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Abstract: This investigation describes for the first time the application of carbenoxolone for elec-
trophoretic deposition (EPD) of different carbon materials, polytetrafluoroethylene (PTFE) and their
composite films. Carbenoxolone is a versatile biosurfactant, which adsorbs on materials due to its
amphiphilic structure and allows their charging and dispersion. Moreover, carbenoxolone exhibits
film-forming properties, which are investigated in experiments on EPD of films using water and
ethanol-water solvents. The new deposition process is monitored in situ and the deposition yield and
film microstructure are analyzed at different conditions. The EPD mechanism of materials involves
electrode reactions of the carbenoxolone surfactant. The data of potentiodynamic studies coupled
with the results of impedance spectroscopy show that PTFE films can be applied to protect metals
from corrosion. Electron microscopy, electrochemical techniques and modeling are used for analysis
of the microstructure and porosity of films prepared at different conditions. Carbenoxolone is applied
as a co-surfactant for the EPD of composites.

Keywords: electrophoretic deposition; film; diamond; polytetrafluoroethylene; graphene; composite;
dispersant; corrosion protection

1. Introduction

EPD and other electrochemical strategies are widely applied to modify the surfaces
of materials and to form coatings and thin films [1–6]. The EPD technique involves
electrophoresis of charged particles and their deposition on the electrode surface [7–10].
Many investigations have been conducted to develop surface engineering strategies to
charge particles and to develop deposition mechanisms and optimize the deposition
conditions [11–14]. Advanced techniques, novel additives and bath compositions have been
applied for EPD [15–17]. There has been significant progress in the EPD of composite and
multilayer films [18–21]. EPD was combined with electrosynthesis for the manufacturing
of nanocomposite organic–inorganic films [22,23]. A new approach involved the use of
film-forming charged dispersants for EPD of materials [24,25]. It was found that small
organic molecules such as bile salts adsorbed on carbon nanotubes and the negative charge
of the adsorbed molecules facilitated carbon nanotube dispersion [24]. Moreover, bile salts
exhibited both a pH-dependent charge and gel properties, which facilitated the fabrication
of thin films of bile acids [24]. The film-forming and binding properties of bile salts
facilitated EPD of materials. Therefore, further development of film-forming charged
dispersants is a promising approach to surface modification and EPD of materials.

EPD is an eco-friendly technology which facilitates the deposition of thin films of
different functional materials, avoiding the use of toxic precursors and solvents [26]. It
is widely used for high quality film deposition for various electronic and biomedical
applications due to the high purity of the deposited materials [26,27]. One of the challenges
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in designing EPD processes is the development of eco-friendly charged surfactants for
various materials. Therefore, the use of natural and biocompatible surfactants for charging
and dispersion of materials is of particular interest for the development of EPD technology.

Carbenoxolone sodium salt (CBXNa2) is a promising biocompatible molecule which
can potentially be used for surface modification and EPD of materials [28]. This molecule
was used as an anionic dopant for electropolymerization of polypyrrole [28]. CBXNa2 is
currently used in medicine for the treatment of gastric and duodenal ulcers. This drug
molecule exhibits important antiviral and gel-forming properties. CBXNa2 is a derivative
of glycyrrhetinic acid (Figure 1A) with a steroid-like chemical structure. It is a bipolar
amphiphilic molecule, containing carboxylic and succinyl groups bonded to opposite
sides of the steroid-like core. Dissociated CBXNa2 exhibits anionic properties in aqueous
solutions due to its two COO− groups. The COO− groups are protonated in acidic solutions
to form insoluble CBXH2. Compared to bile salts, CBXNa2 offers the benefit of a higher
charge to mass ratio, which is important for electrostatic dispersion of materials. Another
advantage of CBXNa2 is that the succinyl group of CBXNa2 facilitates its bonding to various
materials [29].
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Figure 1. (A) CBXNa2 structure, (B) film mass as a function of time analyzed in situ using QCM for
0.1 gL−1 CBXNa2 solutions in water at deposition voltages of (a) 3 and (b) 5 V.

The goal of this study was the development of a new and versatile approach for EPD
of different materials, such as carbon materials, PTFE and composites. It involved the appli-
cation of CBXNa2 as a versatile surface modification, dispersion, charging and film-forming
agent. We analyzed the deposition mechanisms, film microstructures and properties.

2. Materials and Methods

CBXNa2, diamond (size < 1 µm), nanodiamond (size < 10 nm), graphene nanoplatelets
(BET area 750 m2g−1, size < 2 µm) and PTFE (~1 µm) (Aldrich) were used. Carbon dots
were prepared as described in [30]. CBXNa2 solutions in water or water-ethanol solvents
with dispersed particles of the carbon materials and PTFE were prepared for EPD. The
particle concentration was 0.1–10 gL−1, deposition voltages were 3–70 V, deposition times
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were 3–5 min. The distance between stainless steel (type 304) and counterelectrodes (Pt
foil) in the EPD cell was 15 mm. The electrode dimensions were 25 × 30 × 0.1 mm. PTFE
coated samples were annealed at 350 ◦C for 1 h. The yield of EPD has been analyzed in
situ using a microbalance (AMETEK, QCM 922) and Au coated quartz crystals. The area of
the electrode was 0.18 cm2.

Corrosion protection of the electrophoretically deposited films was studied in 3%
(mass per volume) sodium chloride solutions using a potentiostat (AMETEK 2273) and a
three-electrode cell with uncoated or coated substrate, Pt auxiliary electrode and an SCE
reference. The working electrode area was 1 cm2. Potentiodynamic testing was carried
out at a 60 mVmin−1 scan rate in the potential range of −1.1–+0.8 V versus SCE. EIS data
was acquired at a 5 mV voltage amplitude in the frequency range of 10 mHz–10 kHz.
Microstructure studies were carried out using a JSM-7000F microscope (JEOL, SEM) at
voltages 5–10 kV. XRD testing was carried out with a Nicolet I2 diffractometer and CuKα

radiation. A Bruker FTIR spectrometer (Vertex 70) was applied for spectroscopy analysis
using the attenuated total reflection (ATR) technique.

3. Results

A typical requirement for EPD is the colloidal stability of charged species in the
deposition bath. The charging agent selection plays an essential role in the control of bath
stability and the rate of electrophoresis. However, strong repulsion of charged particles
inhibits film formation. Therefore, when selecting charging surface agents for EPD it is
important to consider not only bulk suspension stability but also the ability of the agents to
facilitate particle discharge and coagulation at the substrate surface. Our strategy is based
on the charging of particles by CBX2− species in CBXNa2 solutions and their discharge in
electrode reactions.

The ability to form films from pure CBXNa2 solutions is a favorable factor for EPD
of materials. The deposition mechanism involved electrolysis of water in an anodic reac-
tion [24,25,31,32]:

2H2O→ O2 + 2H+ + 2e− (1)

The electromigration of CBX2− species led to their discharge at the anode and forma-
tion of CBXH2 films:

CBX2− + 2H+ → CBXH2 (2)

Reaction (2) is critical for the deposition process, because it results in the discharge
of CBX2− and deposition of insoluble CBXH2. The deposition mechanism described in
Reactions (1) and (2) is similar to that used for anodic deposition of other small organic
molecules and macromolecules [24,25,33,34].

Water is an important component of an electrodeposition bath because it is necessary
for the H+ generation in Reaction (1). However, organic solvents offer several benefits for
EPD of materials. The EPD yield is proportional to the electric field in the suspension [35].
The generation of high electric fields in aqueous suspensions by the application of high
voltages presents difficulties due to the high conductivity of aqueous suspensions, which
results in high currents, significant O2 gas evolution and enhanced H+ generation in
Reaction (1). The high rate of H+ generation can result in expansion of a low pH region
away from the anode. This can potentially lead to the precipitation of CBXH2 at some
distance from the electrode surface. Moreover, significant O2 evolution results in porous
films. The use of ethanol-water mixture as a solvent is beneficial for EPD at relatively
high voltages and a reduced rate of Reaction (1). The dispersion of hydrophobic PTFE
in water presented difficulties. However, PTFE suspensions were formed in an ethanol-
water mixture.

The deposition of pure CBXH2 films was studied using water and ethanol-water (5%
water) solvents. The deposition yield was analyzed by in situ method, based on continuous
QCM monitoring of deposit mass during the deposition. This technique has limitations,
because it can be used for relatively low deposition yields. Therefore, QCM analysis was
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performed at relatively low voltages and low solution concentrations. The deposition yield
data presented in Figure 1B showed continuous mass increase with time due to film growth.
The increase in the applied voltage led to a higher rate of deposition. The rate of mass gain
reduced with EPD time due to the continuous rise of the voltage drop in the deposit and
reduction of electric field strength in the solution [35].

EPD from aqueous CBXNa2 solutions at voltages below 15V led to the formation
of continuous films which were crack-free (Figure 2A,B). However, the deposition at
higher voltages resulted in the formation of pinholes, due to the O2 evolution. In contrast,
significantly higher voltages can be applied for the EPD of films from the solutions of
CBXNa2 in the ethanol-water mixture. The EPD process resulted in the formation of
continuous films at voltages of 20–80 V. The microstructure of the films formed at 20 V
showed a large number of fibers with a typical length of 5–10 µm and diameters of about
0.5 µm. Fiber formation can result from self-assembly of water-insoluble hydrophobic
CBXH2 molecules. The formation of fibrous particles by electrochemical self-assembly
was observed in other experiments on anodic electrodeposition of other small organic
molecules [36,37]. Such fibers were not observed at higher voltages. The increase of voltage
above 80V in the water-ethanol solvent resulted in pinholes. Therefore, the EPD from
aqueous suspensions was limited to voltages not higher than 15 V, whereas the deposition
from ethanol-water suspensions was performed at voltages below 80 V. It is important to
note that the selection of a solvent is important for the fabrication of stable suspensions
for EPD. Therefore, in this investigation EPD of different materials was performed in
aqueous or ethanol-water suspensions in order to achieve good suspension stability for
each material.
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The deposition mechanism of carbon materials and PTFE involved CBX2− adsorption;
the adsorbed CBX2− makes the materials negatively charged and facilitates EPD from stable
suspensions. Figure 3 shows microstructures of films containing diamond and nanodia-
mond, as well as the XRD patterns of the films. Electron microscopy showed the formation
of continuous films, which were crack-free and contained diamonds (Figure 3A). Nanodia-
mond particles showed poor dispersion in water. However, relatively stable suspensions
were obtained in ethanol-water solvent, which facilitated nanodiamond dispersion in the
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presence of CBXNa2. Electron microscopy studies showed some agglomerates on the film
surface (Figure 3B). The size of the primary particles in such agglomerates was significantly
larger than the size of the nanodiamond particles. The agglomeration of the nanodiamond
particles can result from their lower zeta-potential (Supplementary material, Table S1).
The incorporation of diamond and nanodiamond in the films was confirmed by XRD
(Figure 3C), which showed peaks (111), (220) and (113) of diamond. The peak broadening
for nanodiamond resulted from its small size (Figure 3C).
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The feasibility of diamond deposition by EPD from their dispersion in CBXNa2
solutions indicated that CBX2− adsorbed on chemically inert diamond surfaces. It was
hypothesized that the hydrophobic interactions allowed for adsorption of amphiphilic
CBX2− on the diamond particles. It was found that other carbon materials, such as carbon
dots and graphene, can also be deposited from their dispersions in the CBXNa2 solutions.
Figure 4 shows that continuous and crack-free films were deposited. The SEM image shows
relatively large graphene particles. The incorporation of carbon dots into the CBXH2 films
was verified by FTIR.
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The FTIR spectrum of CBXNa2 (Figure 5A(a)) presents peaks at 1397 and 1564 cm−1,
owing to symmetric and asymmetric vibrating of salified carboxylic groups, respec-
tively [38]. Such absorptions were not observed for the deposited CBXH2 (Figure 5A(b)),
which exhibited enhanced absorption at 1716 cm−1 due to stretching of the protonated
COOH ligand [38]. The peaks at 1647 cm−1 (Figure 5A(a)) and 1650 cm−1 (Figure 5A(b))
resulted from C=C stretching [39]. Carbon dots (Figure 5A(c)) showed absorptions at
1457 cm−1, attributed to stretching of a C-C type. The minimum, at 1368 cm−1, was ob-
served due to bending of surface C-OH groups [39]. Similar peaks were recorded for the
films formed from carbon dot suspensions (Figure 5A(d)).
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Figure 5. FTIR testing data for (A) (a) original CBXNa2, (b) film material, formed from 1gL−1 CBXNa2 in water at 15 V,
(c) carbon dots, (d) deposit formed from 0.5 gL−1 CBXNa2 with 0.5 gL−1 carbon dots in water at 15 V; (B) (a) PTFE (b,c)
deposits, obtained from 1 gL−1 CBXNa2 with (b) 0.5 gL−1 and (c) 1 gL−1 PTFE in ethanol-water solvent at 50 V.

EPD of PTFE was performed from suspension of PTFE particles, which were dispersed
and charged using CBX2−. Figure 5B(a) shows FTIR data for PTFE, which exhibits ab-
sorptions at 1149 and 1203 cm−1. According to the literature, C–C and C–F2 asymmetric
vibrating contribute to absorption at 1149 cm−1, whereas the minimum at 1203 cm−1 was
due to symmetric vibrating of C–F2 [40]. The FTIR spectra of deposits prepared from
CBXNa2 solutions (Figure 5B(b,c) containing PTFE showed similar peaks, and confirm the
deposition of PTFE.

The higher polymer content in the suspension led to the enlarged polymer content
in the film. The electron microscopy imaging data (Figure 6) for the composite deposit
formed by EPD from 10 gL−1 PTFE suspension contained larger number of the PTFE
particles, compared to the film formed from the 5 gL−1 PTFE bath. The SEM analysis
revealed the formation of continuous deposits. The SEM images for the films prepared
from 10 gL−1 PTFE suspension showed reduced porosity and relatively dense packing
of the submicrometre PTFE particles. Annealing led to the burning out of the CBXH2
phase and melting of the PTFE particles, which resulted in reduced porosity. The films
prepared from 5 gL−1 PTFE suspension were porous (Figure 6) due to low PTFE content.
The increase in the PTFE content in the films resulted in reduced porosity, as indicated by
the electron microscopy images of films formed from 10 gL−1 PTFE suspensions (Figure 6).
Such films were analyzed by potentiodynamic and EIS studies in the 3% NaCl solutions.



Appl. Sci. 2021, 11, 9110 7 of 10
Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 10 
 

 
Figure 6. SEM data for films (A,B) before and (C,D) after annealing (1 h at 350 °C), for films prepared 
using 1 gL⁻1 CBXNa2 with (A,C) 5 gL⁻1 PTFE and (B,D) 10 gL⁻1 PTFE in ethanol-water solvent at 50 
V. 

PTFE content in the films resulted in reduced porosity, as indicated by the electron mi-
croscopy images of films formed from 10 gL⁻1 PTFE suspensions (Figure 6). Such films 
were analyzed by potentiodynamic and EIS studies in the 3% NaCl solutions. 

The data from electrochemical testing presented in Figure 7 demonstrate that films 
of the PTFE polymer allowed for corrosion protection. The Tafel graphs show that coating 
deposition resulted in a lower current for the anodic part of the graph, with an enlarged 
corrosion potential. The analysis of the Tafel plots showed corrosion currents of 0.01 and 
2.6 μAcm⁻2 for coated and uncoated substrates, respectively. The EIS data presented in the 
Nyquist plot were analyzed using an equivalent circuit (Figure 7), similar to that described 
in [41], where Rs, Rpore and Rct are solution resistance, resistance of electrolyte in pores and 
charge transfer resistance, respectively. C1 represents capacitance of the film and C2 is a 
double layer capacitance at the substrate surface in pores. The modeling results correlated 
with the experimental data. 

 
Figure 7. (A) Tafel plot, (B) Nyquist plot for substrate (a) without and (b) with coating; inset shows 
equivalent circuit. The working electrode area was 1 cm2. The coating was deposited from 1 gL⁻1 
CBXNa2 with 10 gL⁻1 PTFE in a mixed ethanol-water solvent at 50 V and annealed (1 h at 350 °C). 
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50 V.

The data from electrochemical testing presented in Figure 7 demonstrate that films of
the PTFE polymer allowed for corrosion protection. The Tafel graphs show that coating
deposition resulted in a lower current for the anodic part of the graph, with an enlarged
corrosion potential. The analysis of the Tafel plots showed corrosion currents of 0.01 and
2.6 µAcm−2 for coated and uncoated substrates, respectively. The EIS data presented in the
Nyquist plot were analyzed using an equivalent circuit (Figure 7), similar to that described
in [41], where Rs, Rpore and Rct are solution resistance, resistance of electrolyte in pores and
charge transfer resistance, respectively. C1 represents capacitance of the film and C2 is a
double layer capacitance at the substrate surface in pores. The modeling results correlated
with the experimental data.
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The porosity (P) of the films was tested according to ref. [41] by the equation

P =
Rpm

Rp
×10− | ∆E/β | (3)

where ∆E is the difference of corrosion potentials for the substrates with and without
films, β and Rpm are the slope of the anodic part of the Tafel graph and the substrate
polarization resistance, respectively, Rp is the polarization resistance of the coated substrate,
and Rp = Rpore+ Rct. The EIS data was analyzed with the aid of a circuit (Figure 7) [41],
which allowed for measurement of Rpm and Rp. The film porosity was found to be 0.28%.

In this investigation the possibility of EPD of PTFE composites has been studied using
CBXNa2 as a co-dispersant. Figure 8 presents electron microscopy data for the composite
coatings prepared from mixed PTFE and diamond suspensions. The SEM images show
relatively dense packing of the PTFE and diamond particles. The electron microscopy
images showed that the higher concentration of diamond in the suspension led to a larger
diamond content in the films. The films deposited from 1 gL−1 CBXNa2 solutions with
5 gL−1 PTFE and 0.5 gL−1 diamond show individual diamond particles incorporated in the
relatively dense PTFE layer. The higher diamond concentration in the EPD bath resulted
in films which mainly contained diamond, with PTFE acting as a binder for the diamond
particles (Figure 8). The results of the microscopy indicated that the composition of the
films can be controlled and varied.
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50 V.

The fabrication of continuous CBXH2 films provided evidence of the film-forming
properties of CBXNa2. It can also be used as a charging and dispersing agent for particles
with functional properties. The combination of film-forming, charging and dispersing
properties makes CBXNa2 a promising additive for EPD of materials. The results of
this investigation also indicated that CBXNa2 is a versatile dispersing, charging and film
forming agent for co-EPD of different materials. However, due to the difference in the
surface chemistry and properties of different materials, deposition parameters such as
CBXNa2 concentration, voltage and solvent must be optimized for each material. CBXNa2
can be used for EPD of other materials, such as carbon nanotubes. The deposition yield
(Supplementary information, Figure S1) was comparable with that obtained using a bile
salt such as cholic acid sodium salt as a dispersant and film forming agent [24].
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4. Conclusions

The deposition mechanism of pure CBXH2 involved protonation of CBX2− in the
anodic reactions and the forming of insoluble CBXH2 films. The EPD mechanism of carbon
materials, PTFE and composites involved adsorption of CBX2− on particles, electrophoretic
transport and discharge of adsorbed CBX2−, which facilitated film formation. The depo-
sition rate, film morphology and composition can be varied and controlled. CBXNa2 is a
versatile surfactant and co-surfactant for EPD of various materials and composites. The
EPD method can be applied for protection of metals from corrosion in industry. CBXNa2
is a promising surface modification agent for future applications in EPD of functional
inorganic materials due to the chelating properties of its carboxylic groups. Therefore,
further progress in CBXNa2 applications can result in the manufacturing of advanced
functional composites by EPD.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/app11199110/s1, Figure S1: deposition yield measurements and Table S1: Zeta potential
measurements
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