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Abstract: Within the rise of the fourth industrial revolution, the role of Big Data became increasingly
important for a successful digital transformation in the manufacturing environment. The acquisition,
analysis, and utilization of this key technology can be defined as a driver for decision-making
support, process and operation optimization, and therefore increase the efficiency and effectiveness
of a complete manufacturing site. Furthermore, if corresponding interfaces within the supply chain
can be connected within a reasonable effort, this technology can boost the competitive advantage
of all stakeholders involved. These developments face some barriers: especially SMEs have to be
able to be connected to typically more evolved IT systems of their bigger counterparts. To support
SMEs with the development of such a system, this paper provides an innovative approach for
the digitalization of the value chain of an aluminum component, from casting to the end-of-life
recycling, by especially taking into account the RAMI 4.0 model as fundament for a standardized
development to ensure compatibility within the complete production value chain. Furthermore, the
key role of Big Data within digitalized value chains consisting of SMEs is analytically highlighted,
demonstrating the importance of associated technologies in the future of metal processing and in
general, manufacturing.

Keywords: Big Data; Industry 4.0; Cyber-Physical Production System; Industrial Internet of Things;
digitalization; RAMI 4.0; digital manufacturing

1. Introduction

Since the fourth industrial revolution, the majority of industry sectors are compelled to
undergo a digital transformation. Besides industries that have the ability to accommodate
more rapidly, especially the heavy industry, and within this sector, metal processing
facilities have additional obstacles to overcome. This applies especially to small and
medium-sized enterprises (SMEs) in this specific industry segment. The required skills,
as well as the necessary budget for the implementation of a state-of the-art digitalization
solution are conditions that these companies often cannot fulfill, resulting in a reduction
of the velocity of the digital transformation [1–4]. Additionally, in-use machine systems
within this environment tend to have significantly longer life spans than other industry
segments, resulting in a higher amount of mostly more complex brownfield digitization
and digitalization approaches [4–6].

To utilize the full potential of the fourth industrial revolution, all enterprises within
a supply chain must be able to communicate with other involved entities. Therefore, a
common basis for communication is imperative, as this results in a holistic compatibility
and extensibility of such. For this purpose, the Reference Architecture Model Industry 4.0
(RAMI 4.0) supports a standardized technical communication within and between different

Appl. Sci. 2021, 11, 9021. https://doi.org/10.3390/app11199021 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5316-2597
https://orcid.org/0000-0002-3058-7178
https://orcid.org/0000-0001-5113-6168
https://orcid.org/0000-0003-1496-3388
https://doi.org/10.3390/app11199021
https://doi.org/10.3390/app11199021
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11199021
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11199021?type=check_update&version=1


Appl. Sci. 2021, 11, 9021 2 of 22

layers which is necessary for a successful digital transformation [7–9]. Although the
utilization of such a methodological approach should result in a reduction of complexity, the
integration of relevant data into the value chain results in a significant increase of required
data processing technologies and database management systems (DBMS). Additionally,
the ongoing approaches to make internal data available to other stakeholders within a
value chain, Big Data and correlating technologies gain significant importance in the
manufacturing environment, as state-of-the-art research implies [10–14].

This paper aims to concretize the role of Big Data within this increasingly connected
environment by utilizing the RAMI 4.0 framework for the digitalization of a small-scale
value chain at the Montanuniversität Leoben, which emulates the integration of SMEs
within such a connected supply chain.

The paper is structured as follows: A state of the art literature research of the key
enablers of the fourth industrial revolution, namely, Smart Factories, Big Data, Cyber-
Physical Production Systems (CPPS), Industrial Internet of Things (IIoT), Digital Twins
(DT), and Cloud Computing is presented in Section 2. In Section 3, the integration of
SMEs within such an environment is discussed in more detail. Furthermore, as part of the
MUL 4.0 project at the Montanuniversität Leoben, a small-scale digitalized value chain
that serves as a practical demonstration for the theoretical implications resulting from
Section 2, is discussed. In addition, machine learning modeling approaches for SMEs
and big enterprises with special emphasis on the process level and therefore CPPS are
addressed. The resulting value chain consists of several enterprises of different sizes and
with different equipment and processes. Based on these chapters, Section 4 demonstrates
and critically discusses the concretization of the RAMI 4.0 framework and the role of Big
Data for the MUL 4.0 value chain. Based on this analysis, generalizations for the metal
processing manufacturing environment are drawn. In the closing section, a brief conclusion
and outlook regarding this topic are given.

2. Theoretical Fundamentals and State of the Art

To successfully support a digital transformation and to achieve a better comprehen-
sion of the production processes, the first step is to assemble a large amount of data from
the production sites to understand the operational sequences and to initiate the digital
transformation within a company [15]. One of the key factors in this context promoting
this transformation is the utilization of the Big Data concept [16]. According to [17–23], Big
Data technologies have to fulfill the three criteria of Volume, Variety, and Velocity. These
three requirements can be extended by two further criteria, presented by [24,25] to five char-
acteristics, which are referred to as the 5Vs: volume, velocity, variety, veracity, and value.
As new technologies become established, new opportunities, challenges, and threats arise.
The opportunities originated up by Big Data initially lie in operational efficiency, leading
to a variety of advantages for businesses, and therefore, manufacturing operations [26]. At
the production level, this might lead to an improvement in production planning. At the
executive level, targeted data integration can support decision-making, strategy develop-
ment and execution as well as supply chain management [27,28]. All these improvements
can subsequently be used to augment customer service [26]. Difficulties occur in the ac-
quisition, transmission, storage, management, analysis, visualization, integration, privacy,
and security of data as well as risk management [26,29,30]. These difficulties can be traced
back to the 5Vs. The first V, volume, presents a major obstacle in two respects. According
to Zikopoulos [21], on the one hand, a large amount of data of at least one petabyte must
be processed. On the other hand, the corresponding infrastructure has to be available for
the intention to be able to process these data volumes in a reasonable amount of time,
leading to the next characteristic, velocity. Velocity is defined as the ability to generate,
process, analyze, and store data at high speeds continuously or discretely. The velocity
of this refers to the time it takes to get from source to destination including all necessary
operations. Variety arises from the different file structures that can be distinguished in
structured, semi-structured, and unstructured data sets. In more than 70% of cases, data
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is present in the unstructured form [26]. Veracity arises from the failure to provide data
of sufficient quality that cannot be used due to a lack of meaningfulness or uncertainty.
Since data analysis inevitably depends on the quality of data, low-quality data can lead
to an unintentional distortion of the result. Value describes the added value generated by
analyzing and linking data [24,25]. An additional threat is the privacy of data that could be
leaked through cyberattacks due to a lack of security. Other concerns arise from the data
itself, should one criterion of the 5Vs not be met [26,31–35].

One of the major challenges of Big Data analysis in the metal processing environment
is the high variety of processes regarding the geometry as well as material and the process-
ing steps concerning the application of the respective workpiece, especially for specialized
SMEs and in the metal forming sector. Considering the supply chain of a metal-based
product from casting to forming of semi-finished products up to component manufac-
turing, this variety increases even further. A typical supply chain for high-quality metal
components, e.g., the aerospace industry includes multiple specialized SMEs, resulting in
a processing chain consisting of a large number of different companies involved [2]. In
this case, digitalization solutions are often planned and implemented as stand-alone solu-
tions, especially taking into account the internal restrictions of these companies concerning
their confidentiality regulations. Taking a globalized and interconnected supply chain
approach into account, the role of standardized interfaces is therefore crucial for further
superordinate supply chain optimization.

To make use of new technologies and support the premises of Industry 4.0, indi-
vidualization, flexibility, decentralization, and resource efficiency, various technologies
have to be combined. When operating within the production site scale, this digitalization
development within such a facility are combined and defined as Smart Factory [36–40].
According to [40], a Smart Factory can be described as a compound of Cyber-Physical
Systems (CPS) connected by the Internet of Things (IoT), to support humans and machines
in their activities [34]. As stated by [2,35,41–44], key technologies, especially for the metal
forming industry, include a generic infrastructure, consisting of CPPSs, IIoT, DTs, Big Data,
and Cloud Computing. Considering the already existing infrastructure within the heavy
industry segment focused in this work, the integration of already existing technology by
using a brownfield approach results in a mixed form of this theoretical construct: expensive
layer 0–4 solutions already implemented but not fulfilling these new requirements cannot
be exchanged without unreasonable investments. This statement is especially important for
SMEs, which tend to have a generally lower budget for innovation that usually amortize in
a medium to long-term period.

To be able to unite already existing structures with these Industry 4.0 (I 4.0) related
technologies, a generic infrastructure, serving as a standard for internal and external
technological communication must be implemented. To create a uniform understanding
of I 4.0 technologies and their standards, the RAMI 4.0 framework, based on the Smart
Grid Architecture Model (SGAM) [2,45–47], was developed. RAMI 4.0 can therefore be
understood as a structured approach to I 4.0 in order to enable uniform communication
between its users. The most important interrelationships between key aspects of I 4.0 are
visualized by three axes. For the success of a digitalized process chain, there must be a
holistic, corresponding vertical and horizontal integration along the life cycle and value
stream. As shown in Figure 1, the “Life Cycle and Value Stream” represents the life cycle of
physical entities, including the product, along the process chain over which the horizontal
and vertical integration takes place [2,45,46]. Horizontal integration, represented by the
hierarchy levels ensures cross-border communication with other entities, representing one
of the fundamental premises of I 4.0 [2,45,46]. Vertical integration takes place across the
layers and is used for data integration and communication between those [2,45,46]. The
RAMI 4.0 model consists of the following layers (Figure 1):

• The Asset layer describes the lowest layer in RAMI 4.0 and contains all physical
objects;
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• The Integration layer is representative for the connection of physical objects with the
digital domain and contains the required hardware and software;

• The Communication layer executes the digital connection and thus can be seen as an
IIot equivalent;

• The Information layer contains all process-relevant data and information in different
formats;

• The Functional layer contains all functions of a value chain. Depending on their
determination, these functions can be of a logistical or data processing character;

• The Business layer houses the business logic and deals with the optimization of
products and processes.
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The hierarchy level is distinguished as follows (Figure 1):

• Product describes the product to be manufactured;
• Field Device includes entities for collecting data, such as sensors and data acquisition

(DAQ);
• Control Device describes those operating elements that are used to control the system;
• Station describes the machine or station used for the production step;
• Work Center is to be understood as the production environment;
• Enterprise describes the host enterprise itself.

As a digitalized supply chain in the metal processing industry usually consists of
multiple smart factories, often owned by different companies and in general delocalized,
smart factories include several CPPSs. A CPPS serves as an extension of a CPS, referring to a
system capable of acquiring, storing, analyzing data in real-time using Internet technologies,
and reintegrating information from the virtual to the physical world [48], partly dismantling
the classical automation pyramid [49]. The reintegration of information involves human–
machine interaction, which can be realized with Human Machine Interfaces (HMIs) as
shown in, e.g., [2,35]. Building upon the concept of the CPS, a CPPS is using automation
technology to a greater extend [2,48]. According to [48,50,51], the following characteristics
must be fulfilled: a CPPS: (i) consists of superordinate systems within systems; (ii) consists
of connected and cooperative elements acting situationally appropriate between all layers
of a production environment; (iii) enhances real-time decision making.
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A further extension of these criteria is proposed by [52], adding two additional condi-
tions to be met, especially considering SMEs: (iv) a user-centered CPPS consists of HMIs
that are tailored to the application and the respective end-user; (v) a user-centered CPPS
for SMEs is resilient and has a short amortization time.

Apparent assistance for the establishment of a CPPS of this kind can be the implemen-
tation of DTs, serving as a decision-making support system for the further optimization of
the respective production process.

According to [53], a common definition of a DT is a virtual representation of a physical
product. This definition can be further refined according to [2,53], depending on the
field of application. In the metal industry, a DT can be seen as a partial or complete
representation of a production chain, shifting the focus more onto production planning and
optimization, or as a representation of one or more process steps in the production chain for
the manufacturing of a semi-finished or finished product, whereby the focus shifts on the
simulation [2]. To generate advantage of a DT, data from physical space and the information
derived from it must be reintegrated from the digital back into physical space. This data
transfer between a physical and virtual entity leads to three differentiations depending on
its degree of automation [53]. The Digital Model (DM) includes data transfer between the
physical and digital space without automated data transfer from the digital to the physical
domain or vice versa [53]. A Digital Shadow (DS) consists of a unilateral automated data
transfer, in the sense that data is automatically transferred from one domain to the other,
while the reverse has to be executed manually [53]. The DT, on the other hand, includes an
automated bilateral data transfer, resulting in an algorithm-based process adaption and
can adapt the digital domain by utilizing near real-time process data [53]. The fundament
of a DM, DS or DT can be a White Box Model (WBM), Black Box Model (BBM) or a mixture
of both, defined as Grey Box Model (GBM) [2].

WBMs are based on real physical relationships build up upon known parameters
and mathematical correlations. Therefore, the output and how output-related results
are obtained are comprehensible [2,54–56]. BBM are often used where a mathematical
description based on real physical relationships is too complex [54,55,57] or not available in
the required depth and time. As a result, its logic and working methods are not transparent
in comparison to a WBM [54]. The output of a BBM has no real physical mechanisms
compared to the WBM and is based on stochastic approaches and the correlation of data [2].
The GBM represents the combination of a WBM and a BBM, aiming to merge the benefits of
both [2,54]. However, the results may vary depending on the modeling method used and so
the use of either a WB, GB or BB model has to be answered individually depending on the
given circumstances and resources [56,58]. Taking Machine Learning (ML) into account, the
models can be developed into White Box Machine Learning Models (WBMLMs), Grey Box
Machine Learning Models (GBMLMs), and Black Box Machine Learning Models (BBMLMs),
as demonstrated in [52,56]. In the case of SMEs, initial WBMs are especially important to
consider, as there may not be enough experimental investigations nor resources to generate
data from tests to meet the 5Vs of Big Data, leading to an unsatisfactory result. In the
further production process, data can be collected and fed into the initial WBM, which
transforms it into a GBMLM, as shown in [56]. Large enterprises, on the other hand, may
have already collected enough data to meet the 5Vs of Big Data and can implement a
BBM that is also fed with data collected in the process, transforming it into a BBMLM [52].
Nevertheless, in the event of limited access to sufficient data, a similar approach to SMEs
can be adopted. Data that can be used by the models has to be classified and, in the case
of an ML approach, supervised learning is recommended [23,54]. To obtain the necessary
data in the required quality, time and structure, IIoT solutions, despite classical level 2
automation schemes, are required to realize a true BBM or GBM as well as their further
advanced ML-based extensions.

IIot is a derivative of the IoT, which describes the attempt to network smart devices
across the board, whereby this term is strongly consumer-related [59,60]. The architecture
associated with IoT has to be adopted when implemented in the context of an industrial
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environment, especially considering higher IT security and resilience requirements [60].
As concluded by [60], IIoT can be described as a superordinate system including con-
nected cyber-physical entities that enable in-situ data acquisition, analysis, and exchange
in an industrial environment leading to process and production optimization and thus
serving as a major enabler for a leaner production [60,61]. The resulting benefits are im-
proved productivity and efficiency, reduced cost and energy consumption as well as a
strengthened customer relationship [59,60,62]. A major challenge arises from the hetero-
geneous application of protocols [2,60]. The general term protocols can be divided into
data protocols (e.g., XMPP, MQTT), discovery protocols (e.g., mDNS) and infrastructure
protocols (e.g., IPv4, IPv6), enabling communication, whereby each of them exhibits their
individual advantages as well as disadvantages [60]. As stated by [2,60], Message Queue
Telemetry Transport (MQTT) offers itself for industrial use due to efficient data storage.
Furthermore, [2] pointed out the suitability of Extensible Messaging and Presence Protocol
(XMPP) for HMIs, which serve as a key component in a smart factory. The integration
of a large number of smart devices into the IIoT also poses several risks in terms of IT-
security and makes production sites particularly vulnerable to cyberattacks [63,64]. A
smart factory, consisting of a multitude of cyber-physical entities, offers attack points in
the areas of software (viruses, trojans), protocols (man-in-the-middle, denial-of-service),
and hardware [63,64]. This can not only paralyze production but also lead to data theft
or targeted manipulation of processes [32,59]. As stated by [32], WB(ML)Ms, GB(ML)Ms,
and BB(ML)Ms, when connected, e.g., as a DS or DT, can also be impacted by cyberattacks
due to manipulation of the general model, underlying ML algorithm or related data sets.
To be able to reduce or at best completely avert cyberattacks and the associated potential
intellectual and physical damage, the involvement of security experts should be considered
in any case when implementing a smart factory. As stated by [65–67], the IIoT furthermore
serves as a major enabler for Industry 5.0 focusing on a higher degree of Human-Machine
Interaction enabling a virtualized, costumer-driven manufacturing environment [68].

Considering the limited human and architectural IT resources within most SMEs,
cloud computing solutions can add significant economic benefits and therefore additionally
serve as an accelerator for the digital transformation of these entities [69]. The basic defi-
nition of cloud computing is given by the National Institute of Standard and Technology
(NIST): “a model for enabling convenient, on-demand network access to a shared pool configurable
computing resources (e.g., networks, servers, storage, application, and services) that can be rapidly
provisioned and released with minimal management effort or service provider interaction” [70].
A Service Level Agreement (SLA) regulates the services to be provided between the con-
sumer and the provider and the services to be provided [71]. Through the combination
of IIot and cloud computing it is possible to implement decentralized, on-demand data
computation [59,72,73]. As stated by [59], with centralized cloud computation, the proba-
bility of potential delays in high-priority data in the event of high data traffic cannot be
neglected. However, there is a possibility that highly specialized SMEs, which already have
such an infrastructure and know-how, are not willing to outsource computing activities
to cloud services due to legal uncertainties regarding data protection and privacy due to
different jurisdictions. Despite this uncertainties, decentralized computing resources, in
combination with big data, make it possible to monitor and optimize entire process chains
in real-time [63].

As already mentioned, through the interaction of networked smart devices subordi-
nate to a CPPS and linked by an IIoT, collected data can be processed through suitable
computing resources, such as cloud computing services. To enable regulated access,
availability and storage to data, suitable databases and corresponding DBMS must be
implemented [3,26]. When selecting a suitable DBMS, it is important to pay particular
attention to the system limits, as data to be processed can be too large for specific DBMSs
and thus impair performance [74]. Corresponding database models include relational,
object-orientated and document-based databases [75,76]. Two programming languages
capable of structuring and accessing the data of a database are Structured Query Language
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(SQL) and not-only Structured Query Language (noSQL) [76]. Relational databases store
the data in structured tables linked together by keys and can be accessed by SQL [75].
Due to the high amount of links between the tables, performance problems occur with
large amounts of data, as the relationship models become increasingly complicated [75].
The less commonly used object-oriented databases manage data in an object which inter-
nally takes over the data management [76,77]. Depending on the database model, data
can be accessed with suitable object-orientated languages. Document-oriented databases
follow a non-relational approach where data is stored in documents of different formats
by an identifier [76,78]. Data in a document can be accessed with key-value pairs using
noSQL [76–79]. As stated by [78], DBMS based on noSQL are suitable for a big amount of
data if the data does not demand a relational model, thus gaining popularity, especially
when dealing with unstructured data sets [79]. As stated by [79,80], which DBMS to use is
highly dependent on the use case, software, and requirements.

I 4.0 is also changing the security requirements for included systems [81,82]. With the
increased utilization of HMIs in the manufacturing environment, it is essential to verify the
validity of the input and trustworthiness of the operator to ensure operational safety [81].
This risk is further increased by principles such as Bring Your Own Device (BYOD) or Choose
Your Own Device (CYOD), which exposes networks to a higher risk of infiltration, e.g., due to
a lower level of standardization by a higher degree om heterogeneity of used devices [82].
Therefore, data should be classified according to their confidentiality, integrity and availability
(CIA) to prevent unauthorized access and data manipulation [60,81,83–85]. Manipulation
or corruption of data could lead to malfunctions, miscalculations, misinterpretation and
thus to wrong decisions in the upper two layers of the automation pyramid, the Manu-
facturing Execution System (MES), and the superordinate Enterprise Resource Planning
(ERP) system. As stated by [81], another security risk is the age of the infrastructure, as
there is a frequent replacement of equipment over time, making constant planning and
updating of security measures necessary. Therefore, a multi-layer architecture approach
with multiple safety layers should be implemented, dividing and analyzing the signal
flow of each CPPS and cross-validating the signals with those of corresponding CPPS [81].
Other security measures as stated by [81], such as Side-Channel Analysis [86,87] or Post-
Production Analysis, can further enhance operational security despite the challenges they
pose. A further approach, as mentioned by [88], would be a standardized certification into
embedded systems themselves letting those systems check for their security by themselves.
Furthermore, [89] proposes that RAMI 4.0 should take greater account of safety and human
factors. Another weakness in security planning was pointed out by [90], as stated that a lack
of recovery planning in the case of disaster is persistent in I 4.0. Other security measures,
as noted by [88,91], include the implementation of a firewall and a private network (VPN)
that can only be accessed by devices with authorized IP addresses.

Table 1 summarizes the most important key factors for the implementation of a
digitalized metal processing value chain.

Based on the theory elaborated, the authors propose the following hypothesis:

Hypothesis 1 (H1). When developing a digitalized supply chain within the metal processing
environment which is horizontally interconnectable, the 5V condition and therefore the existence of
Big Data is automatically fulfilled.



Appl. Sci. 2021, 11, 9021 8 of 22

Table 1. Key factors and corresponding key focus according to literature.

Key Technologies Key Focus Literature

Smart Factory individualization; flexibility; decentralization; resource efficiency [2,40–43,61]

CPPS
connection and cooperation of layers; acquisition and analysis of

data in real-time using Internet technologies; human-machine
interaction; enhance real-time decision making

[48–50]

DT decision making support; partial or complete representation of a
production chain/process steps; simulation [53]

ML/Artificial Intelligence (AI) supervised learning to enhance decision making within the
production environment [92–96]

IIoT enables in-situ data acquisition, analysis and exchange for process
and production optimization [59,60,62,63,65]

Cloud computing on-demand data computation in combination with IIoT [71–73]

DBMS store data in structured tables linked together by keys [41,74–80,97]

IT-security
prevention of unauthorized access and data manipulation;

prevention of misinterpretation and corresponding inaccurate
decisions of upper layers

[81,82,84–86,89–91,98]

3. Digitalization and Development of a Metal Processing Value Chain: Framework
and Corresponding Case Study for SMEs

The presence of SMEs in a value chain varies among the considered industry segment
and country. In the case of Austria, 99.7% of the industry consist of SMEs [99], whereas
18.1% of Austria’s industry concern the field of manufacturing [100]. Consequently, it
is most likely that SMEs are involved within a metal processing value chain. This is
particularly evident in the manufacturing sector of the automotive and aerospace industry,
where many specialized SMEs supply big enterprises with components that have to fulfill
high quality standards and require specific production related expertise [101–104].

To be able to support SMEs within this environment, this section describes the further
concretization of the RAMI 4.0 framework for the development of a simplified digitalized
value chain for the metal processing industry, that especially considers the additional
restrictions SMEs face. The resulting concretized framework is put into operation by a
smaller-scale use case at the Montanuniversität Leoben. This use case, which is part of the
MUL 4.0 project, does not only serves as a practical testing of the stated hypothesis but
pursues to contribute to as a fundament for the state-of-the-art engineering education for
future experts in the manufacturing field [105,106].

According to [105], the two main cooperating instances of MUL 4.0 can be character-
ized as follows: the Chair of Metal Forming (MF) with 15 employees represents a small
enterprise, whereas the Chair of Non-Ferrous Metallurgy (NFM) with 72 employees can be
seen as a medium enterprise. These chairs are able to provide the required infrastructure for
the development of an integrated I 4.0 standard value chain. As a result, by digitalizing and
connecting these entities under consideration of providing interfaces for state-of-the-art
software used in large enterprises, the steps undertaking to realize these objectives can be
utilized by other SMEs within the metal processing environment.

Depending on the product to be manufactured, the respective part has to pass various
steps according to RAMI 4.0 [89]. These process steps are carried out in production facilities
of various sizes, which, for the sake of simplicity, will be distinguished into SMEs and large
enterprises within this work, as visualized in Figure 2.
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To ensure the complete digital transformation of a value chain, both SMEs and large
enterprises have to meet the requirements of I 4.0. Disruptions caused by a failure to meet
this requirement, e.g., a lack of data to be integrated into the value chain, would lead to
an interruption in the processing route. SMEs in particular, often lacking the financial
resources and expertise to carry out a successful digital transformation process, pose a risk
of such a disruption. Appropriate software and hardware is often expensive and can be
a major financial barrier for some SMEs. To overcome this obstacle in terms of hardware
and the associated computing resources, an approach with cloud computing is a preferable
option. Another advantage would be that respective expertise does not have to be acquired
by SMEs themselves, but is already available from the provider of the cloud computing
service. Furthermore, providers offer additional solutions such as data processing and
can thus be outsourced. Software solutions, serving as another barricade, can be managed
with open or closed source products. The choice of whether to use open-source products
or closed source products has to be considered from several points of view. Once again,
internal know-how is a key factor for the application of open or closed source solutions.
If internal human resources with IT expertise are available to implement a customized
solution and the requirements and tasks are very specific, an open-source approach may
be appropriate. If the requirements are non-specific as they are common in the industry, it
would be preferable to use closed source products, pay license fees and thus have access
to support and updates. By closing gaps in the value chain, data from other stations or
companies can be accessed, depending on authorization, to enable more flexible supply
chain management and process planning in the downstream and upstream steps.

Figure 3 shows an exemplary supply chain network for the parallel operation of an
SME and larger enterprise.
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sizes according to the principle of the automation pyramid and its layers.

Digitization and digitalization of both enterprises were based on the model of the
automation pyramid. Layer 0 covers all physical production processes. Layer 1 is the
DAQ level and contains sensors, actuators and programmable logic controllers (PLCs).
Layer 2 acts as the Supervisory Control and Data Acquisition (SCADA) level including
HMIs. Layer 3 contains the MES and layer 4 includes the ERP. The data of the respective
enterprises can be integrated into the higher-level system from layer 3 and thus act as
a lower layer in the higher-level layer system of the value chain. The network includes
several servers, which execute several services. If possible, the option of executing only one
service per server should be checked according to the “One server, one service” principle.
In the event of a server failure, instead of several services, only individual services would
be affected, which can be taken over by backup servers. Depending on the available
resources, different approaches regarding WBM, GBM, and BBM can be followed. In
the case of enterprise 4 (Figure 3, E4), an SME, an initial WBM was chosen using data
acquired from a Finite Element Analysis (FEA). Using the external computing resources
of a cloud computing service, the data obtained from FEA can be integrated into a WBM,
which in turn can be assimilated with further FEA data for refinement, resulting in a
WBMLM approach. Another possibility would be to continuously feed process data into
the initial WBM, resulting in a GBMLM, as shown in [56]. Enterprise 5 (Figure 3, E5), a
large enterprise that already has data that meets the 5Vs criteria, has a similar structure as
E4 (Figure 2). Due to the existing amount and value of data, an initial BBM approach is
applied within this example. The BBM can be fed and refined with further process data
recorded during production and thus establish BBMLM, as shown in [52]. If required
data cannot be obtained from the DAQ of the process and would require a WBM based
simulation, e.g., FEA for material models or microstructure models, a GBMLM approach
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would be followed. In any case, supervised ML should be pursued at the beginning of the
implementation to support a successful establishment of the system.

For this exemplary framework, the 5V criterium of Big Data is fulfilled, as demon-
strated in Table 2.

Table 2. Overview of the most important data sources and corresponding qualitative estimation for a digitalized metal
processing value chain.

Type of Data Volume Velocity Value Veracity Variety

Sensor/PLC (e.g., time series data,
videos) low high high high high

(unstructured)

Process-related modeling data
(e.g., FEA) high low high medium-high high

(unstructured)

Inter & intra logistical related
data (e.g., smart factory DT) high high high high high

(unstructured)

WBML high Low high medium-high high
(unstructured)

GBML medium medium high medium-high high
(unstructured)

BBML low high high high high
(unstructured)

IIoT low high high high high
(unstructured)

MES medium medium high high medium
(structured/semi-structured)

ERP high low high high high
(unstructured)

4. Results and Discussion

As part of the MUL 4.0 project, four machines were integrated into a value chain [107].
These are positioned at two different localizations. The continuous caster is located at the
NFM and is equipped as standard with sensors and DAQ by the manufacturer. The MF
houses the furnace, hydraulic press, and rolling mill, posing as the second production site
in the process. The rolling mill from 1954 was transformed into a CPPS utilizing low-cost
retrofitting and suitable sensors such as Linear Variable Differential Transformer (LVDT)
and load cells to be able to integrate required data into the process [52]. In cooperation
with the Chair of Industrial Logistics (IL), a cross-process database was set up to make data
available between the cooperating parties. Table 3 shows the technical specifications of the
sensors associated with the corresponding machines and their location.

As visualized in Figure 4, the process chain consists of continuous casting of the
aluminum specimens, followed by a variable operation of forming processes. At the MF,
the specimen can be cold-formed or rolled. In the hot forming process, the specimen
is preheated in the furnace before rolling or upsetting. Subsequently, the samples are
subjected to quality control and recycled in the final stage.



Appl. Sci. 2021, 11, 9021 12 of 22

Table 3. Machines and sensors with technical specifications [107].

Machine Sensor Measure Range Linearity

Furnace
(MF)

Thermocouple
(Type K) Temperature 0–1200 ◦C According to DIN EN

60584-2

Rolling mill
(MF)

Load cell
(Kern CR 20000-1Q1 +
PR Electronics 2261)

Rolling force (left guide
spindle) 0–200 kN 0.1% FSO

Load cell
(Kern CR 20000-1Q1 +
PR Electronics 2261)

Rolling force (right
guide spindle) 0–200 kN 0.1% FSO

LVDT (Waycon LV-S-25-300-KA05-L10 +
Waycon LV-S-25-300-KA05-L10) Roll gap height 0–25 mm 0.1% FSO

Magnetic multiturn encoder (ASM
PH36) Gear angle 31 × 360◦ ±(2◦+ 0.015%) FSO

Hydraulic
press (MF) Load cell Die force 0–1 MN 0.1% FSO

LVDT Die position 0–600 mm 0.1% FSO

Pyrometer Temperature 0–1200 ◦C According to DIN EN
60584-2

Continuous
caster (NFM)

Thermocouple
(Type K|Type S) Crucible temperature 0–1200 ◦C

0–1500 ◦C
According to DIN EN

60584-2
Thermocouple

(Type K|Type S) Die temperature 0–1200 ◦C
0–1500 ◦C

According to DIN EN
60584-2

LVDT Draw path 0.1–9.9 [mm] 0.1% FSO
LVDT Reversing draw path 0.0–9.8 [mm] 0.1% FSO

Load cell Draw force N/A [N] 0.1% FSO
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To transfer the data recorded by the sensors into the production network, DAQs
were implemented (Table 4). At the MF, a low-cost approach was pursued with DAQ
systems from Wago GmbH (Brunn am Gebirge, Austria) and the Wago e!Cockpit software.
In addition, data processing, creation and execution of GUIs used with the open-source
programming language Python [52].
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Table 4. Utilized machines and DAQ with technical specifications within the MUL 4.0 project.

Machine DAQ Protocol Resolution Frequency

Rolling mill
(MF)

Wago PFC200 750-8212
(+I/O modules) Modbus TCP/IP 15 bit 500 Hz

Furnace
(MF)

Wago PFC200 750-8212
(+I/O modules) Modbus TCP/IP 15 bit 500 Hz

Hydraulic press
(MF)

Wago PFC200 750-8212
(+I/O modules) Modbus TCP/IP 15 bit 500 Hz

Continuous
caster (NFM) Internal DAQ Modbus TCP/IP 15 bit >100 Hz

To pursue the low-cost and open-source approach, MariaDB was chosen as SQL-based
database, as deemed suitable for the amount of data generated. In the processing chain of
MUL 4.0, a distinction can be made between process-related time series data and logistical
data. Process-related time series data, e.g., sensor data, data obtained from a FEA or finite
volume analysis (FVA), photos and videos need to be accessed and computed in near
real-time to create appropriate process DTs. Not all raw data is stored in the database, but
selected, filtered data to keep the performance of the database optimal. Data stored in the
database can be accessed by authorized users for further data processing or investigation.
Furthermore, the MariaDB is linked to an MES and ERP to enable dynamic process chain
monitoring, planning and control.

As mentioned in Section 2, cyber security plays a key role in the context of I 4.0. For
this reason, an IT-layer architecture was designed and implemented as shown qualitatively
in Figure 5. The IIoT in layer 2 can be considered as a closed system, from which data
from a NodeRed server and the Maria DB are transferred to layer 3. Layer 3 contains the
remote admin host, webserver dashboard, the chosen low-cost ERP system ERP Next and
the file server in a virtual environment, which can be accessed by the client by authorized
workstations. To prevent unauthorized access and cyber-attacks, a firewall was installed
between layers 2 and 3, which only allows layer 3 to query layer 2.
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Figure 6 visualizes the resulting adapted architecture, based on the RAMI 4.0 concept.
Tables 5–10 concretizes the corresponding areas within this adapted model.
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Table 5. Asset layer fragments from Figure 6 and corresponding specifications.

Layer Fragment Specification

A1.1 Continuous casted specimen
A1.2 Sensors of continuous caster according to Table 3
A1.3 Tablet/PC
A1.4 Continuous Caster
A1.5 Center for Non-Ferrous Metallurgy
A1.6 NFM
A2.1 Heat treated specimen
A2.2 Sensors of furnace according to Table 3
A2.3 Tablet/PC
A2.4 Furnace
A2.5 Center for Metal Forming
A2.6 MF
A3.1 Formed specimen
A3.2 Sensors of rolling mill|hydraulic press according to Table 3
A3.3 Tablet/PC
A3.4 Rolling mill|Hydraulic press
A3.5 Center for Metal Forming
A3.6 MF
A4.1 Quality checked specimen|Recycled specimen
A4.2 Sensor of tensile test machine|recycling aggregate
A4.3 Tablet/PC
A4.4 Tensile test machine | Recycling aggregate
A4.5 Center for Metal Forming
A4.6 MF

Table 6. Integration layer fragments from Figure 6 and corresponding specifications.

Layer Fragment Specification

It1.1 RFID chip
It1.2 Continuous caster DAQ according to Table 4 + Internal Software
It1.3 GUI + Webserver Dashboard Server (DHCP)
It1.4 CPPS + IIoT
It1.5 MES Server + DHCP protocol
It1.6 ERP Next Server + DHCP protocol
It2.1 RFID chip
It2.2 Furnace DAQ according to Table 4 + Wago e!Cockpit Sofware
It2.3 GUI + Webserver Dashboard Server (DHCP)
It2.4 CPPS + IIoT
It2.5 MES Server + DHCP protocol
It2.6 ERP Next Server + DHCP protocol
It3.1 RFID chip

It3.2 Rolling mill|hydraulic press DAQ according to Table 4 + Wago e!Cockpit
Sofware

It3.3 GUI + Webserver Dashboard Server (DHCP)
It3.4 CPPS + IIoT
It3.5 MES Server + DHCP protocol
It3.6 ERP Next Server + DHCP protocol
It4.1 RFID chip
It4.2 Tensile test machine|Recycling aggregate DAQ + Software
It4.3 GUI + Webserver Dashboard Server (DHCP)
It4.4 CPPS + IIoT
It4.5 MES Server + DHCP protocol
It4.6 ERP Next Server + DHCP protocol
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Table 7. Communication layer fragments from Figure 6 and corresponding specifications.

Layer Fragment Specification

C1.1 RFID protocol
C1.2 Modbus TCP/IP
C1.3 DHCP
C1.4 DHCP
C1.5 DHCP
C1.6 DHCP
C2.1 RFID protocol
C2.2 Modbus TCP/IP
C2.3 DHCP
C2.4 DHCP
C2.5 DHCP
C2.6 DHCP
C3.1 RFID protocol
C3.2 Modbus TCP/IP
C3.3 DHCP
C3.4 DHCP
C3.5 DHCP
C3.6 DHCP
C4.1 RFID protocol
C4.2 Modbus TCP/IP
C4.3 DHCP
C4.4 DHCP
C4.5 DHCP
C4.6 DHCP

Table 8. Information layer fragments from Figure 6 and corresponding specifications.

Layer Fragment Specification

In1.1 Location of specimen
In1.2 Sensor data of continuous caster according to Table 3
In1.3 User input from continuous caster GUI
In1.4 Status of continuous caster
In1.5 Process data acquired by data processing (e.g., utilization factor)
In1.6 Economic data acquired by data processing (e.g., price per unit)
In2.1 Location of specimen
In2.2 Sensor data of furnace according to Table 3
In2.3 User input from furnace GUI
In2.4 Status of furnace
In2.5 Process data acquired by data processing (e.g., utilization factor)
In2.6 Economic data acquired by data processing (e.g., price per unit)
In3.1 Location of specimen
In3.2 Sensor data of rolling mill|hydraulic press according to Table 3
In3.3 User input from rolling mill|hydraulic press GUI
In3.4 Status of rolling mill|hydraulic press
In3.5 Process data acquired by data processing (e.g., utilization factor)
In3.6 Economic data acquired by data processing (e.g., price per unit)
In4.1 Location of specimen
In4.2 Sensor data of tensile test machine|recycling aggregate
In4.3 User input from tensile test machine|recycling aggregate GUI
In4.4 Status of tensile test machine|recycling aggregate
In4.5 Process data acquired by data processing (e.g., utilization factor)
In4.6 Economic data acquired by data processing (e.g., price per unit)
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Table 9. Functional layer fragments from Figure 6 and specifications.

Layer Fragment Specification

F1.1 Statistical data by data processing
F1.2 Statistical data by data processing
F1.3 Statistical data by data processing
F1.4 Machine status
F1.5 MES data processing
F1.6 ERP data processing
F2.1 Statistical data by data processing
F2.2 Statistical data by data processing
F2.3 Statistical data by data processing
F2.4 Machine status
F2.5 MES data processing
F2.6 ERP data processing
F3.1 Statistical data by data processing
F3.2 Statistical data by data processing
F3.3 Statistical data by data processing
F3.4 Machine status
F3.5 MES data processing
F3.6 ERP data processing
F4.1 Statistical data by data processing
F4.2 Statistical data by data processing
F4.3 Statistical data by data processing
F4.4 Machine status
F4.5 MES data processing
F4.6 ERP data processing

Table 10. Business layer fragments from Figure 6 and corresponding specifications.

Layer Fragment Specification

B1.1 Product optimization
B1.2 Process optimization
B1.3 Human resources optimization
B1.4 Downtime risk minimization
B1.5 Process chain optimization
B1.6 Cost optimization
B2.1 Product optimization
B2.2 Process optimization
B2.3 Human resources optimization
B2.4 Downtime risk minimization
B2.5 Process chain optimization
B2.6 Cost optimization
B3.1 Product optimization
B3.2 Process optimization
B3.3 Human resources optimization
B3.4 Downtime risk minimization
B3.5 Process chain optimization
B3.6 Cost optimization
B4.1 Product optimization
B4.2 Process optimization
B4.3 Human resources optimization
B4.4 Downtime risk minimization
B4.5 Process chain optimization
B4.6 Cost optimization

According to state-of-the-art literature, Big Data analytics is an integral part of the
fourth industrial revolution. For the integration of SMEs within the metal processing value
chain, this technology can also be seen as an essential component of this process, as this
work demonstrates. Furthermore, by including the characteristics of Big Data within the
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initial planning phase of an interconnected metal processing supply chain project, the
risk of misplanning can be minimized. The combination of structured and standardized
planning, relying on the RAMI 4.0 model and the 5V definition of Big Data can thus support
SMEs and their stakeholders within the value chain for an accelerated integration approach.
The additional consideration of IT security, as well as cloud computing solutions, further
increase the resilience of a planned mixed enterprise size value chain integration. Due to
the financial and resource challenges especially SMEs have to overcome, the utilization
of low-cost but industry-standard solutions, as demonstrated in Section 3 can lead to a
significant boost within the digitalization, digital transformation, and finally value chain
integration of these company types. The fulfillment of the 5Vs of Big Data analytics,
however, is not mandatory for all types of SMEs. By focusing on the metal processing
environment, the required volume can easily be reached, as this industry segment heavily
relies on FEA-based WBM. For SMEs or even larger companies, operating in industry fields
where the process variety is low and/or the process parameters are stable and not complex,
volume, as well as variety is not necessarily high. Based on the results of the theory and case
study shown in this paper, it can be stated that a fully digitalized metal processing value
chain must always include the Big Data concept, therefore H1 cannot be neglected. Despite
this conclusion, using the RAMI 4.0 model as a fundament for further concretization for the
digital transformation of an SME can add value within all manufacturing-related industry
segments. Considering the broader perspective of international supply and value chains,
the authors argue that an additional focus on the legal aspect of international collaborations
and networks should be additionally focused within the RAMI 4.0 framework, especially
when considering legal differences in terms of responsibilities and liabilities in the event of
ML-involved accidents at the shopfloor level.

5. Conclusions and Outlook

In this paper, an approach for a systematic standardized digitalization of a value chain
is presented. For this purpose, key enablers for a digital transformation were identified
according to state-of-the-art literature. The utilization of these key technologies and systems
is then elaborated in more depth by applying possible configurations on the theoretical
integration of SMEs into a digitalized metal processing value chain, especially considering
the requirements of these enterprises operating with heterogeneous and complex processes.
Based on this further concretization, the resulting concept is further applied on a small-
scale value chain developed at the Montanuniversität Leoben for further analysis and
validation. By doing so, the authors state that Big Data is a core element of a fully digitalized
value chain within the metal processing environment. With increasing digitalization
among all involved stakeholders within the metal processing sector, digital transformation
and therefore, digitalized value chains will subsequently increase, leading to further
utilization of Big Data and corresponding technologies. As demonstrated within this
work, the use of a suitable digital transformation framework can furthermore contribute
to a more resilient digital transformation process and decrease the implementation and
optimization time required to fulfill the requirements of an I 4.0 compatible supply chain.
As already observable in other industry segments, technologies like blockchain can boost
this development even more, e.g., by increasing data security [108–110]. Furthermore,
the rise of quantum computing and expected utilization in the manufacturing context
can further boost the demand for Big Data technologies and required know-how, which
increases the importance of corresponding technologies and frameworks in the future even
more.
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