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Abstract: Senior citizens have increased plasma glucose and a higher risk of diabetes-related com-
plications than young people. However, it is difficult to diagnose and manage elderly diabetics
because there is no clear symptom according to current diagnostic criteria. They also dislike the
invasive blood sample test. This study aimed to classify a difference in gait and physical fitness
characteristics between senior citizens with and without diabetes for a non-invasive method and
propose a machine-learning-based personal home-training system for training abnormal gait motions
by oneself. We used a dataset for classification with 200 over 65-year-old elders who walked a flat
and straight 15 m route in 3 different walking speed conditions using an inertial measurement unit
and physical fitness test. Then, questionnaires for participants were included to identify life patterns.
Through results, it was found that there were abnormalities in gait and physical fitness characteristics
related to balance ability and walking speed. Using a single RGB camera, the developed training
system for improving abnormalities enabled us to correct the exercise posture and speed in real-time.
It was discussed that there are risks and errors in the training system based on human pose estimation
for future works.

Keywords: automated machine learning; diabetic walking; elderly diabetics; human pose estimation;
machine-learning-based personal home training system

1. Introduction

Diabetes is a metabolic disease that causes problems with either the secretion or
assimilation of insulin, a natural hormone in which the function is to reduce the sugar
concentration in the blood [1]. If diabetes is not managed, high blood sugar levels and other
risk factors can lead to the blood vessel and nerve damage [2]. Moreover, the complications
of diabetes can develop and affect nearly every organ system in the body. In particular,
we have large and small blood vessels that deliver blood around the body. Damage to the
large blood vessels leads to heart attacks, several kinds of strokes, or affects blood flow
to the lower extremities, and risk to the small blood vessels can affect the eyes, kidneys,
teeth and gums, and nerves. In addition, nerve damage can affect the digestive system,
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sexual organs, and excretory system. That is the significant problem as to why there is
no complete cure for diabetes yet. Current treatments for diabetes are only to check the
amount of glucose in the blood, adjust the food, and keep exercise activities every day by
oneself [1,3].

Walking is the activity recommended for most diabetic patients, while being effective
in weight loss and maintenance and in improving glucose control [4]. This recommendation
comes from the results of a meta-analysis, including many small, short-term randomized
controlled clinical trials (RCTs) and some recent additional research, showing clinically
appreciable improvement of HbAlc [5,6]. The effect on insulin resistance is not apparent.
Walking is easily applicable in daily life in most patients without requiring expertise,
and logistic support can be performed in different places [7,8]. Limited information
indicates the improvement of several alterations involved in the increased cardiovascular
risk associated with diabetes. Moreover, a small study reported favorable changes in
several functional aspects of diabetic neuropathy, although the presence of this condition
requires specific monitoring of patients and may also limit walking activities [4].

Many researchers have shown that elders with diabetes were related to a greater risk
of falls, and this was more clear in insulin-treated patients [9]. For example, according to
six studies involving 14,685 participants, the number of falls in diabetic and non-diabetic,
respectively, was 25.0%, and 18.2% [10]. On the other hand, diabetes increased 94%, and
27% risk of falls in insulin-treated and no-insulin-treated patients, respectively [11]. Hence,
preliminary screening before starting any physical activity programs in older adults with
diabetes mellitus should include a general medical examination, with specific attention
to symptoms and signs of chronic complications (cardiovascular disease, nephropathy;,
retinopathy, and neuropathy), and assessment of metabolic control [12]. However, the sig-
nificant problem is that there are large changes in the analysis results due to the diverseness
of the diabetic population with the presence and severity of diabetes complications. Accord-
ingly, although the prescription of walking in patients with diabetes should be preceded
by a tailored medical and functional assessment, it is difficult to assess the functionality of
walking capacity by themselves [13]. Thus, senior citizens with diabetes must recognize the
diabetic walking abnormality for self-preservation and evaluate the functionality without
expert medical knowledge using the simple sensing system.

The results of several studies have been conducted to assess walking biomechanics
alterations in diabetic neuropathic subjects [11]. According to kinetics and muscle activa-
tion patterns, there have been significant variations in the results of both a reduction and
an increase in the gastrocnemius activity and the lower limb joints moments. In terms of
plantar pressure [14,15], a shorter center of pressure (CoP) excursion and a higher peak
pressure over the forefoot have been found [16]. Although the diabetic symptoms are
apparent, the neuromuscular, kinematics, and kinetics changes do not show a distinct
pattern associated with the results of diabetes and diabetic neuropathy (DPN) [17-23].
Compared to these analyses of movement symmetry, continuous relative phase (CRP) is
one of the most sensitive analyses for detecting the mutual relationship among the joints
and asymmetries in coordination during walking, particularly for identifying cyclic move-
ment deviations caused by diabetes [24,25]. However, because CRP also tries to explain
biomechanical walking patterns, such as ground reaction forces, angles, and moments of
the trunk, hip, knee, and ankle, the assessment should be performed at the well-equipped
hospital with expert medical knowledge by using the expensive motion capture system.
Thus, it seems complicated to protect diabetic senior citizens by themselves in daily life
through conventional works.

Therefore, this study aimed to classify a difference in gait and physical fitness charac-
teristics between senior citizens with and without diabetes through automated machine
learning (AutoML) by using the simple sensor and propose a machine-learning-based
personal home training system for training abnormal gait motions by oneself. For this
study, a dataset was constructed by 200 senior citizens over 65 years old who performed to
walk a flat and straight pathway of 15 m under three different conditions of walking speed
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(slow (=20% slower than preferred walking speed), preferred, and fast (=20% faster than
preferred walking speed)) by using an inertial measurement unit (IMU) and physical fitness
tests. Then, for training abnormal gait motions, the proposed home training system enabled
us to correct the exercise posture and speed in real-time through machine-learning-based
similarity evaluation between training experts and novices by using a single RGB camera.

The contribution of this study was to make clear the association between diabetic
walking abnormalities and measured feature vectors. Then, these results could be applied
for early detection and therapeutic intercessions that rehabilitate the walking function in
diabetic senior citizens by grouping them not only by clinical features but also based on their
motor control strategies. Furthermore, the proposed home training system helps senior
citizens with diabetes continue to exercise activities with the correct posture and speed.

The structure of this study is: we describe how to construct the dataset for this study
in Section 2, then explain how to classify through AutoML in Section 3, and show all
of the results, including which gait characteristics are essential to classify, in Section 4.
Finally, to train the detected abnormality, we introduce the developed machine-learning-
based personal home training system in Section 5 and show all of the results to verify
the usefulness in Section 6. Finally, we discuss the classification for healthcare through
AutoML and the limitations of the developed home training system in Section 7, before
our conclusions in Section 8.

2. Dataset Construction
2.1. Human Subjects

Human subjects for this study participated in community activities in the Busan
metropolitan city from 2018 to 2019. A total of 200 were recruited for human subjects aged
65 years old and over living in the community; 59 were in the group of healthy subjects,
and the remaining 141 were in the group of subjects with diabetes. In the group for subjects
with diabetes, there was no one to take anti-diabetes drugs to control the blood sugar level
because their symptoms were not severe. Thus, the treatment of diabetes in this study was
centered on diet, exercise, and weight loss. In addition, a human subject was excluded if
he or she could not walk without any aid tool, had a history of severe orthopedic problems,
or had neurosurgical and neurophysiological problems in the preceding six months.

Figure 1 summarizes the characteristics of two different groups for this study. There is
no significant difference in age and body mass index (BMI) between subjects with diabetes
and without diabetes. Although the number of females is more significant than that of
males, the ratio of gender between two different groups is similar. There is no problem
because the mean age for human subjects is 74 years old. The ratio of 80~91% for human
subjects has an experience of compulsory education courses, including the elementary,
middle, and high school.

Subjects Subjects
without diabetes with diabetes

Age [years old] 74.7+5.7 744 +5.2
BMI [*8/ ] 24.6 + 3.1 243+23
Gender [persons]

Male 22 (37%) 52 (37%)

Female 37 (63%) 89 (63%)
Education level [persons]

Elementary 17 (30%) 53 (39%)

Middle 15 (26%) 37 (26%)

High 14 (24%) 37 (26%)

University 3 (5%) 8 (6%)

etc 9 (15%) 4 (3%)

Figure 1. Characteristics of two different groups for this study.
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If all participants agreed to attend all experiments, they had to read and sign the
informed consent document approved by the Institutional Review Board of Dong-A Uni-
versity (IRB number: 2-104709-AB-N-01-201808-HR-023-02). All experimental procedures
were performed under the Declaration of Helsinki.

2.2. Experiment for Data Acquisition

Figure 2 shows the experimental environment for the measurement and analysis
phases under steady-state conditions. (a) Three arrows, from left to right side, indicate
acceleration, consecutive, and deceleration steps for the measurement phase, respectively.
(b) Detection of walking abnormalities with the shoe-type inertial measurement unit
(IMU) system is analyzed through extracted features, such as heel strike (HS) and toe-off
(TO) [26,27].

(a)

Data . *
acquisition ((" .
" Bluetooth+

..

Data collecting Acceleration Shoe-type data logger Deceleration
computer steps. steps
- I
o v
s ; : m— z
G P Consecutive steps with steady-state condition in 15 m walkway o
Data collecting Data collecting

Start Finish

(b)

Anteroposterior & Vertical accelerations

Accelerations (m/s?)

1 101 201 301 401 501 601 701 801

Time (ms)
—— Anteroposterior acceleration ---- Vertical acceleration

Figure 2. Experimental environment and system for the measurement and analysis phases under steady-state conditions.
(a) Three arrows from left to right sides indicates acceleration, consecutive, and deceleration steps for the measurement
phase, respectively. (b) Detection of walking abnomalities with the shoe-type inertial measurement unit (IMU) system is
analyzed through extracted features.

Shoe-type IMU sensor (DynaStab™, JEIOS, Busan, Korea) consists of the data logger
(Smart Balance SB-1, JEIOS, Busan, Korea) and the data acquisition device. The IMU
sensor (IMU-300™, InvenSense, San Jose, CA, USA) in the data logger can measure triaxial
acceleration (up to 6 g) and tri-axial angular velocities (up to £500° s~ along the three
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orthogonal axes. The IMU sensors are set up on the outsoles of both shoes, and data are
transmitted to the data acquisition device via Bluetooth. The walking measurement was
collected at 100 Hz and filtered using a second-order Butterworth low-pass filter with the
10 Hz cut-off frequency. Although data are measured during acceleration and deceleration
steps, data for these steps are ignored. Instead, data during consecutive steps are used to
analyze for extraction of features.

All subjects performed three trials of the overground walking test along the straight
15-m walkway at slower, preferred, and faster speeds wearing the shoe-type IMU sensor.
The preferred walking speed is defined by someone’s comfortable, stable, and usual
walking speed. The subjective decision of subjects decides the slower and faster speed.
Thus, the slower or faster speed is controlled 20% slower or faster under the preferred
speed. The prepared metronome supports the decision of the walking speed. The subjects
were asked to walk at the preferred speed to measure cadence using the metronome before
each test.

All subjects also performed four physical fitness domains with nine tests: muscle
strength, flexibility, balance, and cardiorespiratory fitness. All subjects were performed grip
strength with a hand-grip dynamometer (TKK 5401 Grip-D, Takei Scientific Instruments,
Tokyo, Japan) and biceps curls with a dumbbell (3 kg for men; 2 kg for women) to measure
upper extremity strength. Five times sit-to-stand (STS) and standing time from a prolonged
sitting position were also performed to assess the lower extremity strength. To assess
flexibility, back scratch as the upper extremity flexibility and chair sit and reach as the lower
extremity flexibility was performed. Single-leg balance (dominant leg) as the static balance
and a three-meter timed-up-and-go (TUG) as the dynamic balance were performed to assess
physical abilities. Finally, a 6-min walk test was performed to assess cardiorespiratory
(or functional) fitness. Two attempts of each test calculated the mean scores of physical
fitness tests.

2.3. Dataset

The dataset consists of features extracted by the non-invasive method, such as the
survey and measurement with the shoe-type IMU sensor. The average age of human
subjects in this study is 74 years old, thus being senior citizens. It is thought that the
experiment through the invasive method is complex because participants’ burden is so
enormous. So, it is crucial to extract the feature point for classification through the non-
invasive method. The total number of features is 43 for the training and prediction, 7 for
the survey, and 36 for the measurement.

At first, all human subjects were surveyed to check their health condition. Figure 3
shows the walking-related features extracted by the non-invasive method, including the
survey and measurement. Extracted features with the survey are shown at the numbers 1,
2, and 3; Age, Gender, Education level, BMI, MET-min/week, Hypertension, MMSE score,
Insomnia score, and Quality of Life (QOL). It is well-known that these features are famous
for estimating personal life patterns, in general. The total number of extracted features
was 9.

Then, all human subjects attended the walking experiment by wearing the shoe-type
IMU sensor. Extracted features with the measurement are from the numbers 4 and 5, as
shown in Figure 3; walking speed, stride length, CV stride length, CV stance phase, gait
asymmetry, cadence, stride time, CV stride time, grip strength, five times sit-to-stand (STS),
biceps curl, chair sit and reach, three-meter TUG, back scratch, single leg balance, six min
walk, and standing time from a long sitting position. It is well-known that these features
are also famous for evaluating walking and physical fitness characteristics, in general. All
walking experiments occurred under the three different conditions of slower, preferred,
and faster speeds. The total number of extracted features was 36.
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No Parameters Features Description
Age
Gender
. Education level
1 Covariate BMI

Physical activity-related energy expenditure (MET-min/week)

MET-min/week which is calculated by summing the product of frequency, intensity, and
duration

. . Hypertension Long-term high blood pressure
2 Questionnaire MMSE score To measure cognitive impairment
Insomnia score To evaluate the severity of sleep disturbance during the past 2 weeks
3 Environmental characteristics QoL Degree to which an individual is healthy, comfortable, and able to participate

in or enjoy life events

walking speed Measure appropriate for assessing and monitoring functional status

g sp and overall health in a wide range of populations

Distance measured parallel to the Line of Progression,

stride length between the Posterior Heel points of two consecutive footprints of the foot in
guestion

Spatio-temporal parameters | stance phase Period of time that the foot is on the ground
4 in tems of three different CV stride length Coefficient of variation for stride length
cases CV stance phase Coefficient of variation for stance phase
(slower, preferred, and faster) . To evaluate how leg movements differ while walking
P gait asymmetry (comparing swing times between the legs and symmetry of swing duration)

cadence A total number of full cycles taken within a given period of time,
often expressed in steps or cycles per minute

stride time An amount of time from consecutive heel contacts of the same foot.

CV stride time Coefficient of variation for stride time

. Force applied by the hand to pull on or suspend from objects

gnp strength and is a specific part of hand strength

five times STS To measure one aspect of transfer skill

bicepts curl A number of weight training exercises

chair sit and reach One of the linear flexibility tests which helps to measure the extensibility of the
hamstrings and lower back

5 Physical fitness variables three meter TUG To determine fall risk and measure the progress of balance

back scratch The reciprocal exchange of favors, services, assistance, or praise.

single leg balance To measure the length of time the subject can maintain their balance

six_min walk To assess aerobic capacity and endurance

standing time Sitting behind your desk all day is bad for your health and experts have long

from a long sitting been advising people to stand at their workstations for about 15 minutes an

position hour.

Figure 3. Walking-related features extracted by the non-invasive method.

3. Classification through Automated Machine Learning

Most AutoML tools follow a typical three-step pipeline described in Figure 4, which
shows typical components of a machine learning problem pipeline [28]. The first step
consists of preparing the data [29]. This step involves loading and cleaning the data
for use in the system and applying any transformations, normalizations, or encodings.
The next step involves selecting to select the model [30]. This step might also involve
feature engineering, which uses domain knowledge to generate new features to support
and improve the machine learning model. Then, the final step consists of an iterative
process in which one builds, trains, optimizes, validates, and selects a given machine
learning algorithm to use for a given problem. In general, these three components are
optimized iteratively to obtain the best results.

AutoML optimization

3

Data preparation | | | Feature selection F Model building F Hyperparameter F Model validation,

and cleanin and engineerin and trainin optimization selection, and
9 9 9 4 9 p | deployment

Figure 4. Important components and process of a machine learning problem pipeline.

The function of f : X — ) is good for the learning stage. The classification or
regression uses y. An algorithm of A can be set to {dy,---,d,} of training data points
d; = (x;,yi) € X x Y, which represents a parameter vector, and hyperparameters of A € A,
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which represents changeing the method of the algorithm of A,. Here, hyperparameters
indicate the length penalty, the number of neurons in a hidden layer, and the number of
data in a decision tree. The loop can evaluate the performance of each hyperparameter
configuration, which the cross-validation optimizes.

3.1. Data Preparation and Feature Engineering

Data pre-processing still requires considerable human intervention. This stage asks
about the data type and schema detection. Thus, this work has not been primarily as-
sisted among the AutoML. However, when one data type is identified, the tools support
appropriate feature engineering.

3.2. Model Selection

After many different models use the driven features for training with different param-
eters, we can find the most proper model for the selection. When the algorithm of .4 and
the limited amount of training data D = {(x1,y1), - -, (x4, yn)} are given, the model is to

(i)

determme A* € A. The performance of each model is estimated by D into sets of D, .,

and DU g fir with A* to Dt(rz)z ins and effect of the performance on Dfm)ll. ;- These allow for

the model selection problem as follows:

A* € argmin kZ 1 L(A, Dt(”)m,Dz(m)lld) 1)
AcA
where L(A, Dt(rzz ins Df};l ;1) is the loss achieved by A when trained on Dt(rZz i, and evaluated
on D(l)l "
vali

We use k-fold cross-validation, which splits the training data into k equal-sized parti-
O DY and sets D). = D/DWoutit fori =1,- -,k [31].

tions Dvaltd’ T valid’ train

3.3. Hyperparameter Optimization

The optimization of A € A of A resembles the model selection. It is possible to exploit
the correlation structure between different settings of A1, A; € A. When n hyperparameters
A1, -+, Ay with domains Ay, - -+, A, are given, the space of A is a subset of the cross
product: A C Ag X -+ X Ay

Hyperparameters of A; can be replaced with another hyperparameter A; when A, is
only active [32]. At that time, hyperparameter A; takes values from a given set V(j) € Aj;
in this case, we call A; a parent of A;. Conditional hyperparameters may be parents of other
conditional hyperparameters [33]. When a structure of A is given, the optimization can be
solved as:

1
S5 L(AL D D) 2)

*
A" € argmin —~ train

AEA k

4. Results of Dataset and Classification
4.1. Results of Constructed Dataset

Figure 5 shows an example of the constructed dataset for this study. As in the prin-
cipal component analysis (PCA), the statistical method did not work well because the
total number of feature vectors was 43. Questionnaires for seven feature vectors give a
subjective judgment. However, that provides preliminary evidence that the interview
with self-care and regimen adherence is a reliable and valid instrument and efficiently
assesses self-care behaviors associated with glycemic control. The used features for this
study are related to physical activities in daily life. The remaining 36 feature vectors are
related to physical fitness and gait characteristics under imposed challenged speed con-
ditions in senior citizens with diabetes during walking. The dimension of the matrix is
(human subjects x feature vectors = 200 x 43).



Appl. Sci. 2021, 11,9029

8 of 18

No Feature sbl | sb2 | sb3 No Feature sbl | sb2 | sb3
1 age 71 | 67 | 71 23 preferred_cadence_beats_min 118.0|134.0[127.0
2 gender 1 0 1 24 preferred_stride_time_s 1.0 | 09 | 1.0
3 education_level 1 3 1 25 preferred_CV_stride_time_percent 29 [ 21 | 10
4 BMI 27.9 | 27.9 | 285 26 fast_walking_speed_mps 13 | 17 | 16
5 total_physical_activity MET_min_week 2895|6972 | 99 27 fast_stride_length_m 12 | 14 | 14
6 hypertension 0 1 1 28 fast_stance_phase_percent 57.1|55.7 | 554
7 MMSE_score 26 27 30 29 fast_CV_stride_length_percent 21 | 18 | 23
8 slow_walking_speed_mps 09 |12 |11 30 fast_CV_stance_phase_percent 30 | 19 | 28
9 slow_stride_length_m 1.0 | 13 | 12 31 fast_gait_asymmetry percent 03 [14.0] 1.3
10 slow_stance_phase_percent 58.8 | 58.6 | 58.1 32 fast_cadence_beats_min 128.0|149.0[138.0
11 slow CV_stride_length_percent 23 | 09 | 1.8 33 fast_stride time_s 09 [ 08 | 09
12 slow_CV_stance_phase_percent 33 | 23 | 23 34 fast_CV_stride_time_percent 21 | 18 | 23
13 slow_gait_asymmetry_percent 07 | 65 | 1.1 35 grip_strength_kg 240 | 329 | 258
14 slow_cadence_beats_min 110.0[107.0|118.0 36 five_times_sit_to_stand_s 13.0 [ 147 | 9.2
15 slow_stride_time_s 11 | 11 | 10 37 biceps_curl_reps 22.0 | 19.0 [ 22,0
16 slow_CV_stride_time_percent 23 | 09 | 18 38 chair_sit_and_reach_cm 19.4 | 10.5 | 206
17 preferred_walking_speed_mps 10 | 15 | 13 39 three_meter_TUG_s 9.7 | 95 | 85
18 preferred_stride_length_m 11 | 13 | 13 40 back_scratch_cm -2.0 |-113]| -8.0
19 preferred_stance_phase_percent 58.4 | 57.5 | 56.8 41 single_leg_balance_s 27 | 51 | 950
20 preferred_CV stride_length_percent 29 |21 | 10 42 six_min_walk_s 360.0 |515.0[395.0
21 preferred_CV_stance phase_percent 57 | 23 | 15 43 | standing_time_from_a_long_sitting_position_s | 3.63 | 4.15 | 9.70
22 preferred_gait_asymmetry percent 06 [ 159 | 21

Figure 5. An example of constructed dataset for this study.

Figure 6 shows the results of data distribution under the condition of three different
walking speeds. Blue-colored data (mean + standard deviation (SD) = 0.898 £ 0.155)
represent the condition of slow speed, which becomes, on average, 22% slower walking
speed than the preferred speed, and orange-colored data (1.157 £ 0.219) represent the
preferred condition. Finally, gray-colored data (1.441 &+ 0.275) represent the fast condition,
which becomes the averagely 25% faster speed than the preferred, respectively.

B Slow M Prefered ™ Fast

e = = b b
thh o o i

Walking Speed [mps]

e
=

Condition of walking speed

Figure 6. Results of data distribution under the condition of three different walking speeds: slow
walking, preferred condition, and fast walking.

As a result, it was confirmed that there was no problem analyzing gait and physical
fitness characteristics with the constructed dataset, although the experimental condition
for walking speed was dependent on personal subjective criteria.

4.2. Results of Classification

Figure 7 shows the results of training through AutoML. The current AutoML trains
and cross-validates many kinds of algorithms: XGBoost GBM (Gradient Boosting Machine),
GLMs, default Random Forest (DRF), H20 GBMs, Deep Neural Net, Randomized Forest
(XRT), and XGBoost GBMs. Thus, there is no need to consider which algorithms are
proper for the prepared dataset because AutoML automatically looks into the results of
all algorithms.
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mean_p

model_id auc |logloss |er_clas| rmse | mse
s_error

DRF 1 AutoML 20210810 015052 0.803 | 0.593 | 0.484 | 0.451 | 0.204

GBM 3 AutoML 20210810 015052 0.776 | 0.632 | 0.440 | 0.462 | 0.214

GBM 4 AutoML 20210810 01505 0.766 | 0.639 | 0.444 | 0.466 | 0.217

StackedEnsemble AllModels AutoML 2021081 0758 | 0.607 | 0.500 | 0.457 | 0.209

0 015052

GBM 2 AutoML 20210810 015052 0.769 | 0.642 | 0.459 | 0.467 | 0.218

StackedEnsemble BestOfFamily AutoML 2021

0810 015052 0.774 | 0.610 | 0.490 | 0.459 | 0.211

GBM 1 AutoML 20210810 015052 0.755 | 0.754 | 0.500 | 0.496 | 0.246
XGBoost_3_AutoML_20210810_015052 0.751 | 0.719 | 0.470 | 0.492 | 0.240
GLM 1 AutoML 20210810 01505 0.749 | 0.599 | 0.464 | 0.453 | 0.205
DeepLearning 1 AutoML 20210810 015052 0.699 | 0.759 | 0.500 | 0.502 | 0.252
XGBoost_1_AutoML_20210810_015052 0.738 | 0.680 | 0.500 | 0.485 | 0.235
XGBoost_2_AutoML_20210810_015052 0.681 | 0.619 | 0.500 | 0.462 | 0.213

Figure 7. Results of training through automated machine learning (AutoML). “auc” is related to
the accuracy results of classification produced by the trained model, and “logloss” is that the cross-
entropy between the model and the target values. “rmse” is the root-mean-square error metric,
and “mse” is the mean square error. “mean_per_class_error” is one kind of available options
for classification.

The training results found that it was possible to classify the difference in gait and
physical fitness characteristics between senior citizens with or without diabetes with 80%
accuracy through the non-invasive method.

Figure 8 shows the results of the confusion matrix for the prediction through DRF,
which is the highest accuracy in used algorithms. Among the total data, 165 were used
for training (80%), and 35 were used for prediction (20%). It was confirmed that the error
rate was so low. That means that the applied algorithm was suitable for classifying the
difference between senior citizens with and without diabetes.

DRF_1_AutoML_20210810_015052
Confusion Matrix (Act/Pred) for max f1 @ threshold =0.3846153846153846:

0 1 Error Rate
0 9.0 1.0| 0.120 (1.0/10.0)
1 40| 21.0| 0.017 (4.0/25.0)
2 Total | 13.0| 22.0| 0.143 (5.0/35.0)

Figure 8. Results of confusion matrix for the prediction through the default random forest (DRF),
which is the highest accuracy in used algorithms.

Figure 9 shows the results of the variable importance plot, which show the relative im-
portance of the essential variables in the model. Variable importance is currently available
for all H20 models; so, if you happen to use h20.explain() [34] on an AutoML object with a
Stacked Ensemble at the top of the leaderboard, it instead shows the variable importance
for the top “base model”, which is DRF for this study, as in Figure 7.
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Variable importance for “DRF_1_AutoML”

[Variables]
Single leg_balance s

Fast_CV_stance_phase_percent

MMSE_score

hypertension
Standingﬁtimeﬁfromﬁaﬁ_longﬁsitting _position_s
Total _physical_activity/iVIET_min_week
Six_min_walk_s

Slow_CV_stride_length percent
Fast_cv_stride time percent

Three_meter TUG s

0.0 0.2 0.4 0.6 0.8 1.0

[Importance degree]

Figure 9. Results of variable importance plot, which show the relative importance of the most
important variables in the model.

As aresult, it was found that the variable of single_leg balance_s was the most domi-
nant. That meant that the balance stability might decrease more with senior citizens with
diabetes than those without diabetes. Then, we found that senior citizens exhibited more in-
sufficient gait stability at slower and faster strides. Thus, the different walking speeds must
help evaluate gait characteristics to distinguish senior citizens with diabetes and controls.
Additional important variables in the model were fast CV_stance_phase_percent, stand-
ing_time_from_a_long_sitting_position_s, six_min_walk_s, slow_CV_stride_length_percent,
fast_CV_stride_time_percent, three_meter_TUG_s, and non-physical performance vari-
ables, such as MMSE_score, hypertension, and total_physical_activity/MET_min_week.
Variability (CV) domain of gait exhibited to be an important factor in senior citizens
with diabetes.

5. Development of Machine-Learning-Based Personal Training System

Our study analyzing the gait and physical fitness of senior citizens based on machine
learning found that the symmetry between the left and right feet differed in a fast walking
speed because elderly patients with diabetes had a worse balance than healthy elderly
adults. Therefore, although elderly adults have to exercise alone due to social distance
under COVID-19 (pandemic situation), they need to train and evaluate their balance ability.

The authors have become interested in developing a home training system with an
algorithm that allows users to evaluate their exercise poses alone at home using low-cost
available devices. This study confirms the feasibility of an algorithm to evaluate the
dynamic exercise pose using a low-cost single RGB camera, instead of an IMU sensor,
as the gold standard, because the analysis of IMU sensors requires technical knowledge.
Furthermore, the skeleton includes the information of movement of lower limbs, as well as
others. The cheap USB-connected-typed RGB camera is the device that anyone can quickly
obtain. Recent advances in technology, such as OpenPose, which can extract each joint
from the human body based on human pose estimation, have been dazzling. However,
to evaluate the exercise pose, the only key point representing each joint is not sufficient.
Therefore, this study develops an algorithm to evaluate the exercise pose by comparing
two skeletons for experts and users.

5.1. Experimental Condition

The experimental system in this study is composed of the RGB camera for acquiring
data and a computer for processing and analyzing data. There is no problem using a high-
resolution camera by connecting to the computer with the USB connector when the camera
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is not built into the computer. The resolution of the camera in this study is 640 x 480. Some
downloadable videos on the website construct a dataset of experts. Although there are
many exercise activities for home training, we adapt yoga and squat, which are frequently
used for home training.

Human pose estimation is performed by MediaPipe Pose, developed by Google [35].
MediaPipe Pose is an ML solution for high-fidelity body pose tracking with 33 3D joints
on the whole body from RGB video frames utilizing BlazePose research that also powers
the ML Kit Pose Detection API. Current advanced approaches rely essentially on powerful
desktop environments for inference, whereas this method achieves real-time performance
on most modern mobile phones, desktops/laptops, in Python, and even on the web [35].

Figure 10 represents a flow chart to explain how to process the image from the RGB
camera and then to verify the similarity in exercise activities between experts and users
in this study. It is necessary to perform camera calibration at first. Camera calibration
is the process of estimating intrinsic or extrinsic parameters. Extrinsic parameters are
mainly related to the position and orientation in the world, and intrinsic parameters
deal with the camera’s internal characteristics, such as its focal length, skew, distortion,
and image center. Thus, we can say that intrinsic parameter is an essential first step for
3D computer vision, as it allows us to estimate the scene’s structure in Euclidean space
and removes lens distortion, which degrades accuracy. Then, it is necessary to reduce
noise signals in time-series data. The location for each key point through human pose
estimation technology based on a convolutional neural network (CNN) is time-series data
which means the x-axis for the sampling time and y-axis for location value. In time series
forecasting, the presence of dirty and messy data can hurt the final predictions. Therefore,
temporal dependency plays a crucial role when dealing with temporal sequences. After two
phases are completed, now, we are ready to calculate each link length (mean + standard
deviation(SD)) when the user shows the stationary pose. Moreover, finally, it is necessary
to evaluate the similarity in exercise activities between experts and users after selecting the
kind of exercise activities. Human coaches are very good at visually detecting such patterns,
although trainees show performance with different speeds. Nevertheless, programming
machines to do the same is a complex problem. Successful recognition strategies are based
on the ability to approximately match amplitude for each key point, despite wide variations
in timing.

Start
A
Calibration g Squat
Finding similar patterns in
. . t!me series P
. - Filtering
Elimination of - Similarity check B
noise signals > Yoga
y ' :
Calculation of link Visualizing errors
lengths in real-time
(MeantSD) H
Jos -
: Yes Yes
:  (option 1) No (option

(e )

Figure 10. A flowchart to explain how to process the image acquired from the RGB camera and then
to verify the similarity in exercise activities between experts and users.
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5.2. Dynamic Time Warping Algorithm for Similarity Evaluations

In particular, extracting some features in continuously measured signals seems to
include many essential aspects of pattern detection in time series. Feature extraction
is usually based on matching templates against a waveform of the continuous signal,
converted into a discrete-time series. Thus, successful recognition strategies are based on
matching signals, despite wide variation in timing and amplitude, approximately. Because
the speed of exercise activity for experts is different from that for the user, it is necessary to
evaluate the similarity between two different time-span data. Any two-time series can be
compared using Euclidean distance or similar distances on a one-to-one basis on the time
axis. The amplitude of first time-series data at time T is compared with the amplitude of
second time-series data at time T. The comparison at the same time axis leads to an inferior
comparison and similarity score even if the shape of the two-time series are very similar
but out of phase in time. Dynamic time warping (DTW) compares amplitude of first signal
at time T with amplitude of second signal at time T +1and T —1or T +2and T — 2. This
makes sure it does not give low similarity score for signals with similar shape and different
phase [36,37].

The DTW technique is based on an approach of dynamic programming, while aligning
the time series to find minimized distance measurement. Because some regulations of the
time axis can fit the horizontal axis, the proper template looks useful. Investigating a time
series, S, is related to finding the pattern in a template, T,

S = 51,52, ,Si," " ,Sn (3)
T:tlltZI"'/tj/"'/tm- (4)

The sequences S and T have a n — by — m matrix. Each element of (i, j) at the matrix
represents the similarity between the two elements of s; and ¢;. W aligns the elements of S
and T, and the warping path has the minimum value,

W:wllw2/"' /wk/ (5)

where W represents a sequential point, and wy represents (i, j)i.

Solving a dynamic programming problem is to have a measured distance between
two elements. Although we have many candidates, it looks proper for the absolute value
or square of the similarity as the distance function of J.

5(i,1) = |si —tj| (6)
8(i,j) = (si —tj)* ?)

The function of § means a measured distance between two-time series data. Since the
cumulative measurement for each path indicates the potential warping paths, the DTW
problem can define as minimization of warping paths.

DTW(S,T) = min [=b 8w ®)

Dynamic programming explains legal state transitions with stage, state, and decision.
Although the decision is difficult to recognize, these variables show possible paths between
the two elements in the matrix. Some limitations are as follows. However, these are good
for deciding permissible paths for efficiency.

1. Monotonicity:

The points must be monotonically ordered with respect to time, i1 < i and jr_1 < ji.
2. Continuity:

The steps in the grid are confined to neighboring points, iy — i1 < 1land jy — jr_1 < 1.
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Calibration
of link
lengths

(meantSD)

Counter of

exercise
activities

3. Warping window:
Allowable points can be constrained to fall within a given warping window, |i — jx| < w,
where w is a positive integer window width.

4.  Slope constraint:
Allowable warping paths can be constrained by restricting the slope, avoiding exten-
sive movements in a single direction.

5. Boundary conditions:
The starting point selects one of the subsequent paths, and the endpoint adds some
offset to constrained points, suchasi; =1, j; = 1 and iy = n, jp = m.

The dynamic programming algorithm is based on the following recurrence relation,
which defines the cumulative distance, (i, j), for each point,

v(i,j) = 6(i,j) + min[y(i =1,7),v(i=1,j = 1),7(i,j = 1)]. ©)

Filling the lowest cumulative distances in the matrix helps us find the optimal
warping path.

6. Results of Machine-Learning-Based Personal Training System
6.1. Results of Graphical User Interface

Figure 11 shows a description of the graphical user interface (GUI) for the developed
fitness software. The current pose of the user is to initialize each link length according to
the key point detection. The initialization results make it possible to calculate the value
of (mean = standard deviation (SD)) for each link length on the approximate 3D space.
At the bottom of the user picture, “Reps” indicates the counter for the number of exercise
activities, “Feedback” indicates the advice for the excellent exercise pose, and “Timer”
indicates the history for the exercise time, respectively. On the right side of the figure,
the bar plot represents the achievement per one exercise activity.

Pose
according to
angles of
exercise
activities

Timer starts
to work after
starting
exercise

J activities

Reps ] Timer ‘

. ' ‘ Feedback

00:10

Figure 11. A description of graphical user interface (GUI) for the developed fitness software.

6.2. Results of Similarity Evaluation through Dynamic Time Warping Algorithm

Figure 12 shows results of similarity in time series data through DTW algorithm. The
horizontal axis, as shown in the left-side plot in Figure 12b,c, indicates the number of
frames which is similar to the sampled time, and the vertical axis indicates calculated
angles of 6,k and 6}.¢, as shown in Figure 11, on the left. The orange curved plot of “pro”
results from training experts, and the blue curve of “nov” is the users. The user who did
not have much experience with this fitness system hesitated to begin during 40 frames
of 1.3 s because she had no idea when to start. Many lines connecting one point on the
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(1) Initialization

curve for experts to one or several points on the curve for the user are results of DTW
comparison. DTW compares amplitude of first signal at time T with amplitude of second
signalattime T+ 1and T —1or T +2and T — 2. The comparison with the changing time
axis makes sure it does not give a low similarity score for signals with similar shapes and
different phases.

(2) frame=0 (3) frame=42 (4) frame=60 (5) frame=75 (6) frame=85

(a) Results of image data including extracted key points through human pose estimation.
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(b) Results of time series similarity of the angle of (c) Results of time series similarity for the angle
trunk using dynamic time warping. of lower limb using dynamic time warping.

Figure 12. Results of similarity in time series data through dynamic time warping (DTW). (a) represents image data

including extracted key points through human pose estimation, and (b,c) represent similarity in time series data for angles

of the trunk and lower limbs, respectively.

The right-side plot in Figure 12b,c shows the results of the cost matrix and warping
path: the horizontal axis represents data for the user, and the vertical axis represents those
for averaged experts. The closer the plot is to the diagonal, the higher the exercise activity
for the user is similar. The closer the plot is to the horizontal axis, the lower the activity for
the user is the similarity. The line shows the zero DTW distance. Although the user was
late to start, it was found that there was no problem evaluating similarities in time series
data of exercise activities through the DTW algorithm.

Figure 13 shows results of visualized error points in the real-time through DTW
algorithm. As a result, it was proven that the DTW algorithm helped evaluate exercise
activities. Furthermore, this system could monitor us and provide real-time feedback if we
extended our knees too far or our legs were placed too close.
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(1) Initialization

(2) frame=0 (3) frame=40 (4) frame=55 (5) frame=65 (6) frame=75

(a) Results of image data of lower limbs including error points through dynamic time warping (DTW).

(1) Initialization

(2) frame=0 (3) frame=45 (4) frame=65 (5) frame=75 (6) frame=80

(b) Results of image data of shoulders including error points through dynamic time warping (DTW).

Figure 13. Results of visualized error points in the real-time through dynamic time warping (DTW): (a) Errors in the left
lower limb; (b) errors in both shoulders. This function to visualize errors in real-time helps correct the poor exercise pose of

the user by herself.

7. Discussions

Although most people want home training systems to replace human coaches, meth-

ods are still not perfect. Therefore, it is necessary to know what kinds of failure cases are
still existed. Among many different exercise activities, squats have become an excellent
example of applying for human pose estimation technology and have been proper for
describing widespread errors resulting in severe healthcare problems. While some athletes
perform power-lifting, the most common exercise, most athletes request a personal coach
because the heavyweight exercise tool produces poor posture. Then, it is time to clarify
whether home training systems based on human pose estimation can substitute human
training coaches or not.

@

@)

Body specifics according to the gender:

When image data of humans train human-pose-estimation-based models, it is neces-
sary to consider the difference in physiology between males and females. For example,
if the dataset for the train includes many men’s images, the accuracy for the prediction
depends on only male users. Meanwhile, if women’s users use the trained model,
wrong results wait for us, although the exercise posture is good. Thus, the model
should consider the difference between the two genders when the home training
system is developed based on human pose estimation.

Physiology specifics:

The model based on human pose estimation can recognize the user’s body through
the dataset of image data. However, it is not easy to guarantee whether images for
training are similar body structures or not. Thus, the prediction results are always
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low even if the exercise posture is correct when the training does not use the dataset
with the general proportion for the body parts.

(3) Decision of the exercise start:
There is no problem that the user follows human coaches to start and finish the
exercise. However, it is difficult to tell the home training system when the activity
begins and ends. Thus, the dataset should be time-series data because it doubts to
decide the exercise duration with some images.

(4) Decision of frontal view:
When we need to compare exercise postures with two different videos, there is
no guarantee which the taken conditions of the camera, such as the angle, height,
and lighting, are similar. Thus, finding the frontal view from the recorded video is
always impossible, and the results may be insufficient. The dataset still does not
contain enough information for alignment.

(5) Problem for quick movements of the body part:
The frame rate of the web camera is 30 or 60 Hz, in general. That means that the
model based on human pose estimation does not allow fast movements for exercises to
detect exact key points. Although deep learning improves pose estimation technology,
blurred image data are not helpful for training.

(6) Decision of horizontal position:
It is not easy to find the flat plane from the image. Thus, it is difficult to find the
horizontal and vertical axes from the only image when someone performs exercises.
That is the reason why we should need to calibrate images before training.

(7)  Decision of occluded joints:
The occlusion problem is a problematic issue when finding key points from the image
through human pose estimation. According to the taken condition, some bodies
and objects hide target joints, in general. At that time, it is necessary to decide how
to estimate hidden or lost joints. However, there is still not a clear to solve the
occlusion problem.

8. Conclusions

This study addressed two issues: (1) use sensor data and AI/ML to classify senior
citizens with diabetes based on their gait and physical fitness characteristics and (2) develop
a personal training program using AI/DL based on 3D skeleton detection. Thus, using IMU
sensor data and ML, we could classify the elderly with diabetes based on their gait and
physical fitness characteristics and learned how to develop a personal training program
using Al/DL, e.g., 3D skeleton detection.

In fact, this study aimed to prove that abnormalities for senior citizens with diabetes
were classified under imposed challenge walking speed conditions; slow (=22% slower than
preferred speed), preferred, and fast (=25% faster than preferred speed) walking speeds
through AutoML. The dataset for training was constructed with the support of senior
citizens in the community by using the IMU. The applied AutoML for classification is an
emerging research field within computer science that can help non-experts use machine
learning off the shelf. Furthermore, the developed ML-based personal home training
system using the single RGB camera showed the high possibility of correcting the exercise
posture and speed in real-time. Therefore, the results of this study may be helpful for the
self-preservation of senior citizens with diabetes by themselves with a single RGB camera.
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