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Featured Application: Industrial robot joint smooth movement via multiple positions with con-
strained velocities.

Abstract: As for industrial robots’ point-to-point joint motion planning with constrained velocity,
cubic polynomial planning has the problem of discontinuous acceleration; quintic polynomial
planning requires acceleration to be specified in advance, which will likely cause velocity to fluctuate
largely because appropriate acceleration assigned in advance is hardly acquired. Aiming at these
problems, a modified cubic Hermite interpolation for joint motion planning was proposed. In the
proposed methodology, knots of cubic Hermite interpolation need to be reconfigured according to
the initial knots. The formulas for how to build new knots were put forward after derivation. Using
the newly-built knots instead of initial knots for cubic Hermite interpolation, joint motion planning
was carried out. The purpose was that the joint planning not only satisfied the displacement and
velocity constraints at the initial knots but also guaranteed C2 continuity and less velocity fluctuation.
A study case was given to verify the rationality and effectiveness of the methodology. Compared
with the other two planning methods, it proved that the raised problems can be solved effectively
via the proposed methodology, which is beneficial to the working performance and service life of
industrial robots.

Keywords: industrial robot; point-to-point motion planning; velocity constraint; second-order
continuity; Hermite interpolation; knot reconfiguration

1. Introduction

Industrial robots are widely used in handling, painting, welding, assembly, packaging
and other fields. With the development of robot technology, industrial robots are gradually
applied to polishing, monitoring, automatic manufacture system and so on [1,2]. The
manipulator movements become more complex and need to satisfy higher working perfor-
mances. Therefore, trajectory planning of industrial robots has to meet higher requirements.
The most basic task of industrial robot motion planning is to meet the requirements for
end-effector displacement and velocity [3]. Moreover, favorable trajectory planning should
ensure smooth movements, fewer vibrations, impacts and mechanical wear so that it can
improve working performance and extend service life [4].

Motion planning of industrial robots can be divided into two types: one is in the
workspace for end-effector, the other is in joint space for joints. For motion planning in
the workspace, the inverse kinematics function needs to be solved repeatedly to calculate
angular displacements and angular velocities of joints, which requires a large amount
of calculation [5]. Furthermore, end-effector singularity possibly appears and will make
joints rotate incorrectly so that the end-effector cannot complete work successfully. For
motion planning in joint space, only a few inverse kinematics solutions are needed to
find out the angular displacements and angular velocities at several target points of joints.
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Therefore, motion planning in joint space can reduce inverse kinematics calculation largely
so that computation efficiency is improved, and also can avoid joints singularity and
redundancy [6]. As a result, motion planning in joint space is more suitable for the point-
to-point (PTP) motion of industrial robots.

The main methods of joint motion planning are reviewed below. Linear planning with
parabolic transition has the advantage that joint speed remains constant in the linear phase,
but sufficient transition time must be ensured, and angular acceleration is not continuous.
The widely used cubic polynomial planning has the advantages of simple principle and
less computation. However, when it is used to multiple points with constrained velocities,
the angular acceleration at the connection points is broken, which will lead to vibrations
and impacts and make the robot arm tremble. Quintic polynomial planning has continuous
angular acceleration. However, quintic polynomial interpolation requires specifying in
advance the angular acceleration value of the joint at each target point. If it is not preset
properly, the angular velocities will fluctuate back and forth, which is not conducive to joint
motion control. Frustratingly, it is difficult to give appropriate angular acceleration values in
advance [7]. In addition, quintic multinomial has a higher degree than cubic polynomial so
that velocities and accelerations change more intensely, and larger velocity and acceleration
peaks appear. B spline interpolation is also used in motion planning [8–10]. However, when
the cubic B-spline curve is used for multiple points with constrained velocities, acceleration
is not continuous at connecting points as well. Some researchers carried out lots of studies
about cubic B spline and realized G2 continuity at the connecting knots [11,12]. However, G2

continuity refers to curvature continuity, and continuity of second-order derivative C2 is not
fully achieved.

In order to solve the complicated joint planning with multiple points further, Xian-
grong Xu proposed a 3-5-3 polynomial splicing method [13]. This method allows to specify
angular velocity at the intermediate target points arbitrarily, and angular acceleration is
continuous. However, when there are more than 5 knots, angular acceleration at the target
knot needs to be given in advance for quintic polynomial. Because it is hard to assign
appropriate acceleration in advance, the method will also cause large angular velocity
fluctuation. Saeed B. Niku proposed a 4-3-4 polynomial splicing method [14], which guar-
antees C2 continuity at connection points. However, only at the beginning and the end
target points can velocities be specified. If angular velocities at the intermediate target
points are specified, angular acceleration will have broken points and be discontinuous.
P. A. Parikh et al. used seventh-order polynomials and ninth-order polynomials to carry
out joint planning [15]. The joint rotation trajectory was smooth enough in high order
and the joint velocity and acceleration were continuous. However, the computation of
high-order polynomial was large, the velocity and acceleration were easy to fluctuate, and
the peak values of acceleration and velocity were much higher.

In summary, for PTP joint motion planning via multiple points with constrained veloc-
ities, if planning with low-order functions is adopted, angular accelerations at intermediate
target points are discontinuous, which will bring additional impacts and vibrations. If
planning with high-order functions is adopted [16,17], the problem of acceleration dis-
continuity can be solved. However, it is necessary to give angular acceleration values at
the target points in advance. Since it is hard to give appropriate angular accelerations in
advance, angular velocities are likely to fluctuate largely, which is unfavorable to motion
control. Moreover, the higher order of planning function, the more intense change of
planning curves and the larger the peak value of velocity and acceleration. All these are
unfavorable for the steady operation of the robot arm. In view of the problems in the
plannings mentioned above, a modified Hermite interpolation is proposed in the paper.
In the proposed planning, velocities at knots can be specified at will and C2 continuity is
guaranteed. Moreover, there will be no drastic fluctuations in angular velocity since the
maximum order of the planning function is no more than three and acceleration preset is
not needed.
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2. Point-to-Point Joint Motion via Multiple Points with Constrained Velocities

The End-effector of the industrial robot is the final executive component performing
operations. The main types of end-effector motion are PTP (point to point) movement and CP
(continuous path) movement. The movement of the end-effector is the result of joint motion.
So there are corresponding relationships between end-effector movement and joint motion.

2.1. Point-to-Point Joint Motion

PTP (point to point) motion of the industrial robot is suitable for spot welding, handling,
loading and unloading, circuit board insertion and other operations. In PTP motion mode,
the end-effector moves from a start point to an end point. PTP motion only needs to specify
positions and orientations of end-effector at the start point and end point, but the trajectory
and orientations between the start point and end point are not specified or required.

When the end-effector moves in PTP mode, joints rotates normally in PTP mode as
well. As shown in Figure 1, take joint 1 as an example. When the end-effector wants to
move from start point Pa to end point Pb, joint 1, which is one of the six joints, needs to
rotate from the start point A to end point B. In general, other joints rotate similarly. Finally,
rotations of six joints work together to form the movement of the end-effector.

Figure 1. Point-to-Point movement.

There is a corresponding functional relationship between the position and orientation
of the end-effector and the angular displacement of each joint, as shown in formula (1).
There is also a corresponding functional relationship between the end-effector velocity and
the angular velocities of each joint, as shown in formula (2).

f (θi) = [x y z α β γ]T (1)

J ·ωi
T = [vx vy vz ωx ωy ωz]

T (2)

In formula (1), [x y z] and [α β γ] are position and orientation of end-effector, θi are
angular displacements of each joint. In formula (2), [vx vy vz] and [ωx ωy ωz] are linear
velocity and angular velocity of end-effector, ωi are angular velocities of each joint, and J is
the velocity Jacobian matrix. f (θi) and J vary in different robots. Formulas (1) and (2) are
called forward motion functions, by which the end-effector motion can be obtained from
joint motion.

According to the position, orientation and speed of the end-effector, angular displace-
ment and velocity of each joint can be obtained, which is called inverse kinematics, as
shown in formulas (3) and (4) below. The speeds of the end-effector at the start and end
points are zero in PTP movement so that angular velocities at the start and end points of
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each joint are also zero. As seen in Figure 1, the angular velocities of joint 1 at the start and
end points are all equal to zero, ωa = ωb = 0.

θi
T = f−1(θi) · [x y z α β γ]T (3)

ωi
T = J−1 · [vx vy vz ωx ωy ωz]

T (4)

On the basis of angular displacement and velocity constraints at the start point and
end point of each joint, motion plannings of each joint can be carried out and these joint
motion plannings are finally synthesized into the end-effector motion, as shown in Figure 2.

Figure 2. Relationship between PTP end-effector motion and PTP motion plannings of joints.

2.2. Point-to-Point Joint Motion via Multiple Points with Constrained Velocities

When there are multiple intermediate target points between the start and end points [18],
and the end-effector needs to pass through these intermediate points at specified speeds, we
briefly call it PTP motion with constrained speed. When the end-effector moves in speed-
constrained PTP mode, joints correspondingly perform velocity-constrained PTP rotation, and
both angular displacements and angular velocities at intermediate target points of joints must
be specified, so as to meet position, orientation and speed requirements of the end-effector at
the target points.

As shown in Figure 3, the end-effector moves from start point Pa to end point Pd. It
needs to pass through two intermediate target points Pb and Pc at specified speeds, and
joints should rotate accordingly. Taking joint 1 as an example, joint 1 correspondingly
rotates from the start point A to end point D, passing through the intermediate target points
B and C at constrained velocities. Therefore, joint 1 carries out PTP motion via multiple
points at constrained velocities. By solving the inverse kinematics function, all joints’
angular displacements and angular velocities at each target point can be obtained from the
positions, orientations and speeds of the end-effector, so that the rotation trajectory of joint
1 can be piecewise-planned, from point A to point B, from B to C, and from C to D. Other
joints can carry out similar rotation plannings. Finally, the movement of the end-effector is
synthesized by all joints’ rotations together.
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Figure 3. PTP motion with constrained velocities.

3. Joint Motion Planning Method

The most used joint planning methods are cubic polynomial and quintic polynomial.

3.1. Cubic Polynomial Planning

Polynomial interpolation is commonly used to interpolate between discrete points,
which is consistent with PTP motion characteristics of industrial robots, so it is often
used in motion planning of industrial robots. Among the polynomials, the cubic polyno-
mial is widely used in the PTP motion planning of industrial robots. Cubic polynomial
interpolation function is shown as below formula (5):

θ(t) = a0 + a1t + a2t2 + a3t3 (5)

where t is the time variable and a0, a1, a2 and a3 are four coefficients of the cubic polynomial,
which need to be found out according to the boundary constraints of angular displacement
and angular velocity at two adjacent target points.

Put the start time, the end time, the angular displacements and the angular velocities
at the two target points into formula (5) and its first derivative, respectively. After sorting,
Equation (6) for solving the coefficients can be obtained.

a0
a1
a2
a3

 =


1 t0 t2

0 t3
0

1 t1 t2
1 t3

1
0 1 2t0 3t2

0
0 1 2t1 3t2

1


−1

θ0
θ1
ω0
ω1

 (6)

where, t0 is the start time, and t1 is the end time. θ0 and ω0 are respectively angular
displacement and angular velocity at the first target point of a joint, and θ1 and ω1 are
respectively angular displacement and angular velocity at the next target point. θ0, θ1,
ω0, ω1 can be obtained through inverse kinematics. For general PTP motion, ω0 and ω1
are both zeros. For velocity-constrained PTP motion, ω0 and ω1 may not be zeros. After
finding out the coefficients, the cubic polynomial planning function can be obtained, which
will satisfy the boundary constraints of angular displacement and angular velocity at the
target points.

Because of simplicity, clarity and small computation, the cubic polynomial is widely
used in PTP joint motion planning. However, if a cubic polynomial is applied to PTP
motion planning with constrained velocity, angular acceleration is discontinuous at the
connecting points between every two adjacent planning segments, as shown in Figure 4c.
Broken points of acceleration will cause vibrations and impacts, which is disadvantageous
to the working performance and service life of the industrial robot.
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Figure 4. Velocity-constrained PTP motion planning by cubic polynomial interpolation: (a) Angular displacement planning;
(b) Angular velocity planning; (c) Angular acceleration planning.

3.2. Quintic Polynomial Planning

A quintic polynomial is also commonly used in the joint motion planning of industrial
robots [19,20]. Quintic polynomial planning can guarantee angular acceleration continu-
ity at the connection points between every two adjacent planning segments. A quintic
polynomial function is shown in formula (7) below.

θ(t) = a0 + a1t + a2t2 + a3t3 + a4t4 + a5t5 (7)

where t is the time variable. a0, a1, a2, a3, a4 and a5 are six coefficients of the cubic polynomial,
which need to be solved according to the boundary constraints of angular displacement,
angular velocity and angular acceleration at two adjacent target points.

Similarly, put the start time, the end time, the angular displacements, the velocities,
and the preset accelerations at two target points into formula (7) and its first and sec-
ond derivatives, respectively. After sorting, Equation (8) for solving the coefficients can
be obtained. 

a0
a1
a2
a3
a4
a5

 =



1 t0 t2
0 t3

0 t4
0 t5

0
1 t1 t2

1 t3
1 t4

1 t5
1

0 1 2t0 3t2
0 4t3

0 5t4
0

0 1 2t1 3t2
1 4t3

1 5t4
1

0 0 2 6t0 12t2
0 20t3

0
0 0 2 6t1 12t2

1 20t3
1



−1

θ0
θ1
ω0
ω1
ε0
ε1

 (8)

where, t0, t1, θ0, θ1, ω0, ω1 have the same physical meanings as in formula (6) and εa and
ε1 are the angular accelerations at the target points, which need to be given arbitrarily
in advance. After finding out the coefficients, the quintic polynomial planning function
can be obtained. As can be seen from Equation (8), as long as the angular accelerations
at the connection point of two adjacent plannings are set equal, the angular acceleration
continuity is consequent.

When a quintic polynomial is used for joint motion planning, it is required to specify
in advance the angular acceleration values at target points. If the angular acceleration value
is not preset appropriately, the angular velocity will fluctuate greatly. As shown in Figure 5,
due to the improper preset of angular acceleration at points A and B, the angular velocity
planning curve ω1(t)′ and curve ω1(t)′′ between points A and B fluctuate largely. The joint
motor needs to accelerate and decelerate back and forth, which is disadvantageous to the
control of joint angular velocity.
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Figure 5. Angular velocity fluctuation in quintic polynomial planning.

4. Joint Motion Planning Based on Modified Hermite Interpolation
4.1. Function Transformation between Different Intervals

Since the variable interval of cubic Hermite interpolation is [0,1], and the variable
interval of industrial robot motion planning is generally not [0,1], function transforma-
tion between different intervals is needed. There is an arbitrary function expressed as
y = f (u), u ∈ [u0, u1]. Given that the function is symbolically independent, this function
can also be expressed as y = f (x), x ∈ [x0, x1], x0 = u0, x1 = u1. When the interval [x0,
x1] is not equal to the interval [u0, u1], that is to say, the variable interval changes, the
function expression should be transformed into the following formulas (9) and (10) in order
to keep the function values of y unchanged.

u = u0 +
(u1 − u0)(x− x0)

(x1 − x0)
, u ∈ [u0, u1], x ∈ [x0, x1] (9)

y = f (u) = f
[

u0 + (u1 − u0)
x− x0

x1 − x0

]
= f (x), x ∈ [x0, x1] (10)

When function interval is changed from [u0, u1] to [x0, x1], the transformed function
y = f (x) can keep the values of the initial function y = f (u) unchanged, but the first-order
and second-order derivatives of the function y with respect to u are no longer equal to that
of the function y with respect to x, as shown in Equations (11) and (12).

dy
du

=
dy
dx
· dx

du
=

dy
dx
· 1

du
dx ·

=
dy
dx
· x1 − x0

u1 − u0
(11)

d2y
du2 =

d( dy
du )

du
=

d( dy
du )

dx
· dx

du
=

d( dy
dx ·

x1−x0
u1−u0

)

dx
· 1

du
dx

=
d2y
dx2 · (

x1 − x0

u1 − u0
)

2
(12)

Since the variable interval of cubic Hermite interpolation is [0,1], the following Equa-
tions below can be obtained in the interval [x0,x1] instead of the interval [0,1] according to
the above eqations. These formulas can be used in the following study.

u =
(x− x0)

(x1 − x0)
, u ∈ [0, 1], x ∈ [x0, x1] (13)

y = f (
x− x0

x1 − x0
), x ∈ [x0, x1] (14)

dy
du

=
dy
dx
· (x1 − x0) (15)

d2y
du2 =

d2y
dx2 · (x1 − x0)

2 (16)
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4.2. Cubic Hermite Interpolation

Cubic Hermite interpolation is a commonly used interpolation method. There is n
points to be interpolated, (x0, y0), (x1, y2), . . . , (xn-1, yn-1). Cubic Hermite interpolation
function of the i-th curve in the interval [xi-1, xi], whose interval is normalized, can be
expressed as the following formula (17) in the normalized interval [21].

yi(u) =
[
1 u u2 u3

]
1 0 0 0
0 0 1 0
−3 3 −2 −1
2 −2 1 1




yi−1
yi

∆i
.
yi−1

∆i
.
yi

, u ∈ [0, 1] (i = 1, 2, · · · , n− 1) (17)

where n is the number of interpolated points. u is the variable derived from variable x,
and the interval of u is [0,1] obtained by normalization of the interval [xi-1, xi]. yi-1 and
yi are the two interpolated data points of the i-th interpolation curve.

.
yi−1 and

.
yi are the

two first-order derivatives of y with respect to x at the points x = xi−1 and x = xi. ∆i is the
interval span without normalization, ∆i = xi − xi−1. According to formula (15), ∆i

.
yi−1 and

∆i
.
yi are the two first-order derivatives of y with respect to u at the points u = 0 and u = 1.

According to Equations (13) and (14), formula (17) can be rewritten as the following
formula (18), and the variable interval is changed from [0,1] to [xi−1, xi]. The piecewise
cubic Hermite interpolation curve is shown in Figure 6.

yi(x) =
[

1
x− xi−1

xi − xi−1
(

x− xi−1

xi − xi−1
)

2
(

x− xi−1

xi − xi−1
)

3]


1 0 0 0
0 0 1 0
−3 3 −2 −1
2 −2 1 1




yi−1

yi

(xi − xi−1)
.
yi−1

(xi − xi−1)
.
yi

, x ∈ [xi−1, xi] (i = 1, 2, · · · , n− 1) (18)

Figure 6. Piecewise cubic Hermite interpolation curves.

It can be seen from formula (17) or formula (18), C0 and C1 continuity can be guaran-
teed as long as positions and first-order derivatives at the connection point between every
two adjacent piecewise curves are specified equal. Whatever the values of y0, y1, . . . , yn−1
and

.
y0,

.
y1, . . . ,

.
yn−1 are assigned to, the continuity of y(x) and

.
y(x) is guaranteed.

However, arbitrarily specified
.
y0,

.
y1, . . . ,

.
yn−1 cannot guarantee the continuity of

the second-order derivative
..
y(x). Therefore, in order to guarantee C2 continuity of cubic

Hermite curves at each knot,
.
y0,

.
y1, . . . ,

.
yn−1 must satisfy certain conditions.

4.3. Requirement for C2 Continuity of Cubic Hermite Interpolation Curves

The requirement for C2 continuity at the connecting point between two adjacent cubic
Hermite curves yi(x) and yi+1(x) is shown as the following Equation (19):
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..
yi(xi) =

..
yi+1(xi) (19)

According to Equation (18), we can obtain Equations (20) and (21) below.

..
yi(xi) =

6(yi−1 − yi) + 2(xi − xi−1)
.
yi−1 + 4(xi − xi−1)

.
yi

(xi − xi−1)
2 (20)

..
yi+1(xi) =

6(yi − yi+1) + 4(xi+1 − xi)
.
yi + 2(xi+1 − xi)

.
yi+1

(xi+1 − xi)
2 (21)

By sorting out Equations (19)–(21), formula (22) can be obtained below. First-order
derivatives

.
yi−1,

.
yi and

.
yi+1 at every three adjacent knots must meet formula (22) to

guarantee C2 continuity at connection points.

(xi+1 − xi)
.
yi−1 + 2(xi+1 − xi−1)

.
yi + (xi − xi−1)

.
yi+1 = 3

(xi+1 − xi)

(xi − xi−1)
(yi − yi−1) + 3

(xi − xi−1)

(xi+1 − xi)
(yi+1 − yi) (22)

formula (22) can also be rewritten as formula (23) as below.

∆i+1
.
yi−1 + 2(∆i + ∆i+1)

.
yi + ∆i

.
yi+1 = 3

∆i+1

∆i
(yi − yi−1) + 3

∆i
∆i+1

(yi+1 − yi) (23)

It can be seen from formula (22), it is almost impossible that arbitrarily specified
.
y0,

.
y1, . . . ,

.
yn−1 at knots happen to meet formula (22). That is to say, when

.
y0,

.
y1, . . . ,

.
yn−1

at knots are constrained arbitrarily, second-order derivatives of cubic Hermite curves at
connecting points are discontinuous. In fact, as for cubic Hermtime interpolation curves,
only one of them can be satisfied, constraining first-order derivatives willfully at knots or C2

continuity. In order to solve the matter, a kind of modified cubic Hermite interpolation with
willful constraints on first-order derivatives at knots is presented while the interpolation
curves are C2 continuous.

4.4. Modified Cubic Hermite Interpolation

Firstly, take three points of cubic Hermite interpolation as an example. Here are three
data points to be interpolated A(x0, y0), B(x1, y1), C(x2, y2), and the first-order derivatives
at knots A, B, C are assigned willfully to

.
y0,

.
y1 and

.
y2, as can be seen in Figure 7a. Since

.
y0,

.
y1 and

.
y2 are specified willfully without following formula (22), the cubic Hermit

interpolation curves y(x) at connection point B is not C2 continuous.

Figure 7. Piecewise cubic Hermite interpolation curves with three initial knots: (a) Interpolation with initial knots; (b)
Interpolation with rebuilt knots; (c) Comparison between two kinds of interpolation.
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In order to specify first-order derivatives willfully at points A, B, C and guarantee
C2 continuity, new points are built. As seen in Figure 7b, new point M is built between
initial point A and B, and new point N is built between initial point B and C. In order to
distinguish the new interpolation function from the old one, the new function is marked as
r(t) instead of y(x). Newly-built knots become A(t0, r0), M(t1, r1), N(t2, r2) and C(t3, r3), and
1st derivatives at A, M, N, and C are marked respectively as

.
r0,

.
r1,

.
r2 and

.
r3. The first and

last point are unchanged, (x0, y0) = (t0, r0), (x2, y2) = (t3, r3),
.
y0 =

.
r0,

.
y2 =

.
r3.

Newly-built knots A, M, N, and C instead of initial knots A, B, and C are interpolated
by cubic Hermite interpolation, and interpolating function r(t) is obtained. Function r(t)
must meet the following situations: (1) Interpolating curves must pass by the knots A,
B, and C; (2) First-order derivatives at point A, B, and C are equal to

.
y0,

.
y1 and

.
y2; (3)

Second-order derivatives at newly-built knots M, and N are continuous.
According to formula (18), positions and 1st derivatives at every two newly-built

knots are needed to carry out interpolation. Since the first and the last point are unchanged
and known, positions and 1st derivatives of new knots except point A and C must be found
out. That is new points positions M(t1, r1), N(t2, r2), and their derivatives

.
r1,

.
r2 must be

found out.
Because the calculation of new knots’ ordinates t0, t1, . . . , tm-1 will be described in

detail in a later section, t0, t1, . . . , tm-1 can be considered as the knowns. Therefore, firstly
explain how to find out r1, r2,

.
r1,

.
r2.

As shown in Figure 7b, the interpolation curve r2(t) must pass by the initial knot B.
According to formula (18), the second interpolation curve r2(t) can be expressed function (24)
as below.

r2(t) =
[

1
t− t1

t2 − t1
(

t− t1

t2 − t1
)

2
(

t− t1

t2 − t1
)

3]
1 0 0 0
0 0 1 0
−3 3 −2 −1
2 −2 1 1




r1
r2

(t2 − t1)
.
r1

(t2 − t1)
.
r2

,

t ∈ [t1, t2] (24)

where t is the variable, and (t1, r1),
.
r1, (t2, r2) and

.
r2 are positions and 1st derivatives at new

knot M and N, respectively.
The initial knot B(x1, y1) and its derivative

.
y1 must meet the interpolation function

r2(t) in formula (24), which can be expressed as the following Equation (25).{
r2(x1) = y1.
r2(x1) =

.
y1

(25)

Put x1, y1 and
.
y1 into formula (24). Then Equations (26) and (27) could be obtained

respectively after sorting out.

[
1−

3K2
1

H2
−

2K3
1

H2

3K2
1

H2
+

2K3
1

H2
−K1 − 2K2

1 − K3
1 −K2

1 − K3
1

]
r1
r2.
r1.
r2

 = y1 (26)

[
6K1

H2
+

6K2
1

H2
−6K1

H2
−

6K2
1

H2
1 + 4K1 + 3K2

1 2K1 + 3K2
1

]
r1
r2.
r1.
r2

 =
.
y1 (27)

where, x1 − t1 is marked as K1, and t2 − t1 is marked as H2, shown in Figure 7c. As
mentioned above, the calculation of t0, t1, . . . , tm will be described in detail in a later
section, so K1 and H2 could be considered as the knowns. Besides, y1 and

.
y1 are certainly

the knowns of initial knot B. Therefore, Equations (26) and (27) are linear equations of the
unknowns r1, r2,

.
r1,

.
r2. We need to solve out the unknowns r1, r2,

.
r1,

.
r2 while there are

only two Equations so that another two linear equations are required.
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In order to guarantee second-order continuity at connection points, positions and
first-order derivatives of new knots A, M, N and C must meet formula (22). Every three
adjacent new knots among four new knots need to meet the formula (22). Specifically,
knots A, M and N all together should meet formula (22). After sorting out, function (28)
can be obtained. (

3H2

H1

3H1

H2
− 3H2

H1
−3H1

H2
H2 2(H1 + H2) H1

)
(28)

where, t1 − t0 and t2 − t1 are marked as H1 and H2 respectively, shown in Figure 7c. As
mentioned above, H1 and H2 could be considered as the knowns. Since r0 and

.
r0 are the

ordinate and 1st derivative of knot A, they are known constants. Hence, Equation (28) is a
linear one of the unknowns r1, r2,

.
r1 and

.
r2.

Moreover, new knots M, N and C all together should also meet the formula (22).
Similarly, Equation (29) can be obtained after sorting out.

[
3H3

H2

3H2

H3
− 3H3

H2
−3H2

H3
H3 2(H2 + H3) H2

]


r1
r2
r3.
r1.
r2.
r3

 = 0 (29)

where, t2 − t1 and t3 − t2 are marked as H2 and H3. H2 and H3 could be considered as
known constants. Since r3 and

.
r3 are the ordinate and 1st derivative of knot C, they are the

knowns. Hence, Equation (29) is also a linear one of the unknowns r1, r2,
.
r1 and

.
r2.

These four Equations (26)–(29) are all linear ones of the unknowns r1, r2,
.
r1 and

.
r2.

By solving the Equations, the values of r1, r2,
.
r1 and

.
r2 can be obtained. After acquiring

the positions and the 1st derivatives at newly-built knots A, M, N, and C, modified cubic
Hermite interpolation curves can be obtained according to formula (18).

Now let us look at the situation with four initial points interpolated. As seen in
Figure 8a, there are four initial knots to be interpolated A(x0, y0), B(x1, y1), C(x2, y2), and
D(x3, y3). The first-order derivatives at knots A, B, C and D are assigned willfully to

.
y0,

.
y1,

.
y2, and

.
y3. Rebuild new data points. As seen in Figure 8b, new knot M is built between the

first and the second knots A and B, and new knot N between the penultimate and the last
knot C and D. It must be noted that two new knots P and Q need to be built between knot
B and C. If only one new knot is built between knots B and C, set of Equations cannot be
solved because the number of Equations is greater than that of the unknowns. Similarly,
we need to find out the unknowns r1, r2, r3, r4,

.
r1,

.
r2,

.
r3,

.
r4 of the newly-built knots except

the first and the last one.

Figure 8. Piecewise cubic Hermite interpolation curves with four initial knots: (a) Interpolation with initial knots; (b)
Interpolation with rebuilt knots; (c) Comparison between two kinds of interpolation.
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In the same way, the initial knot B(x1, y1) and its derivative
.
y1 must meet the interpola-

tion function r2(t). The initial knot C(x2, y2) and its derivative
.
y2 must meet the interpolation

function r4(t), shown in Figure 8b. Then put x1, y1,
.
y1 and x2, y2,

.
y2 into r2(t) and r4(t) de-

rived from formula (18), and we can get four Equations similar to Equations (26) and (27).
When it is extended to more knots, Equations (30) and (31) can be obtained after sorting
and inducting.

[
1− 3K2

i
Hj+1
− 2K3

i
Hj+1

3K2
i

Hj+1
+

2K3
i

Hj+1
−Ki − 2K2

i − K3
i −K2

i − K3
i

]
rj

rj+1.
rj.

rj+1

 = yi
(i = 1, 2, 3, · · · , n− 2)
(j = 1, 3, 5, · · · , m− 3)

(30)

[
6Ki

Hj+1
+

6K2
i

Hj+1
− 6Ki

Hj+1
− 6K2

i
Hj+1

1 + 4Ki + 3K2
i 2Ki + 3K2

i

]
rj

rj+1.
rj.

rj+1

 =
.
yi

(i = 1, 2, 3, · · · , n− 2)
(j = 1, 3, 5, · · · , m− 3)

(31)

where, n is the number of the initial knots (n ≥ 3), and m (m = 2n− 2) is the number of the
newly-built knots. The subscript i is related to initial knots while subscript j is related to
newly-built knots. Array y is the ordinates of initial knots, y0, y1, . . . , yn-1, which are all
knowns. The array

.
y is the first-order derivatives of initial knots,

.
y0,

.
y1, . . . ,

.
yn−1, which

are all knowns. Array r is the ordinates of newly-built knots, r0, r1, . . . , rm-1, in which r0
and rm-1 are knowns and others are unknowns. The array

.
r is the first-order derivatives

of newly-built knots
.
r0,

.
r1, . . . ,

.
rm−1, in which

.
r0 and

.
rm−1 are knowns and others are

unknowns. So, r1, r2, . . . , rm-2 and
.
r1,

.
r2, . . . ,

.
rm−2 are unknown.

The expressions of array K and array H are shown in Equations (32) and (33) below
respectively, seen as in Figure 8c for graphic representation. Since all of the initial knots’
abscissas x0, x1, . . . , xn-1 are given and the newly-built knots’ abscissas t0, t1, . . . , tm-1 can
be considered as the knowns described in the latter section, array K and array H are known
constants. Hence, Equations (30) and (31) are linear ones.

Ki = xi − tj(i = 1, 2, 3, · · · , n− 2, j = 1, 3, 5, · · · , m− 3) (32)

Hj = tj − tj−1 ( j = 1, 2, · · · , m− 1) (33)

Synthesizing formulas (30) and (31), there are 4(n − 2) unknowns and 2(n − 2)
Equations. Hence, the set of Equations has no unique solution unless other Equations are
to be added.

Similarly, in order to guarantee C2 continuity at newly-built knots, the positions and
first-order derivatives of new knots A, M, N, P, Q and D in Figure 8b must meet the formula
(22). Every three adjacent new knots need to meet the formula (22). When it is extended to
more knots, Equation (34) can be obtained after sorting and inducting.

[
3Hj+1

Hj

3Hj

Hj+1
−

3Hj+1

Hj
−

3Hj

Hj+1
Hj+1 2(Hj + Hj+1) Hj

]


rj−1
rj

rj+1.
rj−1.

rj.
rj+1


= 0 (j = 1, 2, 3, · · · , m− 2) (34)

where, the meanings of m(m = 2n − 2), r,
.
r and H are the same as that of the above.

Equation (34) are linear ones. It is pointed out that r0, rm−1,
.
r0,

.
rm−1 of the first and last new

point are knowns. The unknowns are r1, r2, . . . , rm-2 and
.
r1,

.
r2, . . . ,

.
rm−2. Here are 4(n− 2)

the unknowns and 2(n− 2) Equations. Combining with formulas (30), (31) and (34), the
number of the unknowns is 4(n− 2), and the number of the Equations is 4(n− 2). Therefore,
set of Equations (30), (31) and (34) are all linear Equations and have a unique solution.
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After positions and first-order derivatives of newly-built knots are found out, modified
piecewise cubic Hermite curves can be obtained according to formula (18). The modified
curves would pass by the initial knots, and first-order derivatives at the initial knots can be
specified at will while the curves are C2 continuous.

For more than four initial points to be interpolated, every two new points need to be
built between every two initial points from the second and penultimate initial point. The
method is similar to the one for four initial points.

4.5. Arrangement for The Abscissas of Newly-Built Knots

Given n initial knots to be interpolated denoted as (xi−1, yi−1), I = 1, 2, . . . , n, (n ≥ 3). The
abscissas of initial knots are x0, x1, . . . , xn−1. New knots are built for proposed interpolation,
marked as (rj−1, tj−1), j = 1, 2, . . . , m, (m = 2n− 2). The abscissas of new knots are t0, t1, . . . ,
tm−1. We need to arrange t0, t1, . . . , tm−1 according to x0, x1, . . . , xn−1.

The first idea is to average t0, t1, . . . , tm−1. Uniform abscissa knots are beneficial to the
smoothness of the interpolation curves. However, averaging t0, t1, . . . , tm−1 may possibly
lead to the situation that there are two initial knots existing between two new knots, seen in
Figure 9. Since a piecewise curve must pass by the two initial points, too many constraints
are imposed on this curve so that the curve function cannot be solved and interpolation
functions cannot be found out.

Figure 9. Average for abscissas of newly-built knots.

To avoid the trouble mentioned above, the following scheme is proposed on the basis
of homogenization as much as possible. Take five initial knots for example. As can be seen
in Figure 10, two newly-built knots R2 and R3 are built between the second and the third
initial as described above.

Figure 10. Arrangement for abscissas of newly-built knots.

Based on the principle of average for new knots, the horizontal distance between the
second and the third initial points is divided into three segments, so the abscissas t2 and t3
of the new knots R2 and R3 can be expressed as Equations (35) and (36) below. The same
scheme is applied whenever there are two newly-built knots between every two adjacent
initial points.
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t2 = x1 +
1
4
(x2 − x1) (35)

t3 = x1 +
3
4
(x2 − x1) (36)

Between the first and the second initial points, is there only one newly-built knot R1
inserted, seen in Figure 10. The horizontal distance between the first and the second initial
knots is divided by new point R1 into two segments with unequal length, so the golden
ratio is a reasonable method. Consequently, the abscissa t1 of newly-built knot R1 can be
expressed by Equation (37). The same is as for the last newly-built knot R6, and the abscissa
t6 of the newly-built knot R6 can be expressed by Equation (38).

t1 = x0 + 0.618(x1 − x0) (37)

t6 = x4 − 0.618(x4 − x3) (38)

Extended to the case that the number of the initial points is n (n ≥ 4), formula (39) can
be obtained. Abscissas of all newly-built knots t are acquired from the abscissas of initial
knots x. If there are only three initial points (n= 3), take the first two Equations and the
last two Equations in formula (39).

t0 = x0
t1 = x0 + 0.618(x1 − x0)

tj = xi−1 +
1
4 (xi − xi−1) i = 2, 3, · · · , n− 2, j = 2, 4, 6, · · · , m− 4

tj+1 = xi−1 +
3
4 (xi − xi−1)

tm−2 = xn−1 − 0.618(xn−1 − xn−2)
tm−1 = xn−1

(39)

where n and m (m = 2n − 2) are respectively the numbers of initial and newly-built
knots. The subscript i is related to the initial knots while subscript j is related to the
newly-built knots.

4.6. Summary

Sum up the steps of modified cubic Hermit interpolation as follows:

(1) According to the abscissas of given initial knots x0, x1, . . . , xn−1, (n ≥ 3), the abscissas
of newly-built knots, t0, t1, . . . , tm−1, (m = 2n− 2), are arranged and calculated by
the formula (39).

(2) According to the given positions and the 1st derivatives of the initial points and the
abscissas of the newly-built knots achieved in step 1, a set of linear equations are
obtained by formulas (30)–(34). Then, the ordinates and the first derivatives of the
newly-built knots are acquired via solving the set of linear equations.

(3) According to the positions and first-order derivatives of newly-built knots achieved
in previous steps, modified cubic Hermite interpolation curves are obtained by
formula (18).

5. Case Study

In order to verify the rationality and effectiveness of the proposed methodology, the
following study case is employed. The usage of the proposed methodology is further
described in detail during the study case analysis.

Case: In order to accomplish a task, joint 1 of the industrial robot needs to carry out
velocity-constrained PTP motion. As shown in Figure 11a, joint 1 turns from start target
point A to intermediate target points B, C and to end target point D in turn. The velocities
at the intermediate target points B and C are specified. The rotational requirements at each
target point are shown in Table 1. Using the proposed planning of modified cubic Hermite
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interpolation presented above, carry out velocity-constrained PTP motion planning for
joint 1.

Figure 11. Point-to-point joint motion planning with constrained velocity: (a) Initial knots; (b)
Newly-built knots.

Table 1. Constraint requirements for target points of joint 1.

Target Point Angular Displacement
θ (◦)

Angular Velocity
ω (◦/s)

Time
x (s)

A 0 0 0
B 30 8 5
C 90 8 15
D 180 0 25

There are four initial knots A, B, C, and D to be interpolated. As seen in Figure 11b,
newly-built knot M needs to be inserted between initial A and initial B, and N between C and
D, and P, Q between B and D, according to the proposed method. Therefore, the initial knots
A, B, C, D are replaced by the newly-built knots A, M, P, Q, N, and D. The initial time knots
become the newly-built time knots correspondingly. In order to be unified with the previous
formula, the initial time knot is denoted as x, and the newly-built time knots is denoted as
t. According to formula (39), the newly-built time knots are arranged from the initial time
knots x = 0, 5, 15, 25 (s) and the newly-built time knots are t = 0, 3, 8, 13, 19, 25 (s) respectively
with proper rounding.

We need to find out the angular displacements and angular velocities at the newly-
built knots M, P, Q and N from the initial knots A, B, C, and D. According to formula (30),
31, 32, 33, and 34, we can obtain Equation (40) to solve out the angular displacements and
angular velocities of the rebuilt knots, θM, θP, θQ, θN, ωM, ωP, ωQ, ωN.

−0.4 −0.225 0 0 2 0.375 0 0
0.3 0 −0.3 0 0.5 2 0.5 0
0 0.327 −0.1 −0.227 0 0.546 2 0.455
0 0 0.25 0 0 0 0.5 2

0.648 0.352 0 0 0.72 −0.48 0 0
−0.288 0.288 0 0 −0.12 −0.32 0 0

0 0 0.741 0.259 0 0 0.889 −0.444
0 0 −0.222 0.222 0 0 0 −0.333





θM
θP
θQ
θN
ωM
ωP
ωQ
ωN


=



0
0
0

45
30
8

90
8


(40)

The values of θM, θP, θQ, θN, ωM, ωP, ωQ, ωN can be obtained by solving the linear
Equations. In addition to the previously calculated amount of time, the information of the
newly-built knots for joint motion planning can be listed in Table 2.
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Table 2. Constraint conditions at newly-built targets points.

Target Point Angular Displacement
θ (◦)

Angular Velocity
ω (◦/s)

Time
t (s)

A 0 0 0
M 14.21 7.548 3
P 51.747 5.952 8
Q 76.147 5.805 13
N 129.443 11.53 19
D 180 0 25

According to the motion conditions at newly-built target points in Table 2, the piece-
wise motion planning of joint 1 can be carried out by formula (18).

The planning function of AM segment is shown in Equation (41) below.

θ1(t) = 2.221t2 − 0.214t3 0 ≤ t ≤ 3 (41)

The planning function of the MP segment is shown in Equation (42) below.

θ2(t) = −4.142 + 4.142t + 0.84t2 − 0.061t3 3 ≤ t ≤ 8 (42)

The planning function of the PQ segment is shown in Equation (43) below.

θ3(t) = −76.069 + 31.115t− 2.531t2 + 0.08t3 8 ≤ t ≤ 13 (43)

The planning function of the QN segment is shown in Equation (44) below.

θ4(t) = 125.677− 15.442t + 1.05t2 − 0.012t3 13 ≤ t ≤ 19 (44)

The planning function of the ND segment is shown in Equation (45) below.

θ5(t) = 1057.847− 162.627t + 8.796t2 − 0.148t3 19 ≤ t ≤ 25 (45)

Validate whether the motion planning functions meet the requirements of angular
displacements and angular velocities at the initial target points, as shown in Table 3.
Validation results show the planning functions meet the requirements.

Table 3. Rotational requirement validation at the initial target points.

Initial Target
Point

Planning
Function

Angular Displacement
θ (◦)

Angular Velocity
ω (◦/s)

Time
t (s)

A θ1(t) θ1(0) = 0
.
θ1(0) = 0 0

B θ2(t) θ2(5) = 30
.
θ2(5) = 8 5

C θ4(t) θ4(15) = 90
.
θ4(15) = 8 15

D θ5(t) θ5(25) = 180
.
θ5(25) = 0 25

Validate the continuities of the motion planning functions at the connecting points
between every two adjacent planning segments, as shown in Table 4. The validation
results show that angular displacements, angular velocities and angular accelerations at
connecting points are all continuous.

According to the motion planning functions above, the motion planning curves can
be obtained, shown in Figure 12. As can be seen from Figure 12a, the angular displacement
curve is very smooth and meets the angular displacement requirements at the initial target
points A, B, C, D. As can be seen from Figure 12b, the angular velocity curves are also
smooth, the velocity fluctuation is gentle, and meets the angular velocity requirements at
the initial target points A, B, C, D. As can be seen from Figure 12c, the angular acceleration
curves are continuous at the connecting points M, P, Q, N, and the whole acceleration
curves does not fluctuate much.
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Table 4. Continuity validation at the connecting points.

Connecting
Point

Planning
Function

Angular
Displacement θ

(◦)

Angular Velocity
ω (◦/s)

Angular
Acceleration

ε (◦/s2)
Time t (s)

M
θ1(t) θ1(3) = 14.21

.
θ1(3) = 7.55

..
θ1(3) = 0.59 3

θ2(t) θ2(3) = 14.21
.
θ2(3) = 7.55

..
θ2(3) = 0.59

P
θ2(t) θ2(8) = 51.75

.
θ2(8) = 5.96

..
θ2(8) = −1.23 8

θ3(t) θ3(8) = 51.75
.
θ3(8) = 5.96

..
θ3(8) = −1.23

Q θ3(t) θ3(13) = 76.15
.
θ3(13) = 5.81

..
θ3(13) = 1.17 13

θ4(t) θ4(13) = 76.15
.
θ4(13) = 5.81

..
θ4(13) = 1.17

N
θ4(t) θ4(19) = 129.44

.
θ4(19) = 11.53

..
θ4(19) = 0.74 19

θ5(t) θ5(19) = 129.44
.
θ5(19) = 11.53

..
θ5(19) = 0.74

Figure 12. Motion planning curves by proposed method. (a) Angular displacement planning curves; (b) Angular velocity
planning curves; (c) Angular acceleration planning curves.

The motion planning curves once more verify that the motion planning functions can
not only meet the constrained requirements of angular displacements and angular velocities
at the initial target points but also guarantee the continuity of angular acceleration and
angular velocity fluctuates gently. It proves that the proposed method can be applied well
to joint motion planning with velocity constraints, and avoid the problems of discontinuous
angular acceleration in cubic polynomial planning and large fluctuation of angular velocity
in the quintic polynomial.

6. Comparison and Discussion

In order to compare with the proposed planning methodology, the most commonly
used PTP joint planning method, cubic polynomial and quintic polynomial, are applied to
the same case study above as well. The results of the study and analysis below reflect there
are more or fewer deficiencies for these two methods to be used for joint planning with
constrained velocity. The detailed comparison and analysis process are as follows.

Figure 13 shows the angular displacement curves obtained by the proposed method-
ology, cubic polynomial, and quintic polynomial respectively. As can be seen from
Figure 13a,b, the angular displacement curve obtained by the proposed method is similar
to the curves obtained by the cubic polynomial. Both of the curves are smooth and the
fluctuation is very small. In Figure 13c, the angular displacement curves obtained by
quintic polynomial fluctuate a little bit. In fact, a curve with a higher order is more likely
to fluctuate than a curve with a lower order. Therefore, we should try to avoid using
higher-order functions for planning.
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Figure 13. Angular displacement comparison: (a) Proposed methodology planning; (b) Cubic polynomial planning;
(c) Quintic polynomial planning.

Figure 14 is the angular velocity curves obtained by these three methods. In Figure 14a,
the velocity curves obtained by the proposed method are smooth, the velocity fluctuation
is gentle, and the variation trend is roughly similar to that in Figure 14b by the cubic
polynomial. In Figure 14b, the overall velocity waveform by a cubic polynomial is simple
and appropriate. However, there are turning points at junctions B and C, which will lead
to discontinuous angular acceleration at the connection points. In Figure 14c, the overall
fluctuation of the velocity curves by a quintic polynomial is obviously large. In particular,
because of inappropriate preset angular acceleration at point C, the velocity near point C
fluctuates back and forth sharply, which is not conducive to the control of joint rotation
speed. This shows that quintic polynomial planning is likely to cause angular velocity to
fluctuate too much. Moreover, the higher the order of the polynomial is, the higher the
velocity peak will be, which makes greater volatility. These are the weaknesses of quintic
polynomial planning.

Figure 14. Angular velocity comparison: (a) Proposed methodology planning; (b) Cubic polynomial planning; (c) Quintic
polynomial planning.

Figure 15 is the angular acceleration curves obtained by these three methods. As can be
seen from Figure 15a,c, the angular acceleration curves, obtained by proposed methodology
and quintic polynomial respectively, are both continuous at connection points. Because the
order of the quintic polynomial is high, the angular acceleration in Figure 15c is also easy to
fluctuate. In Figure 15b, the angular acceleration curves obtained by cubic polynomial are
obviously broken at the connecting points B and C. The angular acceleration discontinuity
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of the joint will cause vibrations and impacts, which will degrade the working performance
and decrease the service life of industrial robots.

Figure 15. Angular acceleration comparison: (a) Proposed methodology planning; (b) Cubic polynomial planning; (c)
Quintic polynomial planning.

It can be seen from the above comparative analysis of this case, as for joint PTP motion
planning with constrained velocity, the angular acceleration of cubic polynomial planning
is discontinuous, which will lead to vibrations and impacts. Angular velocity of quintic
polynomial planning fluctuates greatly back and forth, which is not conducive to velocity
control. The proposed motion planning methodology not only meets the constraints of
angular displacements and angular velocities at target points but also guarantees the
continuity of angular acceleration. The maximum function order of proposed planning is
three, which effectively avoids the fluctuation caused by high-order functions.

7. Conclusions

For the industrial robots’ PTP joint motion planning with velocity constraint, cubic
polynomial planning has the problem of angular acceleration discontinuity, which will
cause vibrations and impacts. As for quintic polynomial planning, angular accelerations at
target points need to be given in advance and because it is hard to give appropriate angular
accelerations in advance, it will lead to large velocity fluctuations which are not conducive
to velocity control.

In order to solve these problems in joint planning, a kind of methodology based
on modified Hermite interpolation is proposed. On the basis of Hermite interpolation,
new target knots are reconstructed from the initial target knots. Then, newly-built knots
instead of old initial knots are used to carry out joint motion planning. Using the proposed
methodology, not only does the motion planning meet the requirements for angular dis-
placement and angular velocity at the initial knots, but also the angular acceleration of
the whole planning is continuous without broken points. Moreover, the maximum order
of the planning functions is three, which avoids the velocity fluctuation caused by the
higher-order functions such as quintic polynomial. Therefore, the problems existing in
cubic polynomial planning and quintic polynomial planning can be solved well.

A study case is given to verify the rationality and effectiveness of the proposed method.
The case study results show that, compared with the other two planning methods, the
proposed methodology is applied well to PTP joint motion planning with velocity constraints,
and is conducive to the working performance and service life of industrial robots.

In the future, efforts will be made on optimization investigation as continued research
in the area. The basic motion planning of industrial robots, including improved motion
planning, focuses on the continuity and smoothness of the trajectory. However, efficiency,
energy, impact and other problems in the actual operation requirements are not considered.
Thus, optimization of single or multiple objectives among efficiency, energy, the impact
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will be the further potential studies on the basis of the motion planning. Moreover, motion
planning needs to be realized through motion control. Due to strong nonlinear coupling
between each joint and end-effector, there will be disturbances, errors and other uncertain
factors, so optimal control will also be considered as a further investigation to guarantee
motion planning realized precisely.
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