. Bacterial suspensions of 109 CFU/mL were obtained by diluting
pellet strains in distilled saline water (0.9% NaCl). E. coli was plated on TBX medium
(Tryptone Bile X-Gluc) (Liofilchem, Italy), while S. aureus was plated on Baird-Parker agar
(Liofilchem, Italy). Both media were sterilized at 120 ◦C for 15 min. After autoclaving,
Baird-Parker agar was cooled to 50 ◦C, and an emulsion of egg yolk containing potassium
tellurite was added. After placing the materials on the centre of Petri plates, E. coli plates
were grown at 44 ◦C for 24 h, while S. aureus plates were grown at 36 ◦C for 24 h. The
diameter of inhibition halos (IDs) in relation to the Petri dish diameter (PPD) (6 cm) was
calculated. Four measurements were carried out for each specimen to obtain the mean
standard deviation. Data are expressed as bacterial viability (BV) (%).

BV = (PPD − IDs)/PPD × 100 (2)

where 100% BV represents the bacteria viability without samples. The mean standard
deviation is expressed as a relative standard deviation (RSD).

A flow chart of antibacterial detection is represented in Figure S1.

3. Results and Discussion
3.1. FTIR Analysis

FTIR analysis of hybrid materials allowed us to obtain information about interactions
between the individual components. Figure 2 shows the FTIR spectra of SiO2 hybrid
materials with increasing amounts of PEG. The silica spectrum in curve (a) shows asym-
metric and symmetric stretching of Si–O–Si at 1080 cm−1, with a shoulder at 1200 cm−1. In
addition, we can see the bending vibrations of Si–O–Si at 800 and 460 cm−1, whereas the
band at 948 cm−1 is assigned to Si–OH bond vibrations. The intense band at 3450 cm−1

and the peak at 1640 cm−1 are due to stretching and bending vibrations of the OH of water.
The broadness of the OH vibration suggests H-bonding between the OH of the solvent
molecules and Si atoms. The addition of PEG to the silica matrix is confirmed by the
increase in the intensity of the peaks at 2927 cm−1 and 1454 cm−1 that are associated with
C–H asymmetric stretching and bending, respectively. In addition, we observe a shift of
this peak in pure PEG to 2870 cm−1 [25–27]. The presence of Fe(II)C (Figure 3) is detectable
in curves (b–d) by an increase in the intensity of the peak at 1722 cm−1, which is due to
C=O stretching [28]. In addition, the increase in the intensity of the peak at 1560 cm−1,
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ascribed to the COO− group, is another sign of the encapsulation of Fe(II) citrate in the
system [23].
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Figure 3. FTIR spectra of SiO2 (a), SiO2/PEG50%/Fe(II)C 5% (b), SiO2/PEG50%/ Fe(II)C10 % (c),
SiO2/PEG50%/ Fe(II)C15% (d), SiO2/PEG50%/ Fe(II)C20% (e), and pure Fe(II)C (f).

3.2. In Vitro Release

Controlled Fe2+ release is essential to evaluate the continuity and efficacy of treatments.
The release was assayed by measuring the UV absorbance of Fe2+ at λ = 520.0 nm as a
function of the concentration of the solution. A calibration curve was drawn using standard
solutions with concentrations from 0 to 4.99 mg/L (Figure S2).

Figures 4 and 5 show the Fe2+ release rates of the compound delivered.
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Regarding Fe(II)C 20 wt% with various amounts of PEG, the trend is quite similar for
all of the systems.

In particular, the amount of Fe(II)C released was very fast in the first 5 h, and then it
slowed down, ending after 8 h. Furthermore, the 12 wt% PEG system released a higher
concentration of Fe(II)C, likely because this is incorporated into the porous matrix of the
system and is more easily released than when the PEG concentration is greater, and forms
stronger interactions within the system.

Instead, in the hybrid systems with a constant amount of PEG (50 wt%) and varying
Fe(II)C content (5, 10, 15, or 20 wt%), the release of Fe(II)C was fast up to 4 h, and then it
slowed down, ending after 8 h.

3.3. Bioactivity

Glasses exposed to SBF solution for 21 days were observed via SEM. In Figure 6 it
is possible to see some globules on disks that are soaked in SBF. This shape is typical of
hydroxyapatite formed on a glass surface. Those particles were visible over the entire
surface of all materials. The EDS analysis (Figure 6) of the observed crystals shows their
chemical composition. The atomic content ratio between Ca and P is 1.6 and is in agreement
with the chemical formula of hydroxyapatite [29]. The mechanism of the hydroxyapatite
formation is explained in Figure 7: the Si–OH groups present on the surface of the material
combine with the positively charged Ca2 + ions present in the SBF fluid, forming calcium
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silicate. The accumulation of calcium ions allows the increase in the positive charge on
the surface which, in turn, combines with the negative charge of the phosphate ions to
form amorphous calcium phosphate, which spontaneously transforms into hydroxyapatite
[Ca10(PO4)6(OH)2] [30].
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Figure 7. Mechanism of hydroxyapatite formation.

Furthermore, XRD measurement was used to identify the presence of hydroxyapatite
on the hybrid surface. The intense peaks of crystalline hydroxyapatite are visible in
Figure 8 (�), confirming that the material surface was covered by a hydroxyapatite layer
after 21 days of soaking in SBF. In Figure S3, XRD measurements show the amorphous
structure of the sample before being soaked in SBF. Moreover, this result suggests that the
hydroxyapatite layer is too thick to allow the detection of XRD signals from the hybrids’
surface [24,31–34].
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Figure 8. A representative XRD of SiO2/PEG 50 wt%/Fe(II)C 20 wt% soaked in SBF solution for
21 days.

3.4. Antibacterial Activity

The antimicrobial properties of these materials were investigated via the Kirby–Bauer
Test (Figure S4) to validate their safety by the ability to inhibit the growth of pathogenic
bacterial strains.

Representative images (Figure 9A) of antibacterial tests of SiO2/PEG50% with in-
creasing amounts of Fe(II)C in the hybrid matrix show that iron has an inhibitory effect
on both bacterial strains tested. Indeed, the higher the iron concentration in the silica
matrix, the higher the inhibitory effect on bacterial growth, as shown in (Figure 9B). In the
literature, it is reported that despite iron being an essential nutrient for bacterial growth,
thanks to its main role as an electron transporter, excessive concentrations can become
toxic to most bacterial strains. Frawley et al. reported that alterations of the H2O2 and iron
concentrations can produce high amounts of free radical species that damage the DNA,
proteins, and lipids of bacterial cells [35].
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Figure 9. (A) Representative inhibition halos (ID) of S. aureus and E. coli with SiO2/Fe(II)C 5, 10, 15,
20 wt%/PEG 50 wt%. (B) Diameter (mm) of inhibition halos of all materials incubated with S. aureus
and E. coli. Values are the mean ± SD of measurements carried out on samples analysed three times.
(C) Bacterial viability (%).
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In accordance with Kalantari et al. [7], low concentrations of iron did not show a
significant inhibition, while the bacterial growth of S. aureus and E. coli decreased when
20 wt% of Fe(II)C was encapsulated (Figure 9C).

The bacterial inhibitory effects of the increasing amounts of PEG in the SiO2 matrix
when 20% of Fe(II)C was encapsulated were evaluated, as shown in Figure 10. The
increasing amounts of PEG had an effect on E. coli and S. aureus growth, as can be seen
from the Petri dish images in (Figure 10A). Thus, the highest concentration of PEG allows
bacterial inhibition.
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Figure 10. (A) Representative inhibition halos (ID) of S. aureus and E. coli with SiO2/Fe(II)C 20%/PEG
6, 12, 24, 50 wt%. (B) Diameter (mm) of inhibition halos of all materials incubated with S. aureus and
E. coli. The values are the mean ± SD of measurements carried out on samples analysed three times.
(C) Bacterial viability (%).

4. Conclusions

The iron (II) citrate complex represents a solution for resolving iron-deficiency anaemia
and improving health care, since it increases the bioavailability and solubility of iron. The
sol-gel route allowed the synthesis of organic/inorganic hybrid materials consisting of a
SiO2 inorganic matrix, in which different percentages of a polymer (PEG) and a compound
(Fe(II)C) were entrapped.

The FTIR spectra of the hybrids showed the typical bands of the polymer and silica,
along with the bands of citrate, indicating encapsulation of Fe(II)C in the system.

Fe(II)C release measurements were carried out to evaluate the hypothetical controlled
release of the compound. Indeed, the results confirm that this system is able to release
Fe(II)C in a controlled manner, because it was fast in the first few hours, and then it slowed
down, ending after 8 h.

Furthermore, SEM and XRD analysis showed that the hybrids are bioactive, because
they are able to form a hydroxyapatite layer on their surface.

Finally, the antibacterial activity of the materials was tested. E. coli and S. aureus
were inoculated with the hybrid materials. According to the results obtained, a high
concentration of iron is able to inhibit microbial growth, while increasing amounts of PEG
do not show a significant inhibition of microbial growth.
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