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Abstract: Through human development and technological expansion, it has become apparent that
the potential lies within each individual to have an essential part in the transcendence of society and
the community. People less privileged than others may need more strength and determination to
surpass their current resources to overcome normal and natural obstacles in order to simulate an
environment where productivity and creativity exist. This paper aims to study an approach that
will assist the elderly and people of determination in one of the most essential activities practiced
by individuals: shopping. The study focuses on facilitating the acquirement of items from shelves
and skipping the cashier line. The proposed system is a service robot supported by a robotic arm
and a linear actuator as a lifting mechanism, controlled by a remote joystick to help the elderly or
disabled people reach items on high shelves. The scanning system is based on barcode detection,
using transfer learning. The network was designed using YOLOv2 layers connected to TinyYOLO
as feature extraction layers. This network has proven to be the most practical, with 86.4% accuracy
and real-time operation with 27 FPS in comparison to using the YOLOv2 layers with DarkNet or
VGG19 as feature extraction layers. An anti-theft system is integrated into the robot to improve the
reliability of the self-checkout feature. The system uses computer vision GMM and Kalman filter for
item detection inside the cart, and the item is validated to be the one that has been scanned, using
SURF for structural features, HSV for color, and load-sensors mounted to the base of the cart to
measure the item’s weight.

Keywords: robotics; artificial intelligence; Internet of Things

1. Introduction

Technology has become a necessity for humanity to control the essential aspects
required for development and evolution. As people have grown fond of technology and
integrated it into every activity of their daily routine, increasing the comfort and confidence
toward its results, it would be prudent to use technology to build and simulate the required
features and characteristics of an environment for the elderly and disabled people to fulfill
their basic desires and enhance their productivity and creativity within society.

The motivation behind the research began gradually from the moment we noticed
articles about the initiations occurring worldwide to help people of determination become
integrated into social tasks, such as schools and hospitals. A recent newspaper article [1]
was published discussing the obstacles encountered by people of determination inside
shopping stores and how such an essential task can become very difficult to perform.
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Thus, we were motivated to utilize the extent of our knowledge combined with the recent
research to construct a system that would bring us closer to a solution.

One of the most desirable qualities that individuals aspire to maintain is obtaining
whatever is needed to facilitate their life. Old and disabled people may face difficulties
and obstacles in fulfilling this desire. Shopping could be a very weary and exhausting
activity that they need to practice daily. Obtaining items from shelves, waiting in a long
cashier line, and having difficulty accessing knowledge about the products are obstacles
that they may face. Our service robot aims to solve most of these problems and facilitate
the shopping process for people with disabilities.

Some of the existing solutions that could be considered to assist the situation would be
personal assistants provided by the market store and online shopping websites. Many peo-
ple may feel uncomfortable asking a person to do everything desired while shopping,
and in some situations, it may produce awkwardness and unease. Online shopping does
not provide the typical shopping experience that people may want. It would not be easy to
buy items that are not available physically and deal with restoring purchases. Online shop-
ping is not instant and may take time to obtain items purchased physically. Our proposed
system aims to provide a new meaning of shopping through which disabled people can
acquire the ability to have the shopping experience with comfort and ease.

Our approach proposes smart systems determined to facilitate obtaining items from
high shelves, reduce overcrowding at cashier lines, and have high reliability.

The remainder of the paper is organized as follows: Section 2 discusses the literature
review. Section 3 introduces the materials and methods. In Section 3.1, we present the sys-
tem overview. In Sections 3.3 and 3.5, we present our robotic arm control mechanisms. The
scanning and validation systems proposed are presented in Sections 3.4 and 3.6. We present
the testing results for each of the sub-systems in Section 4. Finally, the conclusions are
drawn in Section 5, and future improvements are proposed in Section 6.

2. Literature Review

Smart systems for shopping applications were recently targeted in many types of
research that provide potential solutions for different impediments that apply to ordinary
customers or those who require certain assistance. Those applications vary from smart
shopping carts to smart scanning systems for visually impaired customers, smart assistants’
software for TV shopping, or even for the analysis of customers’ patterns and behaviors
within stores [2,3]. The shopping cart developed in [4] aimed to provide customers with
an autonomous payment service by eliminating the need for customers to wait in check-
out queues or to manually search for and scan the barcodes of the items that they wish
to purchase. This was accomplished through an object detection system built to detect
and classify the different items added to the cart, seen by a camera module. Purchase
validation was mainly dependent on load cells equipment with a load amplifier to facilitate
the communication between the cells and the used microprocessor.

Table 1 shows the features presented by different approaches, including ours. The
approaches of [5,6] propose autonomously controlled robots to approach and select items.
The carts presented by [6–8] use RFID technology for self-checkout; CNN is used for item
detection inside the cart in [4]. From the point of view of the store, RFID technology
increases the store infrastructure needed in terms of purchasing and installing scanning
tags. Similarly, utilizing CNN for item detection would require a team specialized in
constant training of the network with the new data presented by new items and appearance
changes of products. The approach presented by [9] uses computer vision and the YOLO
network to detect the different behaviors of shopping, including no hand, empty hand and
holding item. This approach has neglected the option of holding multiple items, which,
from the store’s point of view, affects its reliability. The most common method for item
validation is performed using weight sensors. Our proposed approach aims to provide
the shopping experience with minimal requirements from the store, as using the YOLO
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model for barcode detection translates the process performed by a human cashier and is
supported by a sensor and vision-based anti-theft system to increase reliability.

Table 1. Feature table.

Approach Item
Accessibility Self-Checkout Anti-Theft Store

Infrastructure

Dan Belibov et al. [4] - CNN (Item
detection) Weight High

S. R. Subudhi et al. [7] - RFID - High

Raulcezar Alves et al. [5] Autonomous - - Low

Thomas Arciuolo et al. [6] Autonomous RFID - High

M. A. Sarwar et al. [9] - YOLO (Shopping
behavior) - Low

S. Mekruksavanich [8] - RFID Weight High

Ours Semi-
Autonomous

YOLO (Barcode
detection)

Weight,
SURF,

& Color
Low

Items detection was also used in other recent smart shopping systems, such as Caper
AI Checkout and Amazon Go. Caper is a shopping cart that utilizes an object detection
network to provide information on items detected by a camera module built in the cart.
Item validation is achieved through an additional layer of recognition through sensor
fusion and a weight sensing system. Caper cart can be considered an alternative for the
Amazon Go system, which was launched earlier with the concept of checkout-free stores.
Amazon Go is based only on a complicated object detection system that utilizes computer
vision, deep learning, and sensor fusion technology with the help of a network of cameras
and sensors installed within the store ceiling. This system not only allows the recognition
of the items, but it also tracks all items, whether they are added to the baskets or returned
to the shelves. It also tracks and distinguishes which user commits the purchasing or
returning action as long as the user is in the store [10]. This approach does not require any
additional validation system, but it is applied in relatively small grocery stores owned by
Amazon, and it is not easily applicable in other stores. Though Caper carts also require
training on the items provided in each store it is applied in, it still provides a manual
scanning feature that makes it usable without training.

Nevertheless, detecting grocery items can be problematic because it requires the de-
tection model to be updated with the continuously changing packaging of different items
in a store. One approach to overcome this issue was used in the system proposed in [2] for
visually impaired customers that we mentioned earlier, including samples in the training
set that are only taken in perfect lighting and ideal conditions. At the same time, all tests
are conducted on data gathered from videos taken of items in the stores. Thus, they are
subjected to different conditions of lighting and potential distortions and occlusions. Fol-
lowing this training approach would usually make it hard to optimize the model and result
in decreased accuracy to enhance the generalization of the detector. Powerful techniques
can reduce this gap between both training and testing sets, including pre-processing and
post-processing methods that benefit from the color, position, and texture information to
distinguish between the targeted items, as shown in the approach proposed in [11].

The design of the architecture of the feature extraction network in the YOLOv2 al-
gorithm should vary depending on the application and highly correlate with the model
performance. Applications with a limited number of output classes in which a detector
targets a certain pattern or shape can be implemented with small network architecture.
For instance, the architectures of two models developed in [12], used to detect defects in
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yarn-dyed fabric, were made of 24 layers for the first model and only 14 layers for the
second. The used architectures were YOLO9000 and Tiny-YOLO, respectively, and they
were compared to a third 30-layer one, called YOLO-VOC. The results showed superior
performance for the YOLO-VOC, compared to the first models. However, by perform-
ing an iterative optimization of the training options, including the number of iterations,
the activation function, and the learning rate, the average precision, recall, and IoU results
exceeded the YOLO-VOC results, reaching 92.62%, 90.56%, and 66.36%, respectively, for
the Tiny-YOLO architecture. The results were slightly better for YOLO9000. For more
complicated applications, such as for the detector developed in [13], large architectures
might be required when the features of the targeted objects are more complex and variable.
The authors in [14] used a 30-block architecture with 22 convolutional layers to detect and
distinguish between healthy and infected tomatoes. The authors increased the network’s
performance to achieve a mAP score of 0.91 by adjusting the learning rate during the
training process as a function of the average loss.

Gaussian mixture modeling (GMM) was implemented in [15] to detect moving objects.
The authors applied a new approach in which image blocking was used to construct the
GMM model of the background instead of using individual pixels. Although the accuracy
would be reduced, such a method with optimal parameters could decrease the processing
time required for constructing the background model. The authors then used a wavelet
de-noising method instead of median filtering, as the results obtained showed a preference
for the wavelet filter with a low threshold value. Furthermore, the paper introduced an
adaptive background technique in which the background changes at each stage to account
for the dynamic nature of the background. The results of the procedure used were better in
terms of running time and object detection.

Another approach was presented in [16], where GMM was applied and, to enhance
the results, it was accompanied by the Hole Filling algorithm. The procedure carried out
by the Hole Filling algorithm involves using a circle-like filter with a specified radius. The
filter then moves through the foreground mask resulting from the GMM and computes the
number of pixels detected as the foreground. If the number of pixels is below a specified
value, the whole region is assumed to be a part of the background. The parameters
specified in Hole Filling include the applied filter’s radius and threshold for the number of
foregrounds computed for the region to be taken as part of the foreground. The results of
the procedure showed high accuracy and Kappa statistics.

One more approach was introduced in [17], where the GMM method was thoroughly
investigated. The results showed significant distortion when the same initialized learning
rate was used to update the mean and variance of the Gaussian distributions. The reason
for distortion is that the pixels become saturated, which means that they neither become
the background nor the foreground. The variance is updated with a high learning rate and
a huge difference between the pixel values in the image. Thus, a semi-parametric model
presented by a sigmoid is introduced to control the updating of the variance. When there is
a slight change between the mean and the variance, a quasi-linear update is activated, and
a flattened update is implemented when there is a slight change. The approach showed
promising results for detecting the foreground when the lighting is changing.

3. Materials and Methods
3.1. System Overview

The proposed system includes one passive subsystem, a validation system, two active
systems in which manual arm control and auto-scanning modes are toggled, and a mobile
app for user feedback. In the idle state, the system is in manual control mode, where the
linear actuator and the arm gripper are controllable by the user once an item is picked up.
The auto scanning mode is enabled manually by the user; it locates the item in front of the
scanner base, starts the barcode detection and scanning process, then drops the item in a
non-congested section in the cart. Items scanned are registered in the system and validated,
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and the selected item and quantity are presented in the app. The system overview is shown
in Figure 1.

Figure 1. System overview.

The scanner base is vertically rotatable through a stepper motor installed on the cart
edge and connected to the base with a coupler. The base includes a camera used for the
deep learning–based barcode detection system. The base rotation allows the detection of
barcodes from the lower side of items when the actuator is still unpacked.

If no barcodes are detected until the actuator is packed, auto scanning starts by placing
the item near the scanner base, not too close so that the entire item is in the camera’s field of
view, and not too far so that the camera can detect the barcode. The gripper starts rotating
while a YOLO detection pipeline is running, and the center of the ROI with the highest
confidence score is used to align the barcode with the scanner in a feedback PID control
loop. The visual difference, in pixels, between the detected centroid and the scanner sensor,
mapped to the frame in pixels, is used in the control loop to determine the following
motion input of the gripper in the x-axis and the y-axis. Scanning the item and registering
its barcode ends the loop and allows it to be placed in the cart. Manual scanning is possible
if the timeout duration is reached without barcode registration.

Accordingly, the visual difference, in pixels, between the detected centroid and the
scanner sensor, mapped to the frame in pixels, is used in the control loop to determine
the following motion input of the gripper in the x-axis and the y-axis. Scanning the item
and registering its barcode ends the loop and allows it to be placed in the cart. Manual
scanning is possible if the timeout duration is reached without barcode registration.

Finally, the validation system is used to check if the item inserted was scanned or not.
The system uses a camera with a view of the items inside the cart and load cells mounted
at the base to detect the insertion of new items. The items are further checked to be the
same as those scanned, using matched SURF features and weight comparisons. The actual
weights and features are stored in the database and accessed by the system.
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3.2. Main Algorithms Used
3.2.1. YOLOv2—Object Detection

One of the important networks used in our proposed system is YOLOv2 and TinyYolo
for object detection. While the gripper starts rotating to detect a barcode placed on an object,
a single-stage real-time object detection pipeline, You Only Look Once (YOLO), is running.
The object detection process, depicted in Figure 2, includes locating and classifying certain
objects on an image. The input image is first divided into an S × S grid of cells, each of
which is responsible for detecting objects falling in the grid, and each grid returns the
bounding box information and the probability belonging to a certain classification.

Figure 2. Yolo pipeline.

Each bounding box (B) has five components: (x, y, w, h, confidence). The x, y coordi-
nates represent the center of the box relative to the bounds of the grid cell, and w, h are
predicted, relative to the image size. These coordinates are then normalized to become
between 0 and 1. The confidence prediction, shown in Equation (1), is represented by the
IOU between the prediction box and any ground truth boxes. These confidence scores
reflect how confident the model is that the box contains an object and also how accurate it
thinks the box is that it predicts.

Pr(Object) ∗ IOU(pred, truth) (1)

where Pr(Object) represents the probability that the bounding box contains the object.
Finally, the predictions are encoded as an S× S× (B× 5 + C) tensor, where the image
is divided into an S× S grid and for each grid, the cell predicts B bounding boxes, the
confidence for those boxes, and the C class probabilities.

The loss function, described in Equation (2), is composed of classification loss, localiza-
tion loss and confidence loss. Unlike other algorithms, this approach learns a generalizable
representation of the objects and makes accurate predictions with a single neural evalua-
tion. The algorithm thresholds the predictions and performs non-maximum suppression to
remove duplicates and outputs bounding boxes that define the sections with objects [18].
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2 +
S2

∑
i=0

1obj
i ∑

c∈classes
(pi(c)− p̂i(c))2

(2)

In our proposed system, we use YOLOv2 along with TinyYOLO feature extraction
in the object detection pipeline, due to its advantages compared to other state-of-the-
art detection algorithms. The YOLO algorithm has the advantage of being capable of
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recognizing and locating up to 49 objects in a single image. In terms of performance and
speed, the YOLO algorithm is able to accurately detect objects in real time, making it
suitable for our use case.

3.2.2. GMM—Background Subtraction

During the auto-scanning process, the robotic arm picks up the item, scans it, and adds
it to the cart. The existence of a new item in the cart is detected by GMM and other
algorithms applied to the scene of the cart, before and after adding the item.

Background subtraction is a technique for detecting all moving objects (foreground)
in a video stream by creating a background model, which is a representation of the scene.
This background model is then compared to the input frame, and any significant difference
in an image region from the background model indicate the presence of a moving item.
Multiple algorithms have been proposed for background subtraction, such as Gaussian
mixture model (GMM) and the kernel density estimator (KDE), over the years [19]. In GMM,
each pixel value is modeled as a mixture of Gaussians. A pixel from a new image is
considered to be a background pixel if its new value is well described by its background
density function. Otherwise, the pixel is classified as foreground. The algorithm starts by
initializing tk number of distributions for every pixel location in a frame to model a dynamic
background that can withhold enough data about the structure of the background. For a
pixel to belong to one of the distributions, it should satisfy the condition in Equation (3),
where Xt is the pixel value at frame t, µk,t and σk,t is the mean and standard deviation
of distribution k, and factor Kp is selected to be 2.5. If the condition is satisfied for a
distribution k, the parameters of the distribution are updated, using (Equations (4)–(6)).
Where α is the learning rate, which 1/α corresponds to the speed at which the model
parameters are updated with a value of 0.005, ρ is computed using Equation (7); (Mk,t)
is 1 when the condition is satisfied and 0 otherwise. After processing each frame of t,
the distributions of each pixel are sorted by the ratio of ω

σ . If none of the distributions
have satisfied the condition, the lowest distribution in the sorted list is replaced by a new
distribution initialized with the same parameters as before.

||Xt − µk,t|| ≤ Kp × σk,t (3)

ωk,t = (1− α)ωk,t−1 + α(Mk,t) (4)

µk,t = (1− ρ)µk,t−1 + ρ(Xt) (5)

σ2
k,t = (1− ρ)σ2

k,t−1 + ρ(Xt − µt)
2 (6)

ρ = αη(Xt|µk, σk) (7)

After all of the training frames have been processed, the background model is built
using the smallest number b of distributions that will fulfill the requirement stated in
Equation (8). T describes how dynamic the model can be. After obtaining the background
model, background subtraction is carried out with the successive upcoming frames to
obtain the foreground segment. As the process progresses with foreground detection,
the model is updated to reflect the changing structure of the background, resulting in a
reliable approach for detecting moving objects.

B = argminb(
b

∑
k=1

ωk > T) (8)

3.3. Robotic Arm: Manual Control

The robotic arm used works on 3-axis with specifications as shown in Figure 3. The for-
ward axis is the servo of the gripper, which rotates at 480 degrees per sec to 180 degrees
in both directions at a load of 250 g. For experimental purposes, this servo is set at −180
degrees, and the items used for testing are lower than 250 g in weight.
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Figure 3. Robotic arm specifications.

We use a gamepad to control the robotic arm, as shown in Figure 4. We require
receiving 16 different inputs, indicating only the buttons and sticks needed to control the
control system. All of the variables have ’0 ’ in their idle state; the values when buttons are
pressed are either ’1 ’ or ’−1 ’ depending on the type and location of the buttons. The two
joysticks have two different inputs for the x-axis and the y-axis, and their values range
from −32,767 to 32,767. The joysticks have a third value when pressed. Table 2 shows the
activation values and the associated command for every button.

Figure 4. Gamepad.

Table 2. Description of gamepad’s buttons

Button/Button Combinations Activation Value Associated Command

BTN_SOUTH 1 Suction cup ON\OFF
BTN_EAST 1 Start the scanning

BTN_NORTH 1 Emergency button
BTN_WEST 1 Air pump ON\OFF
ABS_HAT0Y −1 End effector up
ABS_HAT0Y 1 End effector down
ABS_HAT0X −1 End effector rotates clockwise
ABS_HAT0X 1 End effector rotates anti-clockwise

ABS_RX >32,000 Linear actuator forward
ABS_RX <−32,000 Linear actuator down
ABS_RY >32,000 Linear actuator to the left
ABS_RY <−32,000 Linear actuator to the right

BTN_TR (hold) + ABS_RX 1 + (>32,000) Linear actuator up
BTN_TR (hold) + ABS_RX 1 + (<−32,000) Linear actuator down
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A linear actuator is a type of actuator that generates linear motion out from the rotary
motion of a DC motor. The mechanism behind this conversion of motion is simple and
can be done mechanically through a screw, cam, or wheel and axle actuators. The linear
actuator used in this project is screw-based. The main components of this actuator are a
DC motor, screw, and a shaft; the screw is mounted to the motor’s rotor, and the shaft
moves along the screw as it turns. The shaft is a nut on the screw. Controlling the direction
of the DC motor controls the course of the movement of the shaft, either up or down.
In our project, the linear actuator is the lifting mechanism we used to add extra height to
the robotic arm and enable it to reach the high shelves. The linear actuator is controlled
through Arduino Uno connected to our computing server. The user can choose to go up
or down through the controller; the signal is then read by the Python code and sent to
our computing server to operate the linear actuator accordingly. The schematic of the
connection of the linear actuator to the laptop is shown in Figure 5. The linear actuator,
used in the experiment, has a speed of 50 mm/s at no load with a maximum reach of
500 mm. The robotic arm weighs 500 g, and the item is expected to be maximum of 250 g,
which, in total, the linear actuator is approximated to carry 750 g; it is expected to take
around 12 s to reach the maximum height.

Figure 5. Schematic of the linear actuator circuit.

3.4. Scanning System

The main components of the auto-scanning functionality are the barcode detection
pipeline and the scanner hardware. The auto-scan mode is activated manually when
the computing server reads the corresponding command triggered by the user input
from the controller. To implement YOLOv2 as the backbone for the barcode detection
pipeline, we developed multiple scripts for dataset exporting, data processing, anchor-
boxes estimation, model training, model evaluation, and final execution.

3.4.1. Data Post Processing

Before starting the detector optimization, the training data size is expanded to increase
the accuracy as more resources are available for the neural network optimizer in the
detector. This is achieved through data augmentation techniques that do not require more
samples. Instead, linear and non-linear transformations methods are applied to the images
in the dataset to distort some of the visual information of the image while preserving its
structure. The data augmentation process not only provides additional samples, but the
variance it adds to the dataset helps in decreasing overfitting [20].
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Different types of transformation can be applied to augment the data, including image
rotation, shearing, affine transformation, and multiple color transformations, such as con-
trast manipulation, blurring, and histogram equalization [21]. We had some considerations
to take into account before selecting proper transformation. First, we recorded the raw
data videos for barcodes at different pitch and yaw angles, depth, and positions. Thus,
performing image projection or displacement cannot increase the variance of the data. Ad-
ditionally, we avoided texture transformation since distorting the barcode strips can badly
affect the system performance. Instead, we only used reflection and contrast mapping
across different color channels. Since bounding boxes are assigned earlier, the bounding
boxes are displaced after reflection. Bounding boxes correction is applied as follows:

• Define a bounding box as B = [b1, b2, b3, b4] = [x, y, width, height] for an image with
m rows and n columns.

• For reflection over the x-axis, the following holds:

b2,new = b2 − 2(b2 −
m
2
)− b4 (9)

• For reflection over the y-axis, the following holds:

b1,new = b1 − 2(b1 −
n
2
)− b3 (10)

Meanwhile, random color transformation is applied for each original image, image
reflected on y, and image reflected on x as follows:

• An image is defined as I = [R, G, B] for the RGB color layers.
• A random channel is selected each time. Supposing that R is selected, then for each

pixel xC in a channel C, the following holds:

xR =

{
0.15, 0 ≤ xR ≤ 0.15
xR, 0.15 < xR ≤ 1.0

xG,B =

{
0.25, 0 ≤ xG,B ≤ 0.25
xG,B, 0.25 < xG,B ≤ 1.0

(11)

The augmentation process results in increasing the dataset six times. For each sample,
the transformations shown in Figure 6 are applied. The total size of the final dataset
is 31,500 samples. No additional transformations are applied to avoid redundancy or
excessively increasing the training time. The optimized model required about 40 h to finish
12 epochs over the complete dataset, using a GTX 1060 GPU.

Figure 6. Reflections and their color transformations for one sample.
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3.4.2. Design and Optimization of the Barcode Detector

The performance of the detection model is highly dependent on several hyperparame-
ters that require optimization during the training process; thus, training multiple models
and analyzing their performance is essential. Of course, performing brute-force attack
testing for a large set of hyperparameters is unpractical, as each entire training run requires
a lot of time. Instead, we tested each parameter for different values within an exponentially
increasing range, and the testing was applied for only a small portion of the data. As
the process is repeated, the possibilities for the parameters decrease; we then performed
full training runs on a small set of parameters. The final selected parameters are not the
absolute best solution. Yet, we compensated the optimization imperfection by adding
more training data until a satisfying mean average precision (mAP) rate was achieved.
The hyperparameters included the dropout factor, number of epochs, learning rate α,
regularization term, anchor boxes, and the structure of the feature extraction network.

The anchor boxes estimate the ROIs in the processed image; then, the YOLO network
can classify those regions. Anchors are used as an alternative for scanning each possible
box in the image by arranging tiled sets of anchors in an S× S grid as shown in Figure 7.
Instead of detecting the ROI directly, the network predicts the IoU ratio between the anchor
and the object, the offset of the anchor from the object, and other parameters to refine the
anchors as bounding boxes around the objects of interest. The anchors are set in a grid in
the image, usually a 13× 13 grid.

Figure 7. Two anchor boxes tiled in a 4 × 4 grid.

The number of required anchors is one of the parameters that we optimized between
4, 5, and 6. The size of each anchor is optimized using a built-in function that requires the
labeled dataset. This is because the shape of the anchors depends on the potential ratios of
the objects of interest; thus, it is different for each dataset.

Another hyperparameter is the selection of the feature extraction network. The net-
work layers are extracted from a pre-trained network while freezing their trainable parame-
ters as a transfer learning method. Freezing the weights is achieved by setting the learning
rate for each targeted layer to zero. This is applied to all or some of the convolutional
layers without including the fully connected layer. Adding more convolutional layers
increases the complexity and the computational cost of the detector but improves the mAP.
Sometimes, different learning rates are assigned to the layers as the feature extraction
ones are not completely frozen but are allowed to adapt by setting their α to a small value
compared to the new YOLO layers as proposed in [22]. We tried different small non-trained
layers and known pre-trained layers for feature extraction, including VGG19, Darknet19,
and TinyYOLO. The comparison between the used layers is shown in Figures 8–10.
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Figure 8. YOLOv2 with TinyYOLO feature extraction.

Figure 9. YOLOv2 with VGG19 feature extraction.
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Figure 10. YOLOv2 with DarkNet feature extraction.

The selection of a good optimizer is also important. The optimizer is the function
used to update the weights of the unfrozen CNN filters and the other YOLO trainable
parameters by minimizing their cost or loss function. The loss function f (θ) measures how
good the detector is in predicting the class, or the value in the case of regression, of the
given samples based on the difference between the detector score and the ground truth
labels. Since the prediction is calculated as a function of θ, which is the trainable weights
w and their biases, the θ matrix updates every iteration based on the calculated loss of a
mini-batch of sample images per iteration i. We used Adam optimizer, which is proposed
in [23]. The updating function is based on the standard gradient descent (SGD) shown in
(12), where the new weights are equal to the old weights minus the loss matrix.

θi+1 = θi − α f (θi) (12)

The difference between SGD and stochastic SGD is that in standard SGD, the function
fθ is calculated over the entire dataset. In contrast, in stochastic SGD, it is calculated over
the mini-batches, which are randomly picked [24]. A momentum term is added (12) as
in (13):

θi+1 = θi − α f (θi) + γ∆θi−1 (13)

which accelerates the optimization process by making the update depending not only on
the loss function but also on the change in weights during the previous update, where
∆θi−1 = θi − θi−1. This causes the optimizer to step a large value in the next iteration
when that ∆θi is large and small steps otherwise [25]. The Adam optimizer enhances the
efficiency of this process with an adaptive momentum term calculated as follows:

• Define an exponential decay rate β1 and a squared exponential decay rate β2. {B1, B2} ∈
(0, 1] but are usually set between 0.9 and 1 for B1, and B2 is usually set to 0.9, 0.99,
or 0.999.

• Update first momentum estimate m as follows:

mi = β1mi−1 + (1− β1) fθi

• Calculate the second momentum estimate as follows:

vi = β2vi−1 + (1− β2)( fθi )
2
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• Calculate the corrected first and second momentum estimates as follows:

m̂i =
mi

(1− β2
1)

v̂i =
vi

(1− β2
2)

• Update the weights as follows:

θi+1 = θi −
αm̂i√
v̂i + ε

where ε = 10−8

A regularization factor λ is added to the function f (θ) as in (14) to penalize the loss as
a way of decreasing data overfitting.

fR(θ) = f (θ) +
1
2

λwTw (14)

where λ is the regularization term, and w is the trainable weights. To sum up, we had the
following hyperparameters to optimize.

• Number of anchor boxes: We tried different values less than 10, mainly 4, 5, 6.
• Network structure: We tested three different feature extraction layers, which are TinyY-

OLO, VGG19, and DarkNet19.
• Initial leaning rate α: We tried different values ranging exponentially from 0.1 to 0.001.
• Learning drop factor Dα and learning drop period Tα: We used them to decrease the

learning rate by a factor of Dα ∈ (0, 1) each Tα iteration.
• Gradient decay factor B1 and squared gradient decay factor B2.
• Regularization term λ: We tried different values from 0.1 to 0.00001.

3.5. Robotic Arm: Automatic Control

The trained barcode detector model guides the robotic arm while in auto mode to
rotate the item in front of the camera installed near the scanner until the barcode is found.
Once detected, the rotation is stopped, and the arm gripper is guided with a PID controller
in the horizontal and vertical axes while moving slowly toward the scanner. This is
achieved by running the PID code, where the required thrust in the x-axis and y-axis is
calculated; then, the results are written continuously to a text file that can be accessed
by the Python code controlling the arm at the same time. This is achieved through the
following steps:

1. A camera is used to stream frames to the system once the robotic arm’s auto mode
is activated.

2. Kp, Ki, and Kd parameters are initialized. These represent the proportional control,
derivative control, and integral control, respectively. The PID controller response
for each parameter is calculated as shown in (15)–(17) for an input signal SIN(t) and
output SOUT(t).

SOUT(t) = KpSIN(t) (15)

SOUT(t) = Ki

∫ t

0
SIN(τ)dτ (16)

SOUT(t) = Kd
d
dt

SIN(t) (17)

3. We use the three parameters to implement the controller block as shown in Figure 11
for the discrete signal per each frame in the camera stream sequence.

4. The controller is used in the feedback loop shown in Figure 12. We want to have the
center of the barcode be aligned with the scanner. The actual location of the scanner
with respect to the center of the camera is mapped into the camera frame, ignoring
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the difference in depth between the sensor of the camera and the sensor of the scanner
as shown in Figure 13.
We set the system input to zero since we want the barcode centroid to align with the
center of the scanner. However, we allow a suppression threshold for the difference
between both, so if the distance signal in the figure is less than 20 pixels, it is set to zero.
This is because the detection system does not return perfect feedback, as the bounding
box around the barcode keeps changing slightly, due to the small fluctuations in
the scene.

5. The closed-loop with the PID is applied twice—once for each axis—so the distance is
calculated in only one dimension.

Figure 11. PID controller diagram.

Figure 12. The closed-loop PID system.

Figure 13. Mapping the centers of the camera and scanner sensors.

3.6. Validation

The validation system is composed of computer vision–based and load cells–based
subsystems to detect items and validate them, using weight and features. Firstly, the ex-
istence of a new item in the cart is detected by GMM and Kalman filter applied to the
scene of the cart before and after insertion of the item. The item is detected using a camera
mounted on the cart, and the weight change is sensed by the load cells mounted at the
cart’s base. SURF point features of the item are then extracted. The features together with
the weight are then compared to those of the item with the barcode, which is lastly scanned
and obtained from the database to measure the item’s validity. The feature points extracted
by SURF are mainly dependent on patterns and structures, and for this reason, the hue
value of the position of every feature point from the HSI color space is used to add color
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matching to the system. The system’s output determines whether or not the item detected
is the same as the item scanned. It is worth mentioning that the system does not move
forward with the validation stage if there is a detection but no recent barcode is scanned.

3.6.1. Item Detection and Tracking: GMM and Kalman Filter

Items detection in the cart is implemented by eliminating the image’s background
segment, leaving only the foreground segment. The main obstacle of the process is deciding
whether the pixels in the image belong to the foreground or background. Segmentation
by standard background subtraction using a static background, such as the first frame,
would be subject to any insignificant changes. Regarding the problem at hand, the view
inside of the cart keeps changing with every new item introduced. Thus, it is crucial to
have an updated background with every new variation in the scene of the cart. The best
approach for executing the process is to model the background by learning previous
information to be adaptive to different forms that the background can have over a specific
time. The foreground detection algorithm utilized in this project is based on Gaussian
mixture modeling (GMM) [26]. Figure 14 shows the process of item detection and tracking.
The method assumes that the background would have the strongest statistical Gaussian
distributions compared to the foreground. Relating this to our case, a new item inserted into
the scene forms new pixel values that are statistically weak in comparison to the previous
values and thus, are detected as the foreground. These new pixel values then increase in
strength over time until they become part of the background. There are three distributions,
k, initialized in this implementation, each with a mean µ of the same value as the pixel of the
first frame, variance σ2 of 900, and a normalized weight ω of 0.33. Every distribution in each
pixel location of the first frame is updated through t number of training frames, which for
this project, is chosen to be 40. After processing all of the training frames, the background
model is constructed, using minimum number b of distributions that would be efficient to
satisfy the condition shown in (8), where threshold T is selected to be 0.7. As the process
moves forward with foreground detection, the model is updated with the background’s
changing structure, leading to a robust technique for moving-objects detection.

Kalman filter is used for tracking moving items once they are inserted inside the cart
to the rest point. The Kalman filter consists of two updating operations dependent on each
other: one is prediction, and the other is correction. The equations used for prediction are
Equations (18) and (19), where x∧−k is the state—in our implementation, it is considered
the location and initialized by the centroid of the object detected in the current frame. A
is the state transition set in the form of a block diagonal matrix of identical submatrices
of [1 1; 0 1], B is the control model and given a value of 0, P is the state estimation error
covariance and is initialized by [200, 50], and Q is the process noise covariance, set at
[100, 25]. The equations used for correction are Equations (20)–(22) where K is the Kalman
gain, H is the measurement model set in the form same as A but with submatrices of [1 0],
and z is the correct location obtained from the centroid of the object in the next frame.

x∧−k = Ax∧k−1 + Buk (18)

P−k = APk−1 AT + Q (19)

Kk = P−k HT(HP−k HT + R)−1 (20)

x∧k = x∧−k + Kk(zk − Hx∧−k ) (21)

Pk = (1− Kk H)P−k (22)
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As observed, the prediction and correction formulas depend on specific criteria that
are impossible to be met most of the time, which would cause multiple tracks for the same
item. For this reason, the track is assumed to be reliable only if it has existed for 30 frames
or more, which is about 1 s of detection at 30 FPS. The system then waits for another
10 frames after any detection of the item being tracked. This concludes the detection stage,
where the item is stationary inside the cart.

Figure 14. Foreground mask and tracking of the detected item.

3.6.2. Item Validation: SURF, HSI and Load-Cells

The validation of the item is performed, using SURF features matching combined
with the value of hue obtained from the HSI color space for appearance similarities and
load cells for matching weight. The database added to the system includes the weight, the
feature points and the hue value of those points. Figure 15 shows a sample of the SURF
features extracted from images taken from different sides of one item and stored in the
database. Feature points of the region detected of the item are extracted and matched with
those of the item that has been scanned, obtained from the database. Finally, the item
inserted and the item scanned are considered the same if they have 20 or more matched
features. Figures 16 and 17 show the process of extracting features and matching them with
the features of the item stored in the database. Figures 18 and 19 show the same process
but with a different item. It can be observed that the number of the matched features is
very much lower than the one of the similar items.

Figure 15. Sample of the SURF features extracted and stored in the database of an item.
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Figure 16. SURF features extracted of an item in cart.

Figure 17. The feature matching process of similar items.

Figure 18. SURF features extraction of another item.
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Figure 19. Feature matching process of different items.

Figure 20 shows the Wheatstone bridge schematic of the load cells circuit. The signals
obtained from the sensors are amplified and sent to the Arduino microcontroller. Each load
cell is rated at 1 kg, adding up to a total of 4 kg capacity. A new item is assumed to be
detected if the weight difference is more than 20 g, considering no item can have a lower
weight. The weight of the item in the cart is compared to the one scanned with an accuracy
of 5 g. Figure 21 illustrates a sample result of a correctly validated item.

Figure 20. Schematic of the load-cells circuit.

Figure 21. Sample result of correctly validated item.
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4. Results

Figure 22 shows the different stages of the proposed approach using a prototype.

Figure 22. Stages of the proposed approach using prototype.
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In this section, we present the testing results for each of the sub-systems. We tested
our robotic arm in both the manual control mode and the automatic mode. Our testing
results show that the communication between the gamepad and the microcontroller has
a delay of around 10 ms. The execution of the response to that event takes about 45 ms,
resulting in a total time of 55 ms, which is acceptable for its application.

The system takes about 5 to 20 s to obtain an item. The extreme delay occurs, due to
the linear actuator speed. Thus, the time consumed highly depends on the height of the
location of the item. The system then takes 2 s for scanning the item and 1 s for validation.
The execution time of the whole process is presented in Figure 23.

Figure 23. Execution time of the full process.

The precision–recall curve is shown in Figures 24 and 25 for the two VGG19 networks
with different regularization terms. As shown, the model with less regularization was less
accurate by 2.4, compared to the first one. We conducted an earlier, similar test, but on
a small random portion of the training set, and the network showed better performance
than the current results. This is because decreasing the regularization term helps the model
learn on the training data; however, overfitting occurs when it is too low, and testing on
the same set provides misleading results. Training on high resulted in poor performance
in earlier tests due to underfitting, as the data could not be learned sufficiently from the
training set.

Figure 24. Recall–precision curve for VGG19 networks trained for 12 epochs. IoU threshold = 0.1.
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Figure 25. Recall–precision curve for VGG19 networks trained for 12 epochs. IoU threshold = 0.5.

By increasing the threshold as in Figure 25, we can see that the mAP score decreased
from 94.7% to 68.6%, as many bounding boxes with low confidence scores are ignored,
even if they represent correct barcode locations. However, we can tolerate a low score
in our application since the scanner can scan barcodes without accurate localization of
its center. Approximation of the barcode location is sufficient in this case, as shown in
Figure 26 for low and high confidence scores, respectively.

Figure 26. Detection of clear barcodes with high confidence score and unclear one with a lower
confidence score.

We can see in Figure 27 that the average precision for the VGG19 network is better by
3% than the same network trained for a longer time. This can be attributed to overfitting
after training for too long; however, as depicted in Figure 28, an increase in the IoU
threshold tolerance increases the precision score for the network trained for 12 epochs.
During the training process, the loss starts to converge after the second epoch, so we can
say that training for a long time after conversion is not favorable, especially when the score
at a lesser threshold tolerance is better for the less-trained network.

By comparing the different network structures, we can see that VGG19 clearly has the
advantage; however, it was the slowest. The pipeline speed comparison for all networks is
shown in Table 3.
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Figure 27. Recall–precision curve for VGG19, DarkNet, and TinyYOLO networks trained for 4 epochs.
IoU threshold = 0.1.

Figure 28. Recall–precision curve for VGG19, DarkNet, and TinyYOLO networks trained for 4 epochs.
IoU threshold = 0.5.

Table 3. Comparing the average FPS of the trained networks.

Network VGG19 DarkNet19 TinyYOLO

Average FPS 6.2 11 27

The execution of the system’s components, including YOLOv2 and GMM, is done
using the “Nividia GEFORCE GTX 1050 Ti” processor, which works at 27–30 frames per
sec with 75 watts. On the other hand, the testing done on the FPGA “Jetson AGX Xavier”
showed that it works at 24–30 frames per sec with 30 watts. Although the execution time
of YOLOv2, being the heaviest component of the system, on FPGA is expected to be longer,
the efficiency of the power consumption is much better when operating in real-time is
maintained. These results confirm that the system can be integrated in the future to being
operated using FPGA.

The DarkNet network is dismissed as a choice since a high drop in the mAP score
was noticed in exchange for a small FPS improvement. On the other hand, the TinyYOLO
frame rate is considerably tradeable with the mAP drop since more effort can be added to
the training set to improve the performance, while having a high-speed detection pipeline.
Additionally, the TinyYOLO network is still usable at the IoU threshold = 0.1 because we
could still achieve 100% recall at a low precision score, which means that the barcodes
could still be detected but with some lagging in the system due to sudden false detections.
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During visualized testing, the TinyYOLO network was able to focus the bounding box on
the barcode most of the time. When no barcode existed, the bounding box was shown
on random objects with a confidence score of 0.2. So, we solved this problem by setting
the IoU threshold to 0.3 at the cost of missing the barcode sometimes. However, the more
suitable network for our application is the VGG19; it can be used with slow arm movement,
due to the low FPS. The VGG19 mAP is high, though the same optimization properties
were used for all networks because it was pre-trained on a huge dataset with 1000 different
categories. Hence, the feature extraction filters were optimized to extract the features of
most objects. Meanwhile, the TinyYOLO network was trained on only 31,500 from scratch
and only one object.

The results of the validation system are shown in Figure 29. The correctly validated
items are labeled by the brand name and the real weight of the item. The items with only a
different weight than the ones scanned are labeled “Wrong Weight”, and the items with
low matched features are labeled “Invalid Item”. Finally, the items that are detected with
no recent scanning are labeled “Unscanned Items”. The system was successful in detecting
and validating items in different scenarios.

Figure 29. Results of the validation system.
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5. Discussion

In this paper, we propose a smart service robot for elderly and disabled people,
presented in multiple subsystems synchronized together. The system is implemented on a
shopping cart with a robotic arm equipped with a lifting mechanism to reach high shelves.
Then, a scanner with a camera is used to perform automatic scanning based on barcode
detection. A validation system with a camera and load cells viewing the cart is used to
validate scanned items and alert of non-scanned items based on a computer vision pipeline.
The manual control system consists of a robotic arm, a linear actuator, and a controller that
controls both. The user grabs items from the shelves through this system, then initiates
the automated scanning system. The barcode recognition network is developed based on
YOLOv2 architecture trained over 31,500 augmented samples. Three feature extraction
layers are tested: pre-trained VGG19, pre-trained DarkNet19, and TinyYOLO network
trained from scratch. The results showed a maximum mAP of 92.4%, 86.4%, and 78.4%,
with a frame rate of 6.2, 11, and 27 FPS for each network architecture. A validation system
is implemented to increase the reliability and robustness of the system. GMM and Kalman
filter are used to detect newly inserted items in the cart. SURF features are combined with
the hue value of the HSI color space together with the weight value measured by the load
cells to validate that the new item is indeed the one has been scanned. The system shows
robustness in different scenarios, including detecting unscanned items, items of the same
appearance but different weight and items with the same weight but different appearance.
The system shows mechanical limitations with the lifting mechanism; the linear actuator
can take up to 20 s to lift the arm to the highest level, 500 mm, and bring it back.

6. Future Improvements and Limitations of the Present Work

The most important factor in the proposed solution that needs to be considered for
further research is the user’s control of the robotic arm, which may require training and
practice to become used to it. The natural language processing (NLP) technology has been
integrated into multiple approaches in terms of the utilization and control of robots, as
shown in [27]. NLP can help to eliminate repetitive scenarios, such as returning an item
from the cart to the shelf, by executing the recorded motion from the user’s feedback.
Figure 30 shows a brief flowchart of the NLP process.

Figure 30. Flowchart of the integration of NLP into our system.

Another area that requires further research is the mechanical aspect of the paper.
Our approach has suffered from the linear actuator, as the lifting mechanism operates at
low speed. There are multiple ways in which the linear actuator can perform at higher
speed, including supplying more power to a higher rated motor. On the other hand,
there are other approaches, including a mechanical scissor lift, which has a higher capacity
of weight with better stability, and a vertical slider, which can provide more robustness
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and control. Furthermore, the robotic arm is very limited in its work space. This leads to a
difficulty in creating a direct control system. This problem can be solved by using wider
range servos.

Last but not least, an image quality assessment system is required to detect and reduce
random interference from the environment, such as a change in illumination, vibration and
noises. A shadow detection and removal algorithm can prevent the wrong detection of
shadows as an item inside the cart.

Author Contributions: Funding acquisition, M.G., M.A. (Mohammad Alkhedher) and A.S.E.-B.;
investigation, M.G., M.Y., A.G. and G.E.B.; methodology, M.G., M.Y., A.G. and G.E.B.; project
administration, M.G., M.Y., M.A. (Marah Alhalabi), M.A. (Mohammad Alkhedher) and A.S.E.-
B.; Software, M.G., M.Y., A.G. and G.E.B.; supervision, M.G., M.Y., M.A. (Marah Alhalabi), M.A.
(Mohammad Alkhedher) and A.S.E.-B.; validation, M.G., M.Y., A.G. and G.E.B.; writing—original
draft, M.G., M.Y., A.G. and G.E.B.; writing—review and editing, M.G., M.Y., M.A. (Marah Alhalabi),
M.A. (Mohammad Alkhedher) and A.S.E.-B. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Office of Research and Sponsored Programs in Abu Dhabi
University with grant number 19300473.

Acknowledgments: The authors thank Abdalla Rashed, Saeed Darwish, and Tasnim Basmaji for
their roles in the implementation and testing.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Al Youm, E. Obstacles Faced by People of Determination. 2019. Available online: https://www.emaratalyoum.com/business/

local/2019-06-10-1.1221161 (accessed on 17 September 2021).
2. Winlock, T.; Christiansen, E.; Belongie, S. Toward real-time grocery detection for the visually impaired. In Proceedings of the

IEEE Computer Society Conference on Computer Vision and Pattern Recognition—Workshops, San Francisco, CA, USA, 13–18
June 2010.

3. Fleites, F.C.; Wang, H.; Chen, S.-C. Enhancing product detection with multicue optimization for tv shopping applications.
IEEE Trans. Emerg. Top. Comput. 2015, 3, 161–171. [CrossRef]

4. Belibov, D.; Tudose, D.S. Smart shopping cart. In Proceedings of the 18th RoEduNet Conference: Networking in Education and
Research (RoEduNet), Galat, i, Romania, 10–12 October 2019.

5. Alves, R.; Admas Linhares, B.; Souza, J.R. Autonomous Shopping Cart: A New Concept of Service Robot for Assisting Customers.
In Proceedings of the 2018 Latin American Robotic Symposium, 2018 Brazilian Symposium on Robotics (SBR) and 2018 Workshop
on Robotics in Education (WRE), Paraiba, Brazil, 6–10 November 2018.

6. Arciuolo, T.; Abuzneid, A. Simultaneously Shop, Bag, and Checkout (2SBC-Cart): A Smart Cart for Expedited Supermarket
Shopping. In Proceedings of the 2019 International Conference on Computational Science and Computational Intelligence (CSCI),
Las Vegas, NV, USA, 5–7 December 2019.

7. Subudhi, S.R.; Ponnalagu, R.N. An Intelligent Shopping Cart with Automatic Product Detection and Secure Payment System.
In Proceedings of the 2019 IEEE 16th India Council International Conference (INDICON), Rajkot, India, 13–15 December 2019.

8. Mekruksavanich, S. The Smart Shopping Basket Based on IoT Applications. In Proceedings of the 2019 IEEE 10th International
Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 18–20 October 2019.
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