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Abstract: The subject of this paper is the comparison of two algorithms belonging to the class of
evolutionary algorithms. The first one is the well-known Population-Based Incremental Learning
(PBIL) algorithm, while the second one, proposed by us, is a modification of it and based on the
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm. In the proposed Covariance
Matrix Adaptation Population-Based Incremental Learning (CMA-PBIL) algorithm, the probability
distribution of population is described by two parameters: the covariance matrix and the probability
vector. The comparison of algorithms was performed in the discrete domain of the solution space,
where we used the well-known knapsack problem in a variety of data correlations. The results
obtained show that the proposed CMA-PBIL algorithm can perform better than standard PBIL in
some cases. Therefore, the proposed algorithm can be a reasonable alternative to the PBIL algorithm
in the discrete space domain.

Keywords: Population-Based Incremental Learning; Covariance Matrix Adaptation Evolution Strat-
egy; Covariance Matrix Adaptation Population-Based Incremental Learning; knapsack problem; data
correlation

1. Introduction

Evolutionary algorithms (EAs) are a valuable tool for solving many multidimensional
and NP-hard [1] practical problems, mainly because they outperform traditional methods,
whose high space complexity often disqualifies them from being used to solve complex
problems. EAs are a large and diverse family of algorithms that find solutions to problems
in continuous and discrete domains. Among the prominent classes of EAs, the Estimation
of Distribution Algorithms (EDAs) [2] can be listed, in which the probabilistic model
mechanism realizes the evolution mechanism.

One of the more straightforward and well-known EDAs initially used to solve discrete
problems is the Population-Based Incremental Learning (PBIL) algorithm, first proposed by
Baluja in [3]. This algorithm owes its simplicity to the fact that the probability distribution
of the subsequent bits in the chromosome is independent, so both the point generation
and the learning process can be performed separately for each variable. For these reasons,
PBIL is popular and various modifications of the algorithm have been developed, intro-
ducing, among others, the probability vector multiplication [4,5], elite strategy [6] and
non-parametric approach [7].

A different approach than EDAs in the EAs family is evolutionary strategies (ES).
Their leading representative is the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) algorithm proposed in [8]. Initially, CMA-ES was invented to find solutions to
continuous domain problems, but later, modifications dedicated to discrete problems were
developed [9]. Whereas CMA-ES, such as EDAs, uses a probability distribution to describe
the population—a multivariate normal distribution—, they differ in other aspects. The
key among them is how the parameters are updated—in EDAs, learning considers a set of
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points, while CMA-ES considers a set of steps [10]. CMA-ES outperforms the EDA family
of algorithms in many problems [10].

In this paper, we propose a modification of the PBIL algorithm, which, inspired by
CMA-ES, introduces information about correlations between variables into the probability
distribution model. In some actual applications, taking the correlations between decision
variables into account can bring real benefits, e.g., a faster algorithm convergence. For in-
stance, one can imagine a given problem with two global optima with significantly different
realizations. By adding a covariance matrix, the algorithm can detect such a situation and
distinguish between these solutions. Knapsack problems with a varying item parameter
correlation [11] were chosen to compare the modified and standard PBIL algorithms. The
selected test case is a well-known NP-hard optimization problem commonly applied to
compare algorithms solving discrete tasks.

The rest of the paper is organized as follows: In Section 2, we detail investigated PBILs,
including our proposed modification. Next, in Section 3, we present the test environment
consisting of knapsack problems. Then, in Section 4, results and a discussion are provided.
Finally, Section 5 gives out a summary of the research findings.

2. PBIL Algorithm

In algorithms from the family of EDAs, each population is represented by a probability
distribution. In the case of PBIL [3], this is a vector consisting of the probabilities of
obtaining a value of one at each position in the chromosome (1).

pt = [pt
1, pt

2, . . . , pt
n] (1)

In each iteration, a population of M individuals was generated based on the probability
distribution using the sample. The solutions were, then, evaluated according to the adopted
objective function, and the N best solutions were selected (select). Based on the obtained
Ot subset, a vector of probabilities was updated in the update function. The algorithm ran
in a loop until the assumed stopping condition was not met. The code is presented in
Algorithm 1.

Algorithm 1 PBIL

1: initialize(p0)
2: t← 0
3: while !stop do
4: Pt ← sample(pt, M)
5: Ot ← select(Pt, N)
6: pt+1 ← update(Ot, pt, a)
7: mutate(pt+1)
8: t← t + 1
9: end while

The method of updating the probability vector was described in Formula (2), where a
is a learning rate and x is a binary vector representing a single solution to the problem. In
each iteration of the algorithm, the vector is modified according to the frequency of ones
on each gene in the set of N best solutions.

pt+1 = (1− a) · pt + a · 1
N ∑

x∈Ot

x (2)

The stop condition could be customized for the problem under study. Typically,
a maximum number of iterations (maxiter) is specified. Additionally, the algorithm is
assumed to stop when the probability vector stabilizes, i.e., if all vector elements are in a
fixed neighbourhood of zero or unity (ε).
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Proposed Modifications

The algorithm introduced in [3] assumes the independence of the individual genes in
the chromosome. Inspired by the CMA-ES algorithm described in [8], a Covariance Matrix
Adaptation Population-Based Incremental Learning (CMA-PBIL) algorithm that attempts
to account for correlations between variables was proposed.

In the CMA-PBIL algorithm, the probability distribution of population was described
by two parameters: the covariance matrix (Ct) and the probability vector (pt). The CMA-
PBIL pseudocode is presented in Algorithm 2. The steps of the modified algorithm corre-
spond to its original version. The changes only relate to how the points are generated and
how the probability distribution parameters are updated.

Algorithm 2 CMA-PBIL

1: initialize(p0, C0)
2: t← 0
3: while !stop do
4: Pt ← sample(pt, Ct, M)
5: Ot ← select(Pt, N)
6: (pt+1, Ct+1)← update(Ot, pt, Ct, a)
7: t← t + 1
8: end while

The procedure for updating the covariance matrix is outlined in Formula (3). It
employs the same learning factor a as during the modification of the vector pt. The
coefficient a was squared as the variance was the second central moment.

Ct+1 = (1− a2) · Ct + a2 · C′ (3)

The matrix C′ was computed at each iteration according to Formula (4), where the
vector st consists of the frequencies of ones on each bit in the set Ot.

C′(i, j) =
1
N ∑

x∈Ot

(xi − st
i)(xj − st

j) (4)

The method of updating the vector pt did not change.

3. Experiments

As a test case, multiple variants of knapsacks problems were chosen. The task aimed
to select from a set of n items a subset that maximizes the overall value of the knapsack
within the capacity limit (Capacity). Each item i was described by two parameters—weight
(weighti) and value (valuei). The decision of whether the item was included or not in the
knapsack was represented by variable xi ∈ {0, 1}. The main task is defined in Equation (5),
while the limit is defined in Formula (6).

arg max
x

n

∑
i=1

xi · valuei (5)

n

∑
i=1

xi · weighti 6 Capacity (6)

The fitness was evaluated using Formula (7), where P is the penalty coefficient. The
objective function considered both the goals, which was to maximize the values of the
items and the constraint.

f (x) =
{

∑n
i=1 xi · valuei, if ∑n

i=1 xi · weighti 6 Capacity
∑n

i=1 xi · valuei − P · (∑n
i=1 xi · valuei − Capacity), otherwise

(7)
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The problem was investigated on six different knapsack problems generated as pro-
posed in [11,12]. Problems with different correlation intensities (uncorrelated, moderately
correlated, and strongly correlated) and with different capacities were examined. As re-
ported in [11], the higher the correlation, the more challenging the knapsack problem was
expected to become. The sets consisted of n = 100 items with a maximum weight v = 10
and maximum offset r = 5. The method by which the weights, values and capacities were
generated sequentially for the following test cases is shown in Table 1. The U[a,b] represents
the continuous uniform distribution within the range of [a, b].

Table 1. Test cases of knapsack problem.

No. Weight Value Capacity

1 U[1,v] U[1,v] 2 · v
2 U[1,v] U[1,v]

1
2 ∑n

i=1 weighti
3 U[1,v] weighti + U[−r,r] 2 · v
4 U[1,v] weighti + U[−r,r]

1
2 ∑n

i=1 weighti
5 U[1,v] weighti + r 2 · v
6 U[1,v] weighti + r 1

2 ∑n
i=1 weighti

The initialization method for vector p and matrix C was adapted to the test case.
Typically, in the PBIL algorithm, the computation starts with a vector p0 = [0,5 . . . 0,5].
For the experiments performed, the elements of the vector p0 contained values calculated
using Formula (8).

p0 =
Capacity

∑n
i=1 weighti

(8)

The initial probability distribution was assumed to be uncorrelated. Therefore, matrix
C0 was a diagonal matrix with the variances computed according to Formula (9) located
on the diagonal.

Var0 = p0 · (1− p0) (9)

Test Environment

Since CMA-PBIL requires the generation of binary vectors with a given correlation, it
was important to select an algorithm that provided this. There are several types of algo-
rithms for this [13–15]. One of them was proposed by Demitras and is a modification of the
Emrich and Piedemont algorithm. An implementation of the algorithm from the MultiOrd
package [16] in R was adopted in the experiments. The algorithm uses a correlation matrix
instead of a covariance matrix, on which a constraint (10) is imposed, where ψt

i is described
by Formula (11).

max(−ψt
i ψ

t
j ,
−1

ψt
i ψ

t
j
) 6 Cort(i, j) 6 min(

ψt
i

ψt
j
,

ψt
j

ψt
i
) (10)

ψt
i =

√
pt(xi)

(1− pt(xi))
(11)

In the PBIL algorithm, three parameters could be specified: M—the number of so-
lutions generated; N—the number of solutions taken into account when updating the
distribution parameters; a—the learning rate. In addition, the penalty factor P was intro-
duced for the knapsack problem. ε and maxiter parameters determined the stop condition
of the algorithms. The value of the factor prevented solutions exceeding the knapsack
constraint from being selected. Parameter settings are listed in Table 2.
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Table 2. Algorithm parameters.

Parameter Value

M 100
N 20
a {0.1, 0.5}
P 1000
ε 0.1%

maxiter 1000

4. Results and Discussion

Each experiment was conducted 50 times. Figures 1–6 show the changes in the average
of the maximum obtained values of the objective function so far during the subsequent
evaluation. The best solutions found so far were captured after 100, 200, 500, 1000, 2000,
5000, 10,000, 20,000, 50,000 and 100,000, performing the objective function calculation and
average for each test case after all experiments. To compare the results with the global
optimum, the problem was also solved using Mixed-Integer Programming (MIP).

It was apparent from the presented graphs that both algorithms performed very
similarly. For most test cases carried out, higher achieved values for the CMA-PBIL
algorithm could be observed in the initial phases.

In addition, Figures 1, 3 and 5 noticeably show that, for knapsacks of capacity equal
2 · v for both tested algorithms at a learning rate of a = 0.5, the computation terminated
prematurely by converging to a local extreme.

102 103 104 105
30

40

50

60

70

80

90

100

Number of performed evaluations

∑
n i=

1
xbe

st
i
·v

al
ue

i

Optimum — MIP
PBILa = 0.1
PBILa = 0.5

CMA-PBILa = 0.1
CMA-PBILa = 0.5

Figure 1. The average of the maximal values of the objective function calculated so far, test case no 1.
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Figure 2. The average of the maximal values of the objective function calculated so far, test case no 2.
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Figure 4. The average of the maximal values of the objective function calculated so far, test case no 4.
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Figure 6. The average of the maximal values of the objective function calculated so far, test case no 6.

Tables 3 and 4 show the mean values and standard deviations of the objective function
and the number of its evaluation in each test case. The last column in each table contains the
p-value of the Wilcoxon–Mann–Whitney test, which was selected since the results did not
come from a normal distribution. The most significant difference favouring the CMA-PBIL
algorithm could be observed for test case number five, a knapsack problem with a strong
correlation between weights and item values and a small capacity and a learning rate of
a = 0.1. For both algorithms, the final average value of the test case’s objective function
was identical, while the CMA-PBIL algorithm required about 1700 less evaluations of
the objective function. For no other test case did the PBIL algorithm perform noticeably
better—the differences, sometimes in favour of the reference version and sometimes in
favour of the modified version, were marginal.

The modifications that were proposed have in no case resulted in an evident degra-
dation of the results. On the contrary, it was possible to identify a case for which the
consideration of the covariance matrix in the probability distribution yielded an improve-
ment in the convergence of the pt vector.

The covariance matrix was intended to benefit only in specific test cases, particularly
where there were strongly competing solutions. Such instances introduce a high correlation
between the variables themselves, as in test problem number five. If one looked closely
at how items were generated there, it would be clear that many items with identical
parameters were generated. When looking at the value of the objective function, it was
irrelevant which of the identical objects was included in the solution and, moreover, the
constraint may cause that both at the same time should not be packed. Taking correlation
into account allowed for a quicker separation of solutions giving the same result.
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Table 3. Comparison of mean values and standard deviations of the objective function for each
test case.

No. CMA-PBIL PBIL MIP p-Value
Mean Std Mean Std

(a) a = 0.1

1 101.86 0.35 101.86 0.35 102 0.972
2 401.85 0.36 401.76 0.43 402 0.121
3 58.82 0.45 58.95 0.22 59 0.136
4 406.66 0.84 406.75 0.8 407 0.563
5 90.00 0 90.00 0 90 −
6 592.18 39.52 591.01 39.65 601 0.011

(b) a = 0.5

1 93.73 4.72 93.57 4.81 102 0.719
2 400.53 1.33 400.66 2.54 402 0.052
3 53.15 2.77 52.87 3.03 59 0.634
4 405.49 1.43 405.73 1.31 407 0.261
5 77.32 5.25 78.29 4.83 90 0.363
6 586.60 4.06 587.15 3.54 601 0.6

Table 4. Comparison of the average number of objective function evaluation and its standard
deviation for each test case.

No. CMA-PBIL PBIL
Mean Std Mean Std p-Value

(a) a = 0.1

1 20, 052 1456.2 19, 528 1320.1 0.076
2 33, 822 2409.9 33, 503 2508.9 0.310
3 23, 908 3428.9 23, 641 2795.3 0.738
4 35, 754 2649 36, 210 3001.4 0.305
5 31, 931 4201.3 33, 633 3585.2 0.052
6 59, 978 7979 59, 957 8514.4 0.905

(b) a = 0.5

1 3600 415.4 3746 557.2 0.380
2 6116 593.1 6089 598.57 0.861
3 3705 447.8 3911 583.9 0.112
4 6390 552.1 6373 533.2 0.732
5 4550 535.1 4666 545.9 0.326
6 8618 456. 8505 473.21 0.122

Potential Applications

Nowadays, optimization issues arise in almost every area of science, engineering
and economics. Model-based optimization using probabilistic modelling of the search
space is a potential area for research of evolutionary algorithms. The PBIL is one of the
algorithms that has been extensively applied to many optimization problems, both in
the continuous and discrete domains. The CMA-PBIL algorithm proposed in the paper
gave satisfactory results in the knapsack problem. Therefore, we will apply it to a similar
problem concerning simulation and analysis methods of logistics networks for the postal
operator. It will be our continuation and future work of application of the CMA-PBIL
algorithm. The postal problem is a kind of composite of two problems. Firstly, it is a
logistics problem, which considers how to determine the optimal set of routes with a fleet
of vehicles to meet customer demands at the lowest possible cost. It is a generalization of
the well-known travelling salesman problem. In addition, each car has to carry many items
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that can be distributed among the machines in very many ways. Secondly, the question
is the same as in the knapsack problem—how to allocate the goods so that their total
weight and size do not exceed the vehicle’s capacity and the total value transport is as high
as possible.

Another problem in the discrete solution space where CMA-PBIL will find a po-
tential application is the problem of optimizing node resources in a Dense Wavelength
Division Multiplexing (DWDM) optical network, described in [17]. The main objective of
the optimization is to minimize capital expenditure, which includes the costs of optical
node resources, such as transponders and amplifiers used in a new generation of optical
networks. A model, taking into account the physical phenomena in the optical network,
was proposed.

The problems mentioned above were, in our view, appropriate where the CMA-
PBIL algorithm would be competitive with the methods used there. Preliminary studies
supported our thesis.

5. Conclusions

This paper investigated the impact of modifying the PBIL algorithm to include de-
pendencies between variables on convergence and performance. The idea behind the
CMA-PBIL algorithm was to introduce a covariance matrix to describe the probability
distribution that represents the populations, which was inspired by the CMA-ES algorithm.
To the best of the authors’ knowledge, no studies attempted to add a covariance matrix to
the binary distributions in the PBIL algorithm.

The focus of the experiments investigating CMA-PBIL was to determine how the
modification affected the quality of the resulting solutions. The intention was that the
CMA-PBIL algorithm should perform no worse than the standard PBIL and find a solution
faster in specific cases. Both algorithms were tested on different types of knapsack problems,
differing in the level of correlation between object attributes and knapsack capacity. The
results confirmed the assumption, and for the highly correlated case having equivalent
solutions, the CMA-PBIL algorithm completed it with a reduced number of calculation
of the objective function, reaching the optimal result. While CMA-PBIL only benefited
a specific class of problems, it is notable that it did not visibly degrade the result if the
problem did not fit into this class.

In practical applications, some problems could also reach the same state in many
equivalents and equally costly ways. Therefore, it is worthwhile to consider the CMA-PBIL
algorithm for their solving since, similarly, as shown on the knapsack problem, if there
are indications that there are strong correlations between the decision variables, a faster
convergence can be achieved.
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Abbreviations

The following abbreviations are used in this manuscript:
EA Evolutionary Algorithm
EDA Estimation of Distribution Algorithm
PBIL Population-Based Incremental Learning
ES Evolution Strategy
CMA-ES Covariance Matrix Adaptation Evolution Strategy
CMA-PBIL Covariance Matrix Adaptation Population-Based Incremental Learning
DWDM Dense Wavelength Division Multiplexing
MIP Mixed-Integer Programming
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