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Abstract: To investigate the effect of blade wrap angle on the hydrodynamic radial force of a single
blade centrifugal pump, numerical simulation is conducted on the pumps with different blade wrap
angles. The effect of the wrap angle on the external characteristics and the radial force of a single
blade centrifugal pump was analyzed according to the simulation result. It is found that, with the
increase of the blade wrap angle, the head and efficiency of the single blade centrifugal pump are
improved, the H-Q curve becomes steeper, and the efficiency also increased gradually, while the
high-efficiency area is narrowed. The blade wrap angle has a great effect on the radial force of
the single blade centrifugal pump. When the blade wrap angle is less than 360◦, the horizontal
component of the radial force is negative and the value is reduced with the increase of the wrap
angle of the blade. When the wrap angle is larger than 360◦, the horizontal component of the radial
force is positive and the value increases with the increase of the wrap angle. Under part-loading
conditions, the radial force of the single blade pump is significantly reduced with the increase of the
blade wrap angle. When the wrap angle is smaller than 360◦, the radial force decreases with the flow
rate increase. In the condition that the wrap angle is larger than 360◦, the radial force increases with
the flow rate increase.

Keywords: blade wrap angle; hydrodynamic radial force; single blade centrifugal pump; numeri-
cal simulation

1. Introduction

A single blade centrifugal pump has a good non-clogging performance, which is
widely used in the process of wastewater treatment [1]. To improve the ability of the
flow channel to pass particles and strip impurities, the impeller is designed with only one
blade that has a very large wrap angle. Such a kind of non-axisymmetric structure brings
different kinds of problems to the single blade centrifugal pump, such as larger radial force,
shock, and vibrations than the traditional centrifugal pumps.

With the development of high-speed and high-capacity pumps, the safety and relia-
bility of the centrifugal pump have attracted attention from engineers and researchers [2].
Unstable problems like shock and vibrations are usually caused by the unsteady flow
characteristics in the pump, which is extensively investigated till now. Stepanoff and
Biheller [3,4] first proposed the radial force empirical formula, which estimates the radial
force experienced by the impeller based on the impeller geometric parameters, flow rate
and head, but the empirical coefficient has certain limitations. Brennen [5–8] comprehen-
sively and systematically tested the radial force of NASA high-speed liquid oxygen and
liquid hydrogen turbo pumps in the United States. The effect of impeller eccentricity, front
and rear pump cavity leakage, and vortex frequency on the radial force were analyzed to
establish the mathematical model of the radial force. Guelich [9] summarized the reasons
for the radial force of the pump in his review: the uneven distribution of the circumferential
pressure of the impeller, the radial force generated by the labyrinth seal, the dynamic and
static interference effect of the impeller guide vane (volute), the steady radial force, the
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specific speed of the pump, the type of impeller or guide vane, the geometric parameters
of the impeller and the operating conditions are related. Boehning [10] compared the
effects of single volute, annular volute, and double volute on the radial force of the blood
pump using a combination of numerical simulation and experiment. At the designed flow
conditions, the radial forces are equivalent in the case of single volute and annular volute,
and all have large radial forces, while the double volutes have almost no radial forces.
Alemi [11] analyzed the influence of different volute structures on the radial force based on
numerical simulation. The results showed that when the volute diaphragm was at 270◦,
the radial force was the smallest in all flow rate conditions.

Due to the asymmetric structure of the impeller, the radial force problem of single
blade centrifugal pumps is particularly prominent, which makes the pumps less stable and
the vibration-induced noise is stronger. Benra [12–15] has carried out a lot of research on the
flow characteristics and hydraulic induced vibration in single-channel centrifugal pumps.
Aoki [16] measured the transient pressure distribution of an open single-blade centrifugal
impeller and obtained the dynamic and static radial forces of the impeller. Nishi [17–19]
conducted a lot of research on the radial force of the single blade centrifugal pump by
combining numerical simulation and experiment. The radial force on the single blade
impeller was measured by installing a force measuring ring at the bearing. The influence
of the blade outlet angle and blade outlet width on the radial force was investigated. It
was found that to increase the blade outlet width can reduce the averaged value of the
radial force at part-loading conditions. The radial force is divided into the inertial term,
momentum term, and pressure term. The calculation results are basically consistent with
the numerical calculation pressure integral results.

Since the single blade centrifugal pump has only one blade, to select reasonable
parameters for the impeller during the design process is of great importance. Tan analyzed
the influence of blade wrap angle on a single-channel pump performance [20]. Chen
analyzed the effect of blade inlet angle on a single blade centrifugal pump performance [21].
The wrap angle is one of the main parameters for the design of centrifugal pumps. However,
research concerning the effect of the blade wrap angle on the hydrodynamic radial force and
the reliability of single blade centrifugal pump is lacking. In the current research, unsteady
simulation is conducted for single blade centrifugal pumps with different blade wrap
angles, and the effects of these pumps are compared to reveal the relationship between the
blade wrap angle and the pump performance.

2. Pump Model and Simulation Method
2.1. Pump Model

The pump model in this study is a single blade centrifugal pump which is the
same as the author’s early paper [22]. The main design parameters are Qd = 20 m3/h,
H = 11 m, rotational speed n = 2940 r/min, and the main geometry parameters are shown as
Table 1. The impeller was 3D designed by Bladegen based on the main parameters, and the
design process of single blade centrifugal impeller by Bladegen is shown in Figure 1. The
blade wrap angle is an important parameter of a single blade centrifugal pump. Properly
increasing the blade wrap angle can enhance the restriction of the impeller to the fluid, but
an excessively large blade wrap angle will result in increased friction loss. In the current
research, impellers with five different wrap angles are investigated, the values of the wrap
angles are 300◦, 330◦, 360◦, 390◦, and 420◦. Other parameters for the impellers are kept
consistent, which is shown in Table 1.
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Table 1. Main geometric parameters of the pump.

Main Parameters Value

Inlet diameter of impeller, Dj (mm) 45
Outlet diameter of impeller, D2 (mm) 125
Outlet width of impeller, b2 (mm) 30
Blade wrap angle, ϕ (◦) 360
Inlet diameter of volute, D3 (mm) 135
Inlet width of volute, b3 (mm) 46
Blade outlet angle, β2 (◦) 18
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Figure 1. Design process of single blade centrifugal impeller by Bladegen.

2.2. Simulation Method

The simulation method is the same as the author’s early paper, which is validated
by experiment [22]. The ICEM code was used to mesh the model, and tetrahedral mesh
was used for the impeller. To improve the grid quality, we refined the wall boundary layer.
Meshing results of the impellers are illustrated in Figure 2. The other calculation domains
adopted the hexahedral structure mesh the same as the reference [22].

As the flow in the centrifugal pump has a high Reynolds number, the numerical
simulation was adapted from the standard k-ε turbulence model [23–26]. ANSYS CFX
14.5 is used for numerical calculation, the coupling of velocity and pressure adopts the
SIMPLEC algorithm, and the convection term adopts high-order format [27]. Using 25 ◦C
water as the calculation medium, the solid wall is selected as a nonslip wall surface. Since
the impeller and volute are castings, the surface roughness is set as 50 µm. The inlet is set
to the total pressure inlet, and the outlet is set to the mass outlet. By setting different mass
flows, the external characteristic curve of the pump can be obtained. A multi-coordinate
reference system is adopted, the impeller is set to the rotating domain, the static domain is
adopted for the others, and the interface between the dynamic and static domains is set to
the frozen rotor. Considering the calculation time and accuracy, the convergence accuracy
is set to 10−4.
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pressure taps were located in the spiral volute wall. Pressure taps were instrumented with 
fast response pressure sensors (Figure 4), which provided absolute pressure values with 
an uncertainty of less than 0.1% according to the manufacturer’s data. 

 
Figure 3. Experimental device: (1) valve in the outlet, (2) flowmeter, (3) valve in the inlet, (4) pressure 
transducer in the outlet, (5) pressure transducer in the inlet, (6) pump. 

Figure 2. Mesh of different impellers.

2.3. Validation

The experiment of a single blade centrifugal pump with 360◦ blade wrap angle was
conducted [22]. Pump performance experimental setup and distribution of pressure sensors
are shown in Figures 3 and 4. The experimental device consists of the test pump, connecting
pipes, valves, electromagnetic flowmeter and other components. Four pressure taps were
located in the spiral volute wall. Pressure taps were instrumented with fast response
pressure sensors (Figure 4), which provided absolute pressure values with an uncertainty
of less than 0.1% according to the manufacturer’s data.
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Figure 4. Pressure sensors distribution.

The pump performance curves of single blade centrifugal pump with 360◦ blade wrap
angle were acquired by turn off or turn on the valve in the outlet. Figure 5 presents the
results of CFD and experiment. The predicted power of CFD is hydraulic power, whereas
the result of the experiment is total power. In order to compare with CFD results, based
on the empirical coefficients of different power levels in the laboratory, the measured total
efficiency is transformed into hydraulic efficiency. The experimental heads are smaller than
numerical results, and it is less than 1 m. It can be observed that the CFD results are in
good agreement with the experimental results.
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Figure 5. Pump performance.

The pressure distribution of model 1 is presented in Figure 6 [22]. The CFD predicted
pressures were similar to those obtained by experiment. The time history of the pressure in
the numerical simulation approximately overlapped with the test results. The qualitative
agreement of the pressure obtained by CFD numerical calculation and experiment was
extremely high; and the CFD results show a reasonable agreement with the test data. Thus,
numerical calculation results can be considered reliable.
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3. Results and Discussion
3.1. Influence of Blade Wrap Angle on the External Characteristic

To analyze the effect of the wrap angle on the hydrodynamic radial force, five impellers
were designed. The external characteristic curves of single blade centrifugal pumps with
different blade wrap angles are shown in Figure 7. It can be seen from the figure that, as the
blade wrap angle increases, the pump head tends to increase, and the H-Q curve becomes
steeper, the pump efficiency increases gradually, but the high-efficiency area is narrowed.
The P-Q curve becomes gentle with the increase of blade wrap angle. Generally, the head
and efficiency of the single blade centrifugal pump are improved with the increase of blade
wrap angle.
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The turbulent dissipation rate cloud diagram of single blade centrifugal pump with
different blade wrap angles at designed flow conditions are shown in Figure 8. It can
be seen from the figure that the turbulence dissipation rate of single blade centrifugal
pumps with blade wrap angle less than 360◦ is significantly higher. For other impellers,
the dissipation rate changes no longer significantly after the wrap angle reaches 360◦.
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simulation is validated by experiment and the simulation results agree well with the 
tested values [22]. In order to calculate the radial force, the impeller was divided as: FS, 
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the positive Y direction is positive; the corresponding forces in the negative X direction 
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Figure 8. Turbulence dissipation rate of single blade centrifugal pump with different wrap angle.

The turbulent dissipation losses in a single blade impeller with different blade wrap
angles are shown in Figure 9a. It can be seen from the figure that the dissipation losses
show a decreasing trend as the blade wrap angle increases, but after the wrap angle reaches
420◦, the loss of dissipation has increased. The friction loss of the single blade centrifugal
impeller with different wrap angles is shown in Figure 9b. As can be seen from the figure,
under the designed flow rate conditions, the flow of the impeller continuously improves
with the increase of the blade wrap angle, so the friction losses decrease with the wrap
angle increase. However, under high flow rate conditions, because the friction surface
increases with the increase of the wrap angle under high flow velocity, the friction loss
increases with the increase of the wrap angle. Therefore, the efficiency of the single blade
centrifugal pumps, which have a large wrap angle, decreases at large flow conditions, and
its Q-η curve in the high-efficiency area becomes narrow.
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3.2. Influence of Blade Wrap Angle on Radial Force

The blade wrap angle affects the pressure circular distribution in the impeller. As
a result, the wrap angle is an important factor that affects the radial force of the single
blade centrifugal pump. In this section, the effect of wrap angle on the radial force of the
single blade centrifugal pump is investigated based on unsteady simulation. The unsteady
simulation is validated by experiment and the simulation results agree well with the tested
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values [22]. In order to calculate the radial force, the impeller was divided as: FS, the front
shroud; BS, back shroud; B, blade [28]. The Cartesian coordinates are used to specify the
radial force. It is specified that the radial force in the positive X direction and the positive Y
direction is positive; the corresponding forces in the negative X direction and the negative
Y direction are negative, as shown in Figure 10.
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Figure 10. Coordinate diagram of force.

Figure 11 shows the time domain diagram of the radial force on the impeller of a
single blade centrifugal pump with different blade wrap angles under design flow rate. It
can be found from the figure, the radial force fluctuates periodically with the rotation of the
impeller, and the periodicity is consistent. The radial force on the back shroud is small, and
it does not change significantly with the variation of the wrap angle. The amplitude and
direction of the x component of the radial force changes with the change of the blade wrap
angle. When the blade wrap angle is 300◦, 330◦ and 360◦, the x component of the radial
force is negative and the value decreases with the increase of the blade wrap angle. When
the blade angle is larger than 390◦, the x component of the radial force turns to positive
and the value increases with the increase of the wrap angle. When the wrap angle is 360◦

and 390◦, the y component of the radial force is the largest. When the wrap angle is 300◦

the y component of the radial force is the lowest.
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Figure 11. Radial force of a single centrifugal impeller with different wrap angles under the designed
flow rate condition.

Figure 12 shows the radial force Fr curve of the impeller with different blade wrap
angles when the impeller rotates. The calculation results are adopted the dimensionless
coefficient CF.

CF =
2F

ρu2 2D2b2
(1)

where CF is the dimensionless coefficient of the force, F is the radial force, ρ is the density,
u2 is the circumferential velocity of the impeller outlet, D2 is the impeller outer diameter,
b2 is the impeller outlet width.
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It can be seen from the figure, when the blade wrap angle is less than 360◦, the radial
force is significantly greater than that of the impeller with other wrap angles. Under low
flow conditions, the radial force of the impeller significantly decreases continuously with
the increase of the blade wrap angle.

Figures 13 and 14 show the vector and pressure contour of the single blade centrifugal
pump with different wrap angles. It can be seen from the vector diagram that the flow
field is disturbed when the single blade centrifugal pump is working under part-loading
conditions, there is a sudden change in the streamline, and there is an obvious low-speed
vortex area in the impeller which means flow separation occurred. When the wrap angle
of the impeller blade is increased, the flow field inside the pump is improved. From the
pressure contour, it can be found that, with the increase of the wrap angle, the pressure
distribution in the circular direction becomes relatively uniform. Therefore, increasing
the wrap angle of the blade is a useful way to reduce the radial force under part-loading
conditions. Under the designed flow rate condition or larger flow rate conditions, the
radial force of the impeller also decreases with the increase of the wrap angle of the blade,
and the effect is weakened when the wrap angle is larger than 360◦.
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Figure 14. Pressure distribution in the pump under part-loading conditions (0.6 Qd).

Figures 15–18 show the velocity vector and the pressure contour under the designed
flow rate and larger flow rate conditions. Under these working conditions, the flow field in
the pump is good, while for the impellers with 300◦ and 330◦ wrap angles, flow separation
still happens. The pressure distribution in the circular direction is not axisymmetric, while
the axisymmetric characteristic is improved when the wrap angle is increased. Comparing
the performance of one impeller under different working conditions, it can be found that
when the wrap angle is smaller than 360◦ the radial force decreases with the flow rate
increase. When the wrap angle is 420◦, the radial force is smaller under part-loading
conditions, which increases with the flow rate increase. From the pressure cloud diagram
of the pump with a blade wrap angle of 420◦, it can be found that as the flow rate increases,
a local low-pressure zone appears from the end of the spiral section of the volute to the
outlet end, and the circumferential symmetry of the pressure distribution becomes worse
resulting in an increase in the radial force.
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Figure 18. Pressure distribution in the pump under large flow rate conditions (1.4 Qd).

The main cause of the radial force of the single blade centrifugal pump is the uneven
circumferential pressure distribution in the pump. Figure 19 shows the circumferential
pressure distribution at the outlet of the impeller of the single blade centrifugal pump under
designed flow rate conditions. From the figure, it can be clearly seen that the axisymmetric
characteristic is improved with the increase of the blade wrap angle, while uneven pressure
distribution is always found at the volute outlet, impeller inlet and impeller outlet.
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4. Conclusions

The effect of blade wrap angle on the performance of a single blade centrifugal pump
is investigated based on unsteady numerical simulation. The external characteristics and
radial force of single blade centrifugal pumps with five different wrap angles are simulated
and analyzed. The research results are as follows:

(1) Generally, the head and efficiency of the single-blade centrifugal pump are improved
with the increase of blade wrap angle. With the increase of the blade wrap angle, the
pump head tends to increase, and the H-Q curve becomes steeper, the pump efficiency
increases gradually, but the high-efficiency area is narrowed. The P-Q curve becomes
gentle with the increase of blade wrap angle.

(2) The blade wrap angle has a significant impact on the radial force of the single blade
centrifugal pump. When the blade wrap angle is less than 360◦, the x component of
the radial force is negative and the value is reduced with the increase of the wrap
angle of the blade. When the wrap angle is larger than 360◦, the x component of the
radial force is positive and the value increases with the increase of the wrap angle.
The y component of the impeller radial force has a maximum value when the wrap
angle is 360◦ and 390◦, and has a minimum value when the wrap angle is 300◦.

(3) Under part-loading conditions, the radial force of the single blade pump is signif-
icantly reduced with the increase of the blade wrap angle. When the wrap angle
is smaller than 360◦, the radial force decreases with the flow rate increase. In the
condition that the wrap angle is larger than 360◦, the radial force increases with the
flow rate increase.

(4) It suggested that the available blade wrap angle for single blade centrifugal pump
should be between 360◦and 420◦, to achieve a better hydraulic performance and stable
flow field.
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