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Abstract: The objective of the paper was to reveal the main techniques and means of ensuring
the integrity of data and persistent stored database modules implemented in accordance with the
recommendations of the Clark–Wilson model as a methodological basis for building a system that
ensures integrity. The considered database was built according to the schema with the universal basis
of relations. The mechanisms developed in the process of researching the problem of ensuring the
integrity of the data and programs of such a database were based on the provisions of the relational
database theory, the Row Level Security technology, the potential of the modern blockchain model,
and the capabilities of the database management system on the platform of which databases with
the universal basis of relations are implemented. The implementation of the proposed techniques
and means, controlling the integrity of the database of stored elements, prevents their unauthorized
modification by authorized subjects and hinders the introduction of changes by unauthorized subjects.
As a result, the stored data and programs remain correct, unaltered, undistorted, and preserved. This
means that databases built based on a schema with the universal basis of relations and supported by
such mechanisms are protected in terms of integrity.
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1. Introduction

Ensuring information security of databases (DBs) is impossible without considering
aspects of ensuring data integrity. Many, especially commercial, organizations are more
concerned with the integrity of their data than its confidentiality [1]. Integrity is more
important to them. If you publish information on the Internet on a web server and your
goal is to make it available to the widest possible range of people, then confidentiality is
not required. On the contrary, the responsibility for providing undistorted information
obtained from a database, for example, about the data stored in it from official legal,
regulatory, financial, medical, and other documents of the organization, including these
documents themselves, is significantly increased. The information must be authentic or
genuine. Data must remain correct, truthful, and be a true reflection of reality. In general,
both in a commercial and a military environment, it is difficult to imagine a system for
which the properties of integrity would not be important [2].

As noted in the Certified Information Systems Security Professional Official Study
Guide [1], numerous attacks are aimed at violating integrity. These are both malicious
modifications performed by various malicious programs and errors in applications. In-
tegrity violations are not limited to deliberate attacks. User error, oversight, or inept actions
are the cause of many cases of unauthorized modifications of information. Events that
lead to integrity violations include the modification or deletion of files, database data,
entry of incorrect data, configuration alteration, errors in commands, virus introduction,

Appl. Sci. 2021, 11, 8781. https://doi.org/10.3390/app11188781 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1977-7269
https://orcid.org/0000-0002-8846-332X
https://orcid.org/0000-0003-2577-550X
https://doi.org/10.3390/app11188781
https://doi.org/10.3390/app11188781
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11188781
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11188781?type=check_update&version=2


Appl. Sci. 2021, 11, 8781 2 of 14

and malicious code execution. Integrity violations can occur due to the actions of any
user, including administrators, either through an oversight in the security policy or due to
misconfigured security controls.

The authors of the information systems security guide [1] noted that integrity can
be examined from three perspectives: Preventing unauthorized subjects from making
modifications, preventing authorized subjects from making unauthorized modifications
(e.g., errors), and maintaining internal and external consistency of objects. Properly imple-
mented integrity protection provides a means for authorized modifications while protecting
against malicious unauthorized actions, as well as errors made by authorized users. This
ensures that the data remain correct (there are no logical errors in the structure and data
values), unaltered (data identity to a certain standard), undistorted (no data tampering),
and preserved. When a security mechanism ensures integrity, it provides a high level of
assurance that data, objects, and resources will not be altered from their original protected
state. However, at the same time, it should be remembered and taken into account that
integrity control requires additional resources: Time and memory. For example, the main
problem in the implementation of mechanisms for controlling the integrity of file objects is
their rather strong influence on the load of the computing resource of the system, which
is due to the following reasons [3]: First, control of large amounts of information may
be required, which is associated with a significant duration of the control procedure; sec-
ond, continuous maintenance of the object in a reference state may be required. In this
connection, a natural question arises: With what frequency to exercise control, since file
integrity monitoring is an effective approach to detecting aggressive behavior by detecting
actions to modify the corresponding critical files [4]. If it is performed frequently, it will
lead to a significant decrease in system performance; if rarely, then the effectiveness of such
control may be low. Therefore, one of the main tasks in the implementation of mechanisms
for controlling the integrity of file objects is the choice of principles and mechanisms for
starting the integrity check procedure.

Another problem of integrity monitoring is the integrity control of the controlling
program itself if the integrity control is implemented in software. All of this requires a
certain additional study and the adoption of appropriate decisions depending, as a rule, on
the features of specific information systems (ISs). Therefore, depending on the importance
of the considered aspect of integrity and the data use scope, there are various methods
and means to guarantee the integrity of the data under various possible threats. Thus, the
correctness, non-distortion, and non-alteration of data can be ensured by methods and
means of access control technologies based on formal models of integrity. Non-distortion
of data during storage and transmission in information systems can be ensured through
cryptographic primitives, such as digital signature, cryptographic hash functions, and
message authentication codes. Parallel transaction technologies in multi-user systems also
play an important role in ensuring the integrity of a database. The concept of a well-formed
transaction is that users should not manipulate data arbitrarily, but only in ways that
preserve the integrity of the database [5].

The objective of our paper was to present techniques and means that ensure the in-
tegrity of the main components of the database with a universal basis of relations (UBR) [6].

The expediency of researching precisely databases built on the basis of a schema
with the universal basis of relations, implemented within the framework of the relational
data model, is due to the fact that, first, this will make sure that the data and programs
stored in them are secure from the point of view of their integrity. Second, based on their
example (in view of the fact that databases with UBR can be used as an ordinary database,
as a data warehouse for various subject domains (SDs), or as a configuration database of
the dataspace management environment [7]), when applying certain new approaches, it
becomes possible to develop a holistic solution that ensures the security of databases and
data warehouses. Separate elements of such a solution can be used to protect databases
and data warehouses with various models (relational, NoSQL, and NewSQL [8–14]) as
well. All of this is important for the scientific community.
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The main contribution of the authors is the development of techniques and means
that ensure integrity of the main components of a database with the universal basis of
relations in accordance with the recommendations of the Clark–Wilson model [15] as a
methodological basis for building an integrity assurance system in information systems.

2. Related Works

Figure 1 shows a diagram of the main basic relations Rsh of the DB schema with
UBR obtained by the authors of the article as a result of many years of research on the
problem of creating a standard/universal data model, which has been discussed in the
database community since the late 1980s [16–21]. Universal data models can provide
effective solutions to many important data management problems [18]. The basic relations
Rsh proposed by the authors have fundamental differences in the purpose, structure, and
storage location of the description of the metadata of the simulated subject domain relative
to the relations created in the traditional design technology of relational databases. Their
number and structure do not depend on the data set (they are invariant to SDs), in contrast
to the structure and number of basic relations of schemas developed using traditional
technology. This makes it quite easy to adapt the database created in this way to changes
in the SD. At the same time, the structure of DB schema relations remains unchanged. The
pre-unlimited variety of SD elements is distributed over a fixed set of basic relations of the
DB schema, while providing the possibility of the simultaneous storage and use of data
from various significantly different SDs.

In order to more strictly and scientifically state the results of applied research related
to ensuring the integrity of databases built on the basis of the schema with the universal
basis of relations, it is advisable to use some security model, since it is known that security
is easier to achieve if there is a clear model of what is to be protected and who is allowed to
do what [22].

The use of formal security models makes it possible to formulate the requirements
for creating secure systems (in this case, for the database) in a clearly defined form that
corresponds to the security policy adopted in the organization. In general, a security model
can be obtained from scratch using a mathematical model or by expanding an existing
one. Although, neither of these approaches are easy, since they require the necessary
formalization and re-proof [23]. Therefore, having analyzed, taking into account the
peculiarities of the aspects under consideration, the well-known integrity models Biba [24],
Clark–Wilson [15], and their application [1,2,23,25–30], as well as less well-known Goguen-
Meseguer [31], Sutherland security [32], the Clark–Wilson model was taken as the basis.
The Clark–Wilson model takes a multifaceted approach to ensuring integrity. This model
does not require the use of a lattice structure, and instead of defining a formal state
machine, it defines each data element and allows modifications only with a small set of
programs [1]. The Clark–Wilson model is less of a specific security policy model, but
rather a framework and guideline for formalizing security policies [29]. Data integrity, in
accordance with the Clark–Wilson model, is achieved through [33] authentication, audit,
well-formed transactions, and separation of duties.

Briefly characterizing the Clark–Wilson integrity model, the following can be noted.
This model is based on triplets: “Subject transaction not violating integrity object.” Subjects,
in accordance with this model, do not have direct access to objects. Objects can only
be accessed through the transformation procedure (TP). TPs are the only procedures that
are allowed to modify a constrained data item whose integrity is controlled by an IVP
verification procedure (integrity verification procedure). IVP is a procedure that scans data
items and confirms their integrity. Data whose integrity is not controlled by the security
model is denoted as unconstrained data items (UDIs).
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Figure 1. Diagram of the main basic relations Rsh of the DB schema with UBR.

The model consists of two sets of rules: Certification rules (C1–C5) and enforcement
rules (E1–E4). Enforcement rules correspond to application-independent security functions,
while certification rules allow application-specific integrity definitions to be included into
the model. In other words, enforcement rules define the security requirements that must
be supported by the protection mechanisms in the underlying system (in our case, it is a
database management system (DBMS)). Certification rules define the security requirements
that the application system should uphold (in this case, these are the proposed solutions
within the framework of the DB with UBR schema, taking into account the features and
capabilities of the DBMS on the platform on which it is implemented). Figure 2 shows a
scheme of the application of these rules to data management.
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3. Applying the Clark–Wilson Model Recommendations to Ensure the Integrity of
Databases with the Universal Basis of Relations

It is known that access to the data of any modern database is possible only through
the DBMS. A traditional DBMS provides authentication, authorization, transaction, data
management, logging, etc. Thus, to check whether the subject (user and process) has the
necessary authorization to carry out the required operation in traditional DBMS, in the so-
called database manager [9], there is a special module for authorization control. Therefore,
the implementation of a DB with UBR on the platform of some selected relational DBMSs
automatically leads to the fulfillment of the E3 rule requirement of the Clark–Wilson model,
which instructs the system to authenticate all users (each subject) trying to perform any
TP procedure.

According to the E4 rule, the access rights of subjects (taking into account their
functional duties) to DB objects with UBR (processed CDI elements) can be assigned and
changed only by specially authorized subjects (security officers, database administrators,
and DB schema owners). For this purpose, the commands (statements) GRANT / REVOKE
of the SQL standard are used. In addition, taking into account the peculiarities of the
schema and the possibilities of using the DB with UBR [6,7], an additional mechanism
for granting privileges was developed, implemented within the framework of RLS (Row
Level Security) technology (also known as Fine Grained Access Control (FGAC) and Virtual
Private Database (VPD)) [34–39], which required the introduction of some additional
relations to the existing basic schema of the database with UBR:

– User relation U:

U = {(u1, u2, u3)|u1 ∈ U1 ∧ u2 ∈ U2 ∧ u3 ∈ U3∧
((∀u1∀u2∀u3(∀u′2 ∈ U2)(Upr(u1, u2, u3) ∧Upr(u1, u′2, u3)→ u2 = u′2) )∧

(∀u1∀u2∀u3(∀u′1 ∈ U1)(Upr(u1, u2, u3) ∧Upr(u′′ 1, u2, u3)→ u1 = u′1)))
}

,
(1)

where U1 is the set of user identifiers (subjects), U2 is the set of user names, Upr(. . .) refers
to the predicates (predicate symbols) matching the relation U, and U3 is the set of privileges
granted to users for performing operations such as deletion, insert, update, select, as well
as their combinations;

– The relation of the access privilege distribution to the data of other users G:

G = {(g1, g2, g3)|g1 ∈ U1 ∧ g2 ∈ U1 ∧ g3 ∈ U3}. (2)

The relation extension (2) is a set of tuples, each of which is associated with a specific
data user/owner (g1), which transmits its access privileges (g3) to another authorized
user (g2).
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As a rule, today, in relational DBMSs, individual records (fields and cells) are not
specially protected, although there are examples known from practice when this is required.
Therefore, in order to ensure such functionality, taking into account the invariance of the
structure of the relations Rsh and based on the capabilities of the RLS technology, a special
additional relation was also defined within the framework of the DB with the UBR schema.
Namely, it is the relation of restrictions on access rights to a specific data element of the
simulated SD:

A =
{
(a1, a2, a3, a4)

∣∣∣a1 ∈ U1 ∧ a2 ∈ U2 ∧ a3 ∈ Rsh
name ∧ a4 ∈ Rsh

ID

}
, . (3)

where Rsh
name is the set of names of database schema relations Rsh (Figure 1), and

Rsh
ID = ∪

i
Rsh

i [KPKi ] is the set of identifiers that are primary keys (KPKi ) in the corresponding

relations Rsh, access to which is limited for user a1 ∈ U1 with the name a2 ∈ U2.
In accordance with RLS technology, the following were defined:

– A set of declarative commands (RLS policies) that determine how and when to apply
user access restrictions (in accordance with their functional duties, according to rule
C3) to the tuples of the main relations Rsh of the DB schema with the UBR;

– A set of stored functions Ψ that are called when the conditions specified in the security
policy (RLS policy) are performed;

– Predicates formed by Ψ functions that the DBMS automatically appends to the end of
the WHERE clause of user-executed SQL statements.

Taken together, all of this can be represented as the implementation of the rules
governing the access control to data of Rsh relations of the DB schema with UBR:

Sr =
{

Rsh
i , operj

i , policyk
i , Ψl

i , attrµkl
i , pat

Rsh
i

contr

}
, (4)

where operj
i is j-th combination (from values select, update, delete, and insert) of allowed

access operations (transformation procedures (TPs)) to the relation Rsh
i ∈ Rsh (as one of

the CDI elements); policyk
i is the name of the k-th RLS policy, which is applied to the base

relation Rsh
i ; Ψl

i ∈ Ψ is the name of the l-th function that generates the predicate for the

base relation Rsh
i ; attrµkl

i is the value of the µ-th parameter for the k-th RLS policy and the

l-th function; pat
Rsh

i
contr is pattern of the commands for managing access to Rsh

i (an example
of one of such patterns is given in [40] in the form of program code elements).

All of the above actions were taken so that the DBMS could control the admissibility
of applying TP to the CDI elements and provide support for the list of TP transformation
procedures required for specific users with an indication of the permissible set of processed
elements CDI for each TPi ∈ TP and given subject (sj ∈ S), in accordance with the
requirements of rules E1 and E2 of the Clark–Wilson model.

For databases that support the relational data model, integrity constraints are ensured
by ways of declarative and procedural support, each of which, in fact, leads to the creation
and/or use of some program code that implements the constraint. The difference is only
how the code is generated and where it is stored. At that, data integrity constraints must be
preliminarily formally defined (declared) before the DBMS can ensure their implementation.
In the case of operations that modify the contents of the database, in a traditional DBMS
(in the DB manager), as a rule, there is a special data integrity checker module [9], which
checks whether the requested operation satisfies all established data integrity constraints.
Additionally, this module, taking UDI as input, activates TP, which either converts them
to CDI or rejects (according to rule C5). The DBMS data integrity control module, con-
trolling the admissibility of the application of transformation procedures TPs in relation
to the list of elements CDIs in accordance with rule E1, monitors the correctness of the
implementation of all transformation procedures TPs (according to rule C2), in the sense
that these procedures should not violate data integrity. Moreover, all of this takes into
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account the fact that the system must have procedures IVPs capable of confirming the
integrity of any CDI (rule C1).

When developing the main objects of the database schema with UBR, in order to
protect the database from violation of the consistency of the data stored in it, the capabilities
of both methods were used. Namely, in the created schema, using the integrity support
means provided by the SQL language standard, implementations of the Prsh integrity
constraints obtained as a result of the mapping were defined: γ : Pr→ Prsh (where Pr is
the set of integrity constraints that are specified in the data model with UBR (Mubr) [6]).

The essence of declarative support for integrity constraints is the definition of con-
straints using the data definition language (DDL) of SQL. The means of declarative support
for integrity were used to create the basic relations of the database schema with UBR
to define such types of constraints as entity integrity, referential integrity, required (not
null) data, and domain constraints. Namely, as known [8,9], the entity integrity is as-
sociated primarily with the uniqueness and irreducibility of the primary key. These
integrity requirements were defined for all basic schema relations as a result of mapping
(applying “primary key” and “unique” constructs of the corresponding SQL statements):
γPK : PrPK → Prsh

constrprimary_key
; γUK : PrUK → Prsh

construnique
Below is an example of the result

for such a mapping in the form of the main lines of DDL:
alter table MEAS_VALUES
add primary key (MEAS_TIME, MEAS_TYPE_ID, TYPE_ID, OBJECT_ID);.
As a result of the mapping: γFK : PrFK → Prsh

constrforeign_key
(applying “foreign key” con-

struction of the “create/alter table” operators), to ensure referential integrity, the foreign
keys of the schema relations and the action strategies when deleting data were defined.
As a result of the mapping: γnot_null : Prnot_null → Prsh

constrnot_null
(applying the “not null”

specifier in the “create/alter table” statements), the constraints prohibiting the assignment of
undefined values (null) to the corresponding attributes were set.

By mapping a set of integrity constraints of the data model with the universal basis of
relations Mubr, constraints for the feature attribute domains, data types of the characteristics
of the objects, events, parameters of objects, and some others were defined in the database
schema invariant to subject domains (as a result of mapping γdom : Prdom → Prsh

constrcheck
,

applying the “check” construction of the “create/alter table” operator). An example of the
results for such mapping is as follows:

alter table EVENTS add check ((event_end_time is null) or ((event_end_time
is not null) and (event_end_time >= event_time)));.

However, not all integrity constraints could be implemented (thereby contributing
to enforcing the requirements of rules C1 and C2) using declarative support. There-
fore, along with the means of this way of implementing integrity constraints, procedural
support means have found widespread use, such as triggers, stored procedures, and func-
tions (for simplicity, sometimes united by the common name SQL procedures [41]), the
mechanisms of which have been significantly expanded in many commercial DBMS in
recent years [14,41]. Using procedural support means, the following integrity constraints
(Prsh

constrproc
) were implemented in the DB schema with UBR:

The constrains on possibility: Changing SD metadata entered into the corresponding
relations of the schema (e.g., the maximum values of max_vals ∈ at(Rsh

event_prop_types))
and the removal of the list values for the corresponding characteristics from the relations
Rsh

pr_vals, Rsh
ev_pr_vals, and Rsh

meas_vals if they are present in the relations associated with the
data of the modeled SD [6];

– The constraints on the ability to enter new data that contradict the entered SD metadata
(for relations Rsh associated with the SD data);

– Implementation of referential integrity for the schema relations Rsh associated with
the relation Rsh

docs (a specific document from relation Rsh
docs is associated with a specific

instance of the corresponding relation Rsh (Figure 1));
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– The constraint of the maximum number of instances of objects (Rsh
objects relations) for a

certain class of objects (Rsh
obj_classes);

– The constraint of the maximum number of values (Rsh
ev_prop_values) that can be assigned

to a certain event characteristic (Rsh
event_prop_types) for the event instance (Rsh

events) of the
specific class;

– The constraints on the number of events (Rsh
events) that occur with one object in-

stance (Rsh
objects):

(a) At the same moment in time with one object instance, more than one event of
the same class cannot occur;

(b) One event that occurs with one object instance can have several subordinate
events with different instances of objects occurring at the same time, but the
specific event instance that occurs with the object instance of the certain class
can have only one “event-owner”;

– Generation of unique primary key values for schema relations Rsh and some others.

Figure 3 shows the scheme of applying techniques of declarative and procedural
support for integrity constraints, which are used in the development of objects of the
database schema with UBR to ensure the integrity of its data.
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for use, and DBMS software—as well as the possibilities of malicious impact on these
assets, it is advisable to ensure the security of both of them. Therefore, below, we consider
some aspects of ensuring the integrity of such important database objects performing data
management as persistent stored modules (PSMs). These are specially designed programs,
including SQL statements that are stored in a database, that can be invoked by applications
and run within the DBMS. These include the aforementioned stored procedures, functions
that can be combined into packages, triggers as a special kind of procedural code (a stored
procedure that is called in response to the modification of the database contents [41]), and
some others. Constant monitoring of these database objects (as CDI elements) is very im-
portant, since some of the attacks on the database (although not only on it, as, for example,
you can attack the operating system through the vulnerabilities of the database server) can
be detected precisely based on the modification analysis (intentional or accidental) of these
objects (violation of their integrity) or their set (increase or decrease in their number) on
the database server. Therefore, to ensure the possibility of monitoring the integrity of such
stored modules, including those related to the DB schema with UBR, using the potential of
the modern blockchain model, as shown in [42], the following have been developed:

– Structure;
– Techniques of forming the genesis and subsequent blocks;
– Verification methods (in the terminology of the Clark–Wilson model, this is IVP) of the

PSM integrity, as well as two relations located in one of the privileged user database
schemas, which are a mapping of the structure of blocks in the blockchain chain.

1 Relation of blockchain block headers Rbch:

Rbch(iid, t, dDB, nDB, nsh, hroot, hblock, hp_block, nso, w
∣∣∣iid ∈ N∗ ∧ t ∈ T ∧ dDB ∈ NmdDB∧

∧nDB ∈ NmDB ∧ nsh ∈ NmshDB ∧ hroot ∈ HMr ∧ hblock ∈ Hb∧
∧hp_block ∈ (Hb ∪∅) ∧ nso ∈ N∗ ∧ w ∈W),

(5)

where iid is the number of the i-th blockchain block; t is timestamp of block creation (T UTC
Coordinated Universal Time); NmdDB is a set of database domain names; dDB is the domain
name of a specific database; NmDB is a set of database names; nDB is the name of a specific
database; NmshDB is a set of names of the database schemas; nsh is the name of a specific
database schema (or “genesis block”); HMr is a set of hashes of Merkle roots; (HMr = {0, 1}n

is a set of all words of length n in the alphabet {0,1}); hroot is the hash of Merkle tree root
of the i-th block (i = 1 . . . Nbc, where Nbc is the total number of blockchain blocks); hblock
is the hash of the header of the current i-th block; hp_block is the hash of the header of the
previous (i− 1)-th block; Hb is a set of block hashes; (Hb = {0, 1}n); nso is the number of
controlled stored DB modules (as data items CDIs); N∗ is a set of natural numbers without
zero; W is a set of digital signatures (w ∈W, W = {0, 1}l).

An example of a partially filled database table, which is a mapping of the relation
Rbch, is given below (Table 1).

2 Relation of stored database modules (objects) Rsp:

Rso(iid, pk, αk, hk|iid ∈ N∗ ∧ pk ∈ typeso ∧ αk ∈ Nmso ∧ hk ∈ Hso), (6)

where Nmso is a set of names of stored modules (objects), and Hso is a set of hashes of
stored modules (Hso = {0, 1}n).

An example of a partially filled database table, which is a mapping of the relation Rso,
is given below (Table 2).
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Table 1. An example of a partially filled table of blockchain block headers. *

iid t dDB nDB nsh hroot hblock hp_block nso w
296987922 21-APR-20

06.00.13.000000
PM +03:00

ua.xxx.com WORKGR\
DESKTOP-
QRRDTTA

genesis
block

D420161F3
5294B0A64
7DD3E625
3C57AE25
8EC417D10
14EFC483A
66E7B6A9
1CE1

D420161F3
5294B0A64
7DD3E625
3C57AE25
8EC417D10
14EFC483A
66E7B6A9
1CE1

1
. . .

296987923 22-APR-20
02.34.01.575000

PM +03:00

ua.xxx.com orcl SYS 4DC69C66
60AF511F0
8D3F89FE89
9D19396269
676F657883
2EBC452EA
45F4AD56

442F64B40C
2CBA0E478
6DEC2FB9F
A64C310C8
555F8E6F15
82E1651AE
B7501CEB

D420161F3
5294B0A647
DD3E6253C
57AE258EC
417D1014EF
C483A66E7
B6A91CE1

9799
. . .

296987924 22-APR-20
02.36.24.606000

PM +03:00

ua.xxx.com orcl user_1 3538FDE465
91936C2FF5
3D06909323
1E9F72C316
451629D44F
AAE4AB221
FE2D1

F5415080C6
8CE7E671F5
262A968CE0
13B70C6B3B
EC200C9E90
192D5AA22
ED6EC

442F64B40C
2CBA0E478
6DEC2FB9F
A64C310C8
555F8E6F15
82E1651AEB
7501CEB

326
. . .

. . . . . . . . . . . . . . . . . . . . . F5415080C6
8CE7E671F5
262A968CE0
13B70C6B3B
EC200C9E90
192D5AA22
ED6EC

. . . . . .

* The background color is used for better understanding.

Table 2. An example of a partially filled table of stored modules.

iid pk αk hk

296987923 FUNCTION AQ$_GET_SUBSCRIBERS
05A85236D79D0FFB86DEB
11B1F5D155C49B831A008
C6E96F4A389C3896540107

. . . . . . . . . . . .

Access to these tables is limited: Only read/write and only to the owners of the
corresponding schemas. In order to protect against unauthorized actions of a privileged
user, as well as against illegitimate actions of attackers who illegally obtain the privileges
of the owner of some schema with respect to the corresponding objects (modules), the
proposed solution prescribes the creator of a specific database schema to sign “own”
relevant data (see Table 1) with one of the modern digital signature algorithms. The result
of the concatenation of hashed values (Merkle root hash, the timestamp, and the number
of objects) is such signed data. The use of a hash tree structure, such as Merkle root, a
digital signature mechanism to control the integrity and authenticity of objects stored in a
specific database schema, is due to the objective need for rational use of resources, leading
to savings for stored data and the computing resources of the processor.

As you know, the main disadvantage, usually mentioned for the Clark–Wilson model,
is that IVP and related techniques are not easy to implement in real computer systems, in
particular due to the fact that control of large amounts of information may be required,
which is associated with a significant duration of the procedure IVP [30]. Thus, for example,
in order to control the integrity of a specific stored module (as one of the CDI elements) in
a specific database schema in the usual way, it is necessary to perform hashing and digital
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signature procedures, storing the corresponding data for each of them. The use of the
hash tree structure allows ensuring the integrity control not only of the specific PSM being
checked, but also of all other stored programs of the selected database schema, including
the procedure that ensures the correctness of the formation of the values of Tables 1 and 2.
Since this one data fragment is included in the general structure, changing at least one
bit in it will entail a complete change in the value of the Merkle root. Therefore, Merkle
trees are widely used for secure and efficient validation (control integrity) of large data
structures [43–47].

On the DBMS server, the integrity control of the persistent stored modules, as de-
scribed above, can be established with a certain periodicity as part of the audit with the
recording of relevant information in the audit log with its subsequent analysis and taking
effective measures. At that, the integrity check of a certain PSM can be initiated by any
of the legitimate users of the system, who will contact the server with a corresponding
request, which is described in more detail in [42].

An approach to the usage of the potential of the modern blockchain model can also
be applied to control the data integrity of the relation Rsh

docs, in which various documents
of the simulated subject domain can be stored. If necessary, it is also possible to provide
control of the integrity of Tables 1 and 2. At that, some data of tables of Tables 1 and 2
can be converted into JSON format, after which a certain file will be formed from this
data some file-ledger, which is distributed to all legitimate users. First, for the possibility
of performing duplicate monitoring of unauthorized changes in stored database objects,
and second, for the possibility for legitimate users of so-called lightweight nodes [43] to
formulate correct queries to obtain information about the integrity of stored objects used
in their applications. Using the concept of hash trees, and having certain data from the
file-ledger, a legitimate user retains the ability to determine the fact of the presence of the
object of interest stored in the database, as well as its integrity, by obtaining a small amount
of data (as an authentication path in the Merkle tree) from the database server without the
need to store or transfer a huge amount of blockchain data.

It is no secret that the audit procedure is equally important for creating a complete
database security system. According to rule C4 of the Clark–Wilson model, each application
of TP must be logged in a special item CDI, which is a log containing sufficient informa-
tion to reconstruct a complete representation of each application of this transformation
procedure, and available only for adding information to it. Therefore, to monitor the status,
changes made to the database, user actions, in addition to using standard audit means
of DBMS, on the platform of which the database schema with UBR is implemented, the
developed special diagnostic functions implemented in the interpreter of the data model
language (LDM) [48] are used. These functions can detect the introduction of incorrect data.
For this purpose, triggers are also used that support the logging of operations performed
in the database. In addition, for accountability of user actions, data from the log table of the
modified data can be used [40]. Thanks to the information stored in the log table, which is
automatically formed when the corresponding parameter of the stored procedure of the
data model language interpreter is specified, the process of recovering incorrectly modified
or lost data is simplified, and the procedure for determining the users, times, and nature of
the modifications made by them is facilitated.

Thus, analyzing from the perspective of the Clark–Wilson model the possibilities of the
above developed and implemented, including within the framework of the DB schema with
UBR, techniques and means that ensure the integrity of the corresponding database ele-
ments of the CDI, we can conclude that they fully correspond to the main idea of the model.
The basic theoretical principles of the integrity control policy lay out what needs to be done,
and the mechanisms implemented define how these principles are achieved. Therefore,
databases implemented based on a schema with UBR can be considered appropriate to the
needs of databases protected from the point of view of integrity.
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4. Conclusions

Using the recommendations of the Clark–Wilson model as a methodological basis
for building an integrity assurance system in information systems, the authors developed
techniques and means that ensure the integrity of the main components of a database with
the universal basis of relations.

The proposed mechanisms are based on the provisions of the theory of relational
databases, the RLS technology, the potential of the modern blockchain model, the capabili-
ties of the SQL and LDM languages, as well as the DBMS on the platform on which DBs
with UBR are implemented.

The implemented techniques and means, controlling changes of the stored CDI
elements of the database with UBR, prevent their unauthorized change by authorized
subjects and prevent changes by unauthorized subjects. As a result, the stored data and
programs remain correct, unaltered, undistorted, and preserved. Consequently, databases
built based on the UBR schema and supported by such mechanisms are protected in terms
of integrity.
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