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Abstract: Tuberculosis is a potential fatal disease with high morbidity and mortality rates. Tuber-
culosis death rates are rising, posing a serious health threat in several poor countries around the
world. To address this issue, we proposed a novel method for detecting tuberculosis in chest X-ray
(CXR) images that uses a three-phased approach to distinguish tuberculosis such as segmentation,
feature extraction, and classification. In a CXR, we utilized the Weiner filter to distinguish and reduce
the impulse noise. The features were extracted from CXR images and trained using a decision tree
classifier known as the stacked loopy decision tree (SLDT) classifier. For the classification process,
the ROI-based morphological approach was applied in the mentioned three-phased approach, and
the feature extraction was accomplished through chromatic and Prewitt-edge highlights.

Keywords: tuberculosis; chromatic features; SLDT; morphological technique; Prewitt-edge features

1. Introduction

Tuberculosis (TB) is one of the most serious health problems in the world, which
is a bacterial infection caused primarily by the lung-impaired bacteria Mycobacterium
Tuberculosis (MTB). In the past few decades, TB cases have diminished, while in some
high-risk populations, TB rates are increasing, especially in metropolitan areas in Western
Europe [1].

An automated method in detecting TB in chest X-rays (CXRs) is based on lung seg-
mentation and feature removal. A computerized process is useful for identifying TB in
CXRs based on lung division and extraction. In this examination, we centered around the
three classes of anomalies such as textural irregularities, portrayed by diffuse changes by
all accounts and construction of an area; central anomalies, which are disengaged outlined
changes in thickness; and shape irregularities, where sickness measures have modified the
form of typical anatomical designs [2].

The greater part of the recently evolved frameworks for programmed examination of
chest radiographs have zeroed in on a single assignment. For programmed TB identifica-
tion, there are two primary motivations to consolidate frameworks. First is that it is not
conceivable that a solitary framework will do the trick in a large number of settings, so a
combination of different frameworks can be applied to the particular setting. For instance,
by gauging the yield of a particular anomaly identification framework higher when it is
unequivocally connected with TB in a specific populace. The subsequent explanation is an
overall useful impact of framework blend on the presentation of directed frameworks [3].

In several poor countries worldwide, tuberculosis mortality is rising, posing a severe
danger in human lives. According to the World Health Organization (WHO), TB has
the highest number of deaths, followed by the human immunodeficiency virus (HIV).
Southeast Asia and areas of Sub-Saharan Africa are some of the parts of the world that
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are more affected. According to estimates, since 2012, 8.5 million new cases of TB each
year were diagnosed worldwide [4]. TB can be cured by having a legitimate determination
in taking the recommended medications in the proper time while maintaining a strategic
distance from others to help lessen the transmission of the infection.

The sputum test is a reliable procedure to diagnose TB, which involves microscopic
analysis of the cultured sputum samples. However, the downside of the sputum test is
that it relies upon the capacity of the patient to deliver sputum, which is hard to collect in
old-aged people and sometimes combined with different sicknesses [5].

Interferon-gamma release assays (IGRA) are blood tests used to detect tuberculosis
but are expensive and difficult to use for screening purposes [6]. CXR is a low-cost method
of determining the presence of tuberculosis since any TB symptoms are visible in CXRs. In
this research paper, tuberculosis was predicted by analyzing CXRs using a stacked loopy
decision tree (SLDT) classifier.

2. Related Works

To produce predictions, the autoregressive moving average model and the grey pre-
diction model were presented by Xuan Chen et al. [7]. The generalized regression neural
network was then used to dynamically weight based on the prediction results of two
models. As a result, the neural network’s prediction findings became more accurate, and
provide a scientific foundation for the implementation of appropriate prevention and
control actions.

Zaman et al. [8] discussed that CXR images were first segmented using the random
walker method, then computed features enabled the support vector machine (SVM) classi-
fier in classifying CXR images as infected or healthy based on the computed features. The
dataset, which was gathered from the Indiana University Hospital Network and consisted
of 100 photographs, was used to assess the system performance. Using the SVM classifier,
a system accuracy rate of 73% was calculated.

Munadi et al. [9] explained some algorithms used to enhance images of CXRs to detect
tuberculosis. These algorithms were evaluated by unsharp masking (UM), high-frequency
emphasis filtering (HEF), and contrast limited adaptive histogram equalization (CLAHE).
Munadi et al. used a deep learning (DL) approach for classification and area under curve
(AUC) and achieved an 89.92% accuracy rate in classification and 94.80% in AUC.

Fariza et al. [10] utilized a fuzzy method known as spatial fuzzy risk mapping to map
the spatial risk of tuberculosis based on a variety of criteria that comprise TB risk factors.
Among the criteria were the number of people with TB (BTM positive), population density,
unsanitary living conditions, and health services. The weight value of each criterion was
generated using fuzzy multi-criteria decision making, and the best alternative from the
sub-district regions was chosen using a ranking method. Following the calculation of fuzzy
membership, the sub-district areas were directly sorted into three index levels based on
rule association: low, medium, and high.

The TB risk index was calculated for 31 densely populated metropolitan areas in
Surabaya, Indonesia. Using the risk map, a spatial geographic information system (GIS)
mapping was created. There were four sub-districts that decreased (12.9%), six that
expanded (19.4%), and the remaining 68.7% did not change over the last three years
(2013–2015). In 2015, the fuzzy risk model classified 13.33% of sub-districts as low risk,
while the Public Health Service classified people as high risk.

M. K. M. Serrão et al.’s [11] proposal was tested on a large image dataset that was vali-
dated by three experts. Three CNN architectures were tested, each with three optimization
strategies. The deeper design yielded better results, with accuracy levels above 99%.

Cao et al. [12] used an enhanced fuzzy C-means (FCM) clustering technique to pre-
segment MRI images to track the approximate site of brain TB and provide the start contour
for hybrid model segmentation.
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N. Singh and S. Hamade [13] represented automatic TB detection method using
conventional digital chest radiographs. There were three stages such as extracting using
Gabor filtering, segmentation, and classification using support vector machine.

F. Pasa et al. [14] suggested an efficient simple convolutional neural network for fast
visualization of the chest X-ray images by the grad-CAM method.

S. Rajaraman and S.K. Antani [15] proposed modality-specific features from large-scale
publicly available CXR collections by using a custom convolutional neural network (CNN).
They proved some improved performance criteria using classification, accuracy, and AUC,
which led to reduced overfitting and improved generalization.

S. Jaeger et al. [16] developed an automated approach to detect tuberculosis in con-
ventional posteroanterior chest radiographs. Based on the graph cut, the lung region was
segmented using an optimization method.

S. Hwang et al. [17] designed a computer aided design (CAD) system based on deep
CNN for automatic TB screening for large scale CXRs and showed viable TB screening
performances of 0.96, 0.93, and 0.88 in terms of area under curve (AUC) by exploiting the
effect of transfer learning.

U.K. Lopes and J.F. Valiati [18] presented three different proposals to detect tuber-
culosis using pretrained CNN. The first proposal was used to extract the features then
trained using the SVM classifier. The second proposal was used to extract the features from
sub regions of CXRs, then trained using SVM. Based on those two proposals, they created
ensembles of classifiers.

Hyun kwon [19] suggested an adversarial training approach for defending against
adversarial instances generated by the fast gradient sign method (FGSM) over a range
of epsilon values. As a result, it created several models that displayed segmentation
robustness in the face of malicious cases by decreasing the pixel error between original
labels and adversarial examples to an average of 1.45. The author’s approach was carried
out in three parts. First, adversarial cases were generated using FGSM for various epsilon
values and targeting a local model known to the defender. In the second stage, the training
process started on the adversarial images using the U-Net model and epsilon settings.
Finally, segmentation was applied to the unidentified adversarial samples.

T. Rahman et al. [20] reported a deep CNN approach with transfer learning for
automatic identification of tuberculosis from chest radiographs. The proposed Score-CAM
visualization for lung segmentation improved in making decisions based on features within
the lung region, as opposed to the traditional X-rays, which allowed for decisions to be
made based on features outside the lung region.

S. Candemir et al. [21] established a patient-specific adaptive lung model-based non-
rigid registration-driven robust lung segmentation approach that detects lung limits. The
method has three major stages: finding training images, developing a patient-specific
anatomical model of lung shape using scale invariant feature transform (SIFT) flow, and
finally extracting the boundaries.

3. Research Gaps

The research gaps in this study are as follows:

• Investigate indications, symptoms, and TB risk markers;
• Ensure sensitivity and specificity are high enough for the first TB screening;
• Examine the feasibility, effectiveness, and cost-efficiency of screening people previ-

ously diagnosed with TB for broader signs and symptoms of TB, similar to what is
recommended for HIV patients; and

• Develop a low-cost tuberculosis diagnostic tool that can be used in low-resource situations.

4. Research Contributions

We proposed a novel approach using a stacked loopy decision tree (SLDT) that may
be utilized for label prediction in typical tree-based image analysis models in this paper.
We also looked at how unusual, stacked decision trees can aid with medical image analysis
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including image screening and classification for tuberculosis. This work’s commitments
can be summarized as follows:

(1) We offer a choice tree model with an integrated stacking encoder that can be taught
from start to finish for a clinical imaging application;

(2) SLDT can take the place of the careful procedures employed in image layout. For
neighborhood sites, the proposed consideration approach allows for clearer col-
umn structure;

(3) We used the suggested model to identify TB and demonstrate that it surpasses the
reference technique in classification; and

(4) We show how care maps can be used to quickly locate tuberculosis lesions, demon-
strating that the characteristics considered were indeed correlated with the desired
lesion characteristics.

5. Dataset Description

Three publicly accessible databases were utilized in building the proposed method,
and the details for each database are as follows:

(1) NLM (National Library of Medicine) dataset [16,20,21]: This was made by two pub-
licly accessible datasets including the Montgomery County CXR set (MC) and Shen-
zhen (CHN) dataset. The MC dataset was compiled in collaboration with Montgomery
County, Maryland, the United States’ Department of Health and Human Services. The
collection includes 138 frontal CXRs from Montgomery County’s tuberculosis screen-
ing program, where 80 CXRs were normal cases while 58 CXRs had TB manifestations.
The X-rays were taken with a Eureka stationary X-ray machine (CR) and provided as
12-bit gray level images in portable network graphics (PNG) format. Moreover, the
Digital Imaging and Communications in Medicine (DICOM) format is also available
upon request. The X-rays were either 4020 × 4892 or 4892 × 4020 pixels in size. The
Shenzhen dataset was collected in collaboration with Shenzhen No. 3 People’s Hospi-
tal, Guangdong Medical College, Shenzhen, China. The CXRs were from outpatient
clinics and captured as part of the daily hospital routine within a 1-month period,
mostly in September 2012, using a Philips DR Digital Diagnost system. The dataset
contained 662 frontal CXRs, of which 326 belonged to normal cases while 336 had
TB manifestations including pediatric X-rays (AP). The X-rays are provided in PNG
format, and can vary in size, but is approximately 3 K × 3 K pixels.

(2) Belarus dataset [20]: The National Institute of Allergy and Infectious Diseases, Min-
istry of Health, Republic of Belarus, collected the Belarus Set for a drug resistance
study. There are 306 CXRs in the dataset, representing 169 patients. The Kodak
Point-of-Care 260 system was used to take chest radiographs with a resolution of
2248 × 2248 pixels. All images in this database had been infected with tuberculosis.

(3) RSNA dataset [20]: The RSNA pneumonia detection challenge dataset contains ap-
proximately 30,000 chest X-ray images, 10,000 of which were normal and the rest
were abnormal as well as the lung opacity images. The DICOM format was used
for all images. A total of 3094 normal images were taken from this database and the
remaining 406 normal images were taken from the NLM database to create a normal
database of 3500 chest X-ray images for this study.

6. Methodology

In a three-stage approach, the proposed method identifies TB: segmentation, feature
extraction, and classification. Noise reduction was applied to CXRs in order to detect and
remove impulse abnormalities. The features were retrieved from the CXRs, and then the
SLDT classifier was used to train the model and classify the dataset. The training and
testing data were divided in the ratio of 70:30, and the ROI-based morphological method
was used for segmentation. A block diagram of the proposed method is shown in Figure 1.
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Figure 1. Block diagram of the proposed method.

In Figure 1, the input images are CXR images in JPEG format. The image to be
processed must be chosen by the user from its directory using the file name. After choosing
the image to be analyzed, the ROI-based morphological segmentation will follow, then
the chromatic and Prewitt feature extraction. The SLDT was used in training the features,
and after the whole process had been undertaken, the labels were returned as either
Tuberculosis or Normal.

6.1. Weiner Filtering

The RGB format of the input image was used then transformed to a grayscale image
before being processed further. The Wiener filter with a mask size 7× 7 was used to remove
the noise from the CXRs because it is one of the best methods to remove noise from CXRs,
which often contain artifacts or noise due to patient movement.

For images with additive noise and blurring, the Wiener filter is the MSE-optimal
stationary linear filter. The Wiener filter is calculated assuming second-order stationary
signal and noise processes (in the random process sense) [22]. An observed image or
degraded images can often be modeled as

x(i, j) =
x

h
(
i− i′, j− j′

)
s
(
i′, j′

)
di′dj′ + n(i, j) (1)

where h is the imaging system’s point spread function, and n is the additive noise. We
estimated the original images from the degraded image x in this case for image restoration.

x(i, j) = h(i, j) × s(i, j) (2)
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where h(i, j) is considered as the filter of the degraded image; s(i, j) is considered as the
original image; and x(i, j) is considered as the modified or degraded image.

Hence, from Equations (1) and (2), we can derive the following generative model.

x(i, j) = h(i, j) × s(i, j)↔ X(a, b) = H(a, b) × S(a, b) + N(a, b) (3)

and for the moment, we ignore n(i, j).
Wiener filters are typically used in the frequency domain. Given a degraded image

x(i, j), the discrete Fourier transform (DFT) is used to produce X (a, b). The original image
spectrum is reconstructed by taking the product of X(a, b) and the Wiener Filter G(a, b).

Ŝ(a, b) = G(a, b)·X(a, b) (4)

where X(a, b) is DFT of x(i, j).

G(a, b) is Weiner Filter
Ŝ(a, b) is filtered or degraded image.

The following Equation (5) will define the Wiener Filter.

G(a, b) = H ∗ (a, b) Ps(a, b)/|H(a, b)|2 Ps(a, b) + Pn(a, b) (5)

where Ps(u, v) is considered as the signal process by taking the Fourier transform of the
signal autocorrelation. Pn(u, v) is considered as a noise process by taking the Fourier
transform of the signal autocorrelation.

6.2. Prior TB Segmentation

Weiner Filter was used to remove unwanted noise from the CXRs, which can increase
the image intensity uniformity while maintaining the texture and limits. A morphological-
based region of interest (RoI) algorithm must then be used to remove the extra brain tissues.
For automatic tracking of the location of the TB location, morphological operation was
performed by the Weiner Filter and produced a mask that can be used for future segmenta-
tions. This method makes use of an image that combines morphological operations such as
extended minima and morphological gradient algorithms to segment grayscale images of
any size (8, 16, and 32-bit) in 2D and 3D.

Despite the fact that morphological operations are based on set theory, many of them
are logical and simple to perform. The two most fundamental morphological activities are
erosion and dilation. Several morphological operations have been represented as combina-
tions of erosion, dilation, and simple set-theoretic operations such as the complement of a
binary image. These were mentioned in Equations (6)–(9).{

f c(A, B) = 1, i f f (A, B) = 0
f c(A, B) = 0, i f f (A, B) = 1

(6)

The intersection, h = f ∩ g, of two binary images f and g:

h(A, B) = 1, i f f (A, B) = 1g(A, B) = 1, and h(A, B) = 0 otherwise (7)

and the union h = f ∪ g of two binary images f and g:

h(A, B) = 1, i f f (A, B) = 1 or g(A, B) = 1,and h(A, B) = 0 otherwise (8)

The opening of an image f by a structuring element s (denoted by f ◦ s) is an erosion
followed by a dilation:

f ◦ s = ( f 	 s)⊕ s (9)
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After selecting the RoI, morphological operation was applied to segment the image
using the above equations.

6.3. Feature Extraction Phase

One of the most significant modules for classification is feature extraction. In this case,
extracted features play a critical role in improving TB detection accuracy. The classifier was
fed both chromatic and edge characteristics in this study.

The following steps are involved in extracting chromatic features:

(1) Converting the RGB image to HSV image;
(2) Determining the hue plane’s variance;
(3) Calculating the hue plane’s standard deviation;
(4) Determining the hue plane’s skewness;
(5) Applying the above steps for the saturation and value; and
(6) Combine all of these characteristics.

6.4. Prewitt Edge Detection

The Prewitt operator returns either the matching gradient vector or the vector’s
normal, and is also used to measure the gradient intensity. The Prewitt operator works by
performing convolution to the picture in the horizontal (x) and vertical (y) directions with
a tiny, separable, integer-valued filter, which is a cheap and effective method for detecting
edges. This method is only good for images that are not noisy and have a lot of contrast [23].
The spectral response is the difference between the Prewitt and Sobel operators, which is
an effective way to figure out how big an edge is and how it is positioned.

Kernel G(x) is used to calculate the vertical edge component, while Kernel G(y) is
used to compute the horizontal edge component (y) [24]. The gradient intensity in the
current pixel is indicated by |G(x)|+ |G(y)|. In order to find the absolute magnitude of
gradient at each point and orientation of that gradient, we need to combine it together.
Figure 2 shows the Prewitt operator, which is made up of a pair of 3× 3 convolution kernels.
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The Kernels can be applied individually to the input image to provide independent
gradient component measurements in each orientation (call these Gx and Gy). Magnitude
can be calculated by following Equations (10) and (11),

|∇ f | =
√

Gx2 +
√

Gy2 (10)

|∇ f | =
∣∣∣Gx2

∣∣∣+ ∣∣∣Gy2
∣∣∣ (11)
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∇ f −Magitude o f imageGx− gradient along x directionGy− gradient along y direction

Angle of computation of the gradient of a picture is based on finding the partial deriva-
tives of ∂ f /∂x and ∂ f /∂y at each pixel position by Equation (12). These derivatives can be
applied to a whole image using masks with the size 3× 3 and the convolution method.

Angle o f ∇ f = tan−1(
G(x)
G(y)

) (12)

Based on Equation (14), the image’s magnitude values and angles of Prewitt convolutional
kernels are used to implement the central point by following Equations (13) and (14).

Gx = (z7 + z8 + z9)− (z1 + z2 + z3) (13)

Gy = (z5 + z6 + z9)− (z1 + z4 + z7) (14)

6.5. Stacked Loopy Decision Tree (SLDT) Algorithm

Stacking is a machine learning ensemble algorithm that is also known as stacked
generalization. Using a meta-learning method, it learns how to merge predictions from
two or more underlying machine learning algorithms. Stacking provides the advantage of
combining the capabilities of a number of high-performing models to produce predictions
that are better than any one model in the ensemble on a classification or regression problem.
Algorithm 1 will explain the proposed system.

The architecture of the stacking model consists of two or more base models (known as
level-0 models) and a meta-model (known as levels-1) that integrates the predictions of the
base models.

(1) Level 0 models (base models) are used to compile and adapt to training data, whereas
Level 1 models (Meta Mode) are used to integrate the basic model predictions to the
greatest extent possible;

(2) Strategies to access primary models such as training data entry can also be included
in meta-training models on how to best combine design elements;

(3) Once the meta-training model’s dataset has been generated, the meta-model can be
trained independently on it, while the base models can be trained on the complete
original training dataset;

(4) The ultimate conclusion is reached using a decision tree, which is iterated for numer-
ous loops to forecast the image’s label; and

(5) Generally, a decision tree algorithm has a decision node and leaf node. Several
branches can be made by using the decision nodes. At same time, decision output is
represented by the leaf nodes without multiple branches.

Algorithm 1. Proposed Algorithm.

Input: Image
Output: Optimized Image
1. Read input image.
2. Transform the image to a gray image.
3. Use Equation (1) to apply the Weiner Filter.
4. Carry out segmentation by Equation (5).
5. Extract chromatic features for images in the data set by Prewitt edge.
6. Train the dataset and make the decision using SLDT.

7. Experimental Results
Evaluation Metrics

The number of correct predictions of healthy and TB patients was used to determine
the SLDT performance. The following performance criteria were utilized to evaluate:
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accuracy, sensitivity, specificity, and area under curve (AUC). These variables are expressed
in Equations (15)–(17) below.

Sensitivity(%) = TP/TP + FN × 100 (15)

Speci f icity(%) = TN/FP + TN × 100 (16)

Accuracy(%) = (TP + TN)/TP + FN + TN + FP× 100 (17)

where TP, TN, FN, and FP are True Positive, True Negative, False Negative, and False
Positive, respectively.

The results of several phases performed on the normal and abnormal images of TB
CXRs were illustrated by various datasets such as MC and CHN, which are shown in
Figures 3–6, respectively.
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Figure 3 was processed and taken from normal images of the CHN dataset.
In Figure 3, the first column (a) illustrates the input image, which is an normal CXR

image; the second column (b) illustrates the output image, which was equalized from the
given normal input image; the third column (c) illustrates the Weiner Filtered image of
the given input image; and the fourth column (d) illustrates the output image, which was
segmented using ROI-based morphological operations. It can be noted that column d is
segmented, which is output from the first column (a), second column (b), and third column
(c). We could observe different between original images and segmented images using our
proposed system. The above experiment was processed on a CHN normal dataset.

Figure 4 was processed and taken from abnormal images of the CHN dataset.
In Figure 4, the first column (a) illustrates the input image, which is the abnormal CXR

image; the second column (b) illustrates the output image, which was equalized from the
given abnormal input image; the third column (c) illustrates the Weiner Filtered image of
the given input image; and the fourth column (d) illustrates the output image, which was
segmented using ROI-based morphological operations. The above experimental results
were processed and taken from abnormal dataset of CHN.

Figure 5 was taken from normal images of the MC dataset.
In Figure 5, the first column (a) illustrates the input image, which is the normal CXR

image; the second column (b) illustrates the output image, which was equalized from the
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given normal input image; the third column (c) illustrates the Weiner Filtered image of
the given input image; and the fourth column (d) illustrates the output image, which was
segmented using ROI-based morphological operations. These images were taken from the
MC normal dataset.

Figure 6 was processed and taken from abnormal images of the MC dataset.
In Figure 6, the first column (a) illustrates the input image, which is the abnormal CXR

image; the second column (b) illustrates the output image, which was equalized from the
given abnormal input image; the third column (c) illustrates the Weiner Filtered image of
the given input image; and the fourth column (d) illustrates the output image, which was
segmented using ROI-based morphological operations. The above experimental results
were processed and taken from the abnormal dataset of MC.

The performance metrics, which were evaluated using the formulas that were given
above and its comparison with the existing systems with the proposed system, were
displayed in Tables 1–4 with respect to the CHN, MC, combined datasets 1 (MC and CHN)
and the other combined datasets 2 (NLM, Belarus, and RSNA).

Table 1. Performance measures of the proposed method with the existing method by the CHN dataset.

Authors Methods Dataset Accuracy Sensitivity Specificity AUC

K. Munadi et al. [9] CNN with Transfer learning CHN 89.92% N/A N/A 94.8%
Proposed Method SLDT CHN 99.78% 99% 99% 99.74%

Table 2. Performance measures of the proposed method with the existing methods by the MC dataset.

Authors Methods Dataset Accuracy Sensitivity Specificity AUC

Rajaraman and Antari [15] Ensemble Method MC 94.1% N/A N/A 99%
S. Jaeger et al. [16] Graph cut MC 84% N/A N/A 90%
Hwang et al. [17] CNN with Transfer learning MC 83.7% N/A N/A 92.6%

Proposed Method SLDT MC 98.9% 98% 97.3% 99%

Table 3. Performance measures of the proposed method with existing methods by the combined dataset 1 (MC and CHN).

Authors Methods Dataset Accuracy Sensitivity Specificity AUC

N. Singh and S.
Hamade [13] SVM MC and CHN N/A N/A 100% 96%

Lopes and Valiati [18] CNN with Transfer learning MC and CHN 84.7% N/A N/A 92.6%
Proposed Method SLDT MC and CHN 99.6% 100% 99.6% 99%

Table 4. Performance measures of the proposed method with existing methods by combined dataset 2 (NLM, Belarus
and RSNA).

Authors Methods Dataset Accuracy Sensitivity Specificity AUC

F. Pasa et al. [14] Optimized CNN MC, CHN and Belarus 86.2% N/A N/A 92.5%

T. Rahman et al. [20] CNN with
Transfer learning

NLM (MC and CHN),
Belarus, NIAID TB
portal and RSNA

98.6% 98.56% 98.54% N/A

Proposed Method SLDT NLM (MC and CHN),
Belarus and RSNA 98.96% 98.77% 100% 96.89%

In Table 1, the accuracy, sensitivity, specificity, and AUC scores are displayed. These
are the major performance measures of the proposed method used to compare the per-
formance to the existing method. Both methods used the CHN dataset. Table 2 presents
the performance measures of the existing methods and the proposed method with the
MC dataset.
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In Table 2, we compared the performance measures of accuracy, sensitivity, specificity,
and AUC with existing methods by the same dataset such as MC. The proposed method
attained the highest accuracy rate among the existing methods. Moreover, the sensitivity,
specificity, and AUC scores were presented. The performance measures of the proposed
method with existing methods in the combined dataset 1 (MC and CHN) is presented in
Table 3.

In Table 3, existing methods and the proposed method’s performance were compared
with its performance in the combined dataset 1 such as MC and CHN. The proposed method
obtained the highest accuracy, sensitivity, specificity, and AUC scores. The performance
measures of the proposed method with existing methods by the combined dataset 2 (NLM,
Belarus and RSNA) is presented in Table 4.

In Table 4, the proposed method was analyzed by comparing various performance mea-
sures with the existing methods using combined dataset 2 (NLM, Belarus and RSNA). The
proposed method was still the highest performer among the existing methods. Tables 5–8
show the proposed method’s performance compared with other machine learning algo-
rithms with respect to the following datasets: CHN, MC, combined dataset 1 (MC and
CHN) and combined dataset 2 (NLM, Belarus, and RSNA).

Table 5. Performance measures of the proposed method with other machine learning methods by the
CHN dataset.

Methods Accuracy Sensitivity Specificity AUC

SVM 56.9% 50% N/A 56.9%
Naïve Bayes 63.63% 51% 66.4% 62.13%

Logistic Regression 56.9% 50% N/A 56.9%
SLDT 99.78% 99% 99% 99.74%

Table 6. Performance measures of the proposed method with other machine learning methods by the
MC dataset.

Methods Accuracy Sensitivity Specificity AUC

SVM 60.8% 98% N/A 49.1%
Naive Bayes 61.8% 65% 50% 60.8%

Logistic Regression 56.70% 70% 41.9% 52.5%
SLDT 98.9% 98% 97.3% 99%

Table 7. Performance measures of the proposed method with other machine learning methods in
combined dataset 1 (MC and CHN).

Methods Accuracy Sensitivity Specificity AUC

SVM 59% 67% 56.7% 58.4%
Naïve Bayes 61.1% 49% 56.2% 62.05%

Logistic Regression 53.3% 100% N/A 49.8%
SLDT 99.6% 100% 99.6% 99%

Table 8. Performance measures of the proposed method with other machine learning methods in the
combined dataset 2 including NLM, Belarus, and RSNA.

Methods Accuracy Sensitivity Specificity AUC

SVM 83.3% 99.9% 67% 50.1%
Naïve Bayes 83.3% 100% 100% 50.1%

Logistic Regression 83.4% 100% 100% 96.8%
SLDT 98.9% 98.77% 100% 96.89%
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In Table 5, the proposed method was compared with other machine learning methods
such as support vector machine (SVM), naïve Bayes, and logistic regression. Results
show that the proposed methods had better performance measures among other machine
learning algorithms using the CHN dataset. The performance measures of the proposed
method with other machine learning methods in the MC dataset is shown in Table 6.

In Table 6, it can be seen that the proposed method had the highest performance in
accuracy, sensitivity, specificity, and AUC among the other machine learning algorithms
using the same dataset, the MC dataset. The performance measures of the proposed
method with other machine learning methods in combined dataset 1 (MC and CHN) are
displayed in Table 7.

In Table 7, the proposed method was compared with other machine learning algo-
rithms with respect to the combined dataset 1, which includes the MC and CHN datasets.
The proposed method had the highest performance, showing 99.6% accuracy and 99%
AUC compared with SVM, naïve Bayes, and logistic regression. Finally, the performance
measures of the proposed method with other machine learning methods in the combined
dataset 2 including NLM, Belarus, and RSNA are displayed in Table 8.

Figures 7–10 show the visual representation of the comparative analysis of the pro-
posed methods with the existing methods with respect to the various datasets used in the
experiments including CHN, MC, and the combined dataset 1 (MC and CHN) and the
other combined dataset 2 (NLM, Belarus, and RSNA).
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According to the various datasets, CHN, MC, combined dataset 1 (MC and CHN),
and the other combined dataset 2 (NLM, Belarus, and RSNA), we analyzed, processed,
and finally obtained some experimental results by comparing the performance measures
with the proposed method. From the above experimental results, our proposed method
obtained some significant improvements and achieved the highest performance among
other existing methods.
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8. Conclusions

In this article, a ROI-based morphological segmentation method and feature extraction
and segmentation for tuberculosis CXR images were proposed. The experimental results
showed that using the proposed system (SLDT), tuberculosis could be accurately predicted
in CXR according to the various datasets. Another benefit of the proposed methodology is
that it is completely automated, requiring minimal user intervention, which is important
when dealing with massive amounts of data. Future studies can also include COVID-19 and
other datasets to detect and predict the segmentation of impacted regions for additional
investigations. Future researchers in this field can explore ways to improve the accuracy of
the 3D image segmentation.

Author Contributions: Conceptualization, X.A.I.; Methodology, C.V. and J.J.M.; Validation, J.J.M. and
C.V.; Formal analysis, C.V. and J.J.M.; Writing—original draft preparation, X.A.I.; Writing—review
and editing, J.J.M., X.A.I., C.V., and J.-H.J.; Visualization, C.V.; Supervision, J.-H.J. and J.-G.H.; Project
administration, J.-H.J. and J.-G.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Ministry of Science and Technology (MOST), Taiwan and
I-Shou University, Kaohsiung City 84001, Taiwan.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: https://www.kaggle.com/tawsifurrahman/tuberculosis-tb-chest-
xray-dataset.

Acknowledgments: The authors wish to thank I-Shou University, Taiwan. The research reported
here was supported by the Ministry of Science and Technology, Taiwan, under grant MOST 110-2221-
E-214-019. The researchers would also like to thank the ALMIGHTY GOD for His guidance from the
start until the completion of this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Major Infectious Diseases. Available online: https://www.ncbi.nlm.nih.gov/books/NBK525174/ (accessed on 6 May 2021).
2. Karargyris, A.; Siegelman, J.; Tzortzis, D.; Jaeger, S.; Candemir, S.; Xue, Z.; Santosh, K.C.; Vajda, S.; Antani, S.; Folio, L.; et al.

Combination of texture and shape features to detect pulmonary abnormalities in digital chest X-rays. Int. J. Comput. Assist. Radiol.
Surg. 2016, 11, 99–106. [CrossRef] [PubMed]

3. Hogeweg, L.; Sánchez, C.I.; Maduskar, P.; Philipsen, R.; Story, A.; Dawson, R.; Theron, G.; Dheda, K.; Peters-Bax, L.;
van Ginneken, B. Automatic Detection of Tuberculosis in Chest Radiographs Using a Combination of Textural, Focal, and
Shape Abnormality Analysis. IEEE Trans. Med Imaging 2015, 34, 2429–2442. [CrossRef] [PubMed]

4. World Health Organization. Global Tuberculosis Report. 2018. Available online: https://apps.who.int/iris/handle/10665/2744
53, (accessed on 6 May 2021).

5. Sputum Testing for Tuberculosis (TB). Available online: https://www.healthlinkbc.ca/healthlinkbc-files/sputum-tuberculosis-
testing (accessed on 6 May 2021).

6. Interferon Gamma Release Assay Test (IGRA Test). Available online: https://www.health.nsw.gov.au/Infectious/tuberculosis/
Pages/interferon-gamma-release-assay-test.aspx (accessed on 6 May 2021).

7. Chen, X.; Sa, J.; Li, M.; Zhou, Y. Combined prediction model of tuberculosis based on generalized regression neural network. In
Proceedings of the 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian,
China, 27–29 June 2020; pp. 577–581.

8. Zaman, A.; Khattak, S.S.; Hassan, Z. Medical Imaging for the Detection of Tuberculosis Using Chest Radio Graphs. In Pro-
ceedings of the 2019 International Conference on Advances in the Emerging Computing Technologies (AECT), Al Madinah Al
Munawwarah, Saudi Arabia, 10 February 2020; pp. 1–5.

9. Munadi, K.; Muchtar, K.; Maulina, N.; Pradhan, B. Image enhancement for tuberculosis detection using deep learning. IEEE
Access 2020, 8, 217897–217907. [CrossRef]

10. Fariza, A.; Mu’arifin; Puspitasari, A. Spatial Fuzzy Risk Mapping for Tuberculosis in Surabaya, Indonesia. In Proceedings of the
2020 International Electronics Symposium (IES), Surabaya, Indonesia, 29–30 September 2020; pp. 613–619.

https://www.kaggle.com/tawsifurrahman/tuberculosis-tb-chest-xray-dataset
https://www.kaggle.com/tawsifurrahman/tuberculosis-tb-chest-xray-dataset
https://www.ncbi.nlm.nih.gov/books/NBK525174/
http://doi.org/10.1007/s11548-015-1242-x
http://www.ncbi.nlm.nih.gov/pubmed/26092662
http://doi.org/10.1109/TMI.2015.2405761
http://www.ncbi.nlm.nih.gov/pubmed/25706581
https://apps.who.int/iris/handle/10665/274453,
https://apps.who.int/iris/handle/10665/274453,
https://www.healthlinkbc.ca/healthlinkbc-files/sputum-tuberculosis-testing
https://www.healthlinkbc.ca/healthlinkbc-files/sputum-tuberculosis-testing
https://www.health.nsw.gov.au/Infectious/tuberculosis/Pages/interferon-gamma-release-assay-test.aspx
https://www.health.nsw.gov.au/Infectious/tuberculosis/Pages/interferon-gamma-release-assay-test.aspx
http://doi.org/10.1109/ACCESS.2020.3041867


Appl. Sci. 2021, 11, 9057 17 of 17

11. Serrão, M.K.M.; Costa, M.G.F.; Fujimoto, L.B.; Ogusku, M.M.; Filho, C.F.F.C. Automatic Bacillus Detection in Light Field
Microscopy Images Using Convolutional Neural Networks and Mosaic Imaging Approach. In Proceedings of the 2020 42nd
Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24
July 2020; pp. 1903–1906.

12. Cao, Y.; Mao, J.; Yu, H.; Zhang, Q.; Wang, H.; Zhang, Q.; Guo, L.; Gao, F. A Novel Hybrid Active Contour Model for Intracranial
Tuberculosis MRI Segmentation Applications. IEEE Access 2020, 8, 149569–149585. [CrossRef]

13. Singh, N.; Hamde, S. Tuberculosis Detection Using Shape and Texture Features of Chest X-rays. In Innovations in Electronics and
Communication Engineering; Saini, H., Singh, R., Kumar, G., Rather, G., Santhi, K., Eds.; Lecture Notes in Networks and Systems;
Springer: Singapore, 2019; Volume 65. [CrossRef]

14. Pasa, F.; Golkov, V.; Pfeiffer, F.; Cremers, D.; Pfeiffer, D. Efficient deep network architectures for fast chest X-ray tuberculosis
screening and visualization. Sci. Rep. 2019, 9, 19. [CrossRef] [PubMed]

15. Rajaraman, S.; Antani, S.K. Modality-specific deep learning model ensembles toward improving TB detection in chest radiographs.
IEEE Access 2020, 8, 27318–27326. [CrossRef] [PubMed]

16. Jaeger, S.; Karargyris, A.; Candemir, S.; Folio, L.; Siegelman, J.; Callaghan, F.; Xue, Z.; Palaniappan, K.; Singh, R.K.; Antani, S.; et al.
Automatic tuberculosis screening using chest radiographs. IEEE Trans. Med. Imaging 2014, 33, 233–245. [CrossRef] [PubMed]

17. Hwang, S.; Kim, H.-E.; Kim, H.-J. A novel approach for tuberculosis screening based on deep convolutional neural networks.
Proc. SPIE Med. Imaging 2016, 9785, 97852W.

18. Lopes, U.K.; Valiati, J.F. Pre-trained convolutional neural networks as feature extractors for tuberculosis detection. Comput. Biol.
Med. 2017, 89, 135–143. [CrossRef] [PubMed]

19. Kwon, H. MedicalGuard: U-Net Model Robust against Adversarially Perturbed Images. Secur. Commun. Netw. 2021, 2021, 5595026.
[CrossRef]

20. Rahman, T.; Khandakar, A.; Kadir, M.A.; Islam, K.R.; Islam, K.F.; Mahbub, Z.B.; Ayari, M.A.; Chowdhury, M.E.H. Reliable Tuberculosis
Detection Using Chest X-ray with Deep Learning, Segmentation and Visualization. IEEE Access. 2020, 8, 191586–191601. [CrossRef]

21. Candemir, S.; Jaeger, S.; Palaniappan, K.; Musco, J.P.; Singh, R.K.; Xue, Z.; Karargyris, A.; Antani, S.; Thoma, G.; McDonald, C.J.
Lung Segmentation in Chest Radiographs Using Anatomical Atlases with Nonrigid Registration. IEEE Trans. Med Imaging 2014,
33, 577–590. [CrossRef] [PubMed]

22. The Wiener Filter. Available online: https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/VELDHUIZEN/node15.
html (accessed on 3 March 2021).

23. Vijayarani, S.; Vinupriya, M. Performance Analysis of Canny and Sobel Edge Detection Algorithms in Image Mining. Int. J. Innov.
Res. Comput. 2013, 1, 1760–1767.

24. Prewitt Operator. Available online: https://en.wikipedia.org/wiki/Prewitt_operator (accessed on 3 March 2021).

http://doi.org/10.1109/ACCESS.2020.3016746
http://doi.org/10.1007/978-981-13-3765-9_5
http://doi.org/10.1038/s41598-019-42557-4
http://www.ncbi.nlm.nih.gov/pubmed/31000728
http://doi.org/10.1109/ACCESS.2020.2971257
http://www.ncbi.nlm.nih.gov/pubmed/32257736
http://doi.org/10.1109/TMI.2013.2284099
http://www.ncbi.nlm.nih.gov/pubmed/24108713
http://doi.org/10.1016/j.compbiomed.2017.08.001
http://www.ncbi.nlm.nih.gov/pubmed/28800442
http://doi.org/10.1155/2021/5595026
http://doi.org/10.1109/ACCESS.2020.3031384
http://doi.org/10.1109/TMI.2013.2290491
http://www.ncbi.nlm.nih.gov/pubmed/24239990
https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/VELDHUIZEN/node15.html
https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/VELDHUIZEN/node15.html
https://en.wikipedia.org/wiki/Prewitt_operator

	Introduction 
	Related Works 
	Research Gaps 
	Research Contributions 
	Dataset Description 
	Methodology 
	Weiner Filtering 
	Prior TB Segmentation 
	Feature Extraction Phase 
	Prewitt Edge Detection 
	Stacked Loopy Decision Tree (SLDT) Algorithm 

	Experimental Results 
	Conclusions 
	References

