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Abstract: One of the main problems that emergent-gravity approaches face is explaining how a
system that does not contain gauge symmetries ab initio might develop them effectively in some
regime. We review a mechanism introduced by some of the authors for the emergence of gauge
symmetries in [JHEP 10 (2016) 084] and discuss how it works for interacting Lorentz-invariant vector
field theories as a warm-up exercise for the more convoluted problem of gravity. Then, we apply this
mechanism to the emergence of linear diffeomorphisms for the most general Lorentz-invariant linear
theory of a two-index symmetric tensor field, which constitutes a generalization of the Fierz–Pauli
theory describing linearized gravity. Finally we discuss two results, the well-known Weinberg–Witten
theorem and a more recent theorem by Marolf, that are often invoked as no-go theorems for emergent
gravity. Our analysis illustrates that, although these results pinpoint some of the particularities of
gravity with respect to other gauge theories, they do not constitute an impediment for the emergent
gravity program if gauge symmetries (diffeomorphisms) are emergent in the sense discussed in
this paper.

Keywords: analogue gravity; emergent gravity; emergent gauge symmetries; gravitons

1. Introduction

The pursuit of a theory able to combine the principles of general relativity and quan-
tum mechanics is one of the strongest driving forces in modern fundamental physics.
Almost a century of active research on this problem has resulted in many insights [1],
although a full comprehension of how both sets of principles might intertwine is still lack-
ing. Approaches toward finding a theory of quantum gravity can be divided in emergent
and non-emergent approaches. The first category corresponds to approaches in which the
fundamental degrees of freedom are not taken to be the spacetime geometry itself, but other
sort of microscopic degrees of freedom. The geometric structure characteristic of general
relativity is assumed to be recovered in a suitable regime, for instance a weakly-coupled
regime or a low-energy regime. String theory [2,3] would fall into this category, as it is a
specific proposal for these microscopic degrees of freedom. More generally, one can con-
ceive systems having another substratum for the emergence, for instance condensed-matter
systems [4–7]. The second category corresponds to theories in which the geometric struc-
ture of general relativity is taken as fundamental. Different approaches in this category are
set apart by the different quantization schemes applied to this structure. The most widely
studied theory within this category is loop quantum gravity [8]. The distinction between
the two categories above is nevertheless not a sharp one. In fact, the notion of emergence is
inevitably tied up to every quantum gravitational theory, since one can show on general
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grounds that there are no local observables in the Dirac sense [9] (that is, diffeomorphism
invariant) for any quantum gravity theory [10].

This work is devoted to analyzing a specific kind of system within the emergent
category. The motivation for this study comes from the observation that it is quite common
to find analogues of gravitational fields in many physical systems, especially in condensed-
matter systems [6]. However, this analogy just holds at a kinematical level, meaning that
the effective geometry emerging in those systems does not display the dynamical features
characteristic of general relativity. Thus, a natural question that arises is whether these
analogue systems can be designed to develop the correct dynamics. This is the notion of
emergent gravity that we explore in this work. Our goal is finding the conditions that make
such analogue systems develop fully relativistic dynamics in some regime.

The emergence of analogue gravity usually comes associated with a low-energy
regime in which the excitations can be typically described by a collection of weakly-
coupled relativistic fields. They describe the collective excitations of this system [7]. In
condensed-matter systems, this low-energy regime is usually characterized by the presence
of Fermi points [4,5]. Around these Fermi points, we know the field content relevant for
describing the low-energy regime, and we know that the fields are weakly coupled. This
low-energy Lorentz invariance becomes less exact as we increase the energy. It typically
manifests itself in modified dispersion relations of the form

E2 = k2 + ∑
n

ξn
k2n+2

E2n
L

, (1)

for instance, but also on the very dissolution of the effective description. The dispersion
relations by themselves offer a problem from an effective field theory rationale since
they appear to generate a fine-tuning problem (see [11]). Here we do not delve into this
problem, which we think arises because of the tacit assumption that the effective field
description survives far in the dispersive regime, and just assume the existence of a low-
energy Lorentzian regime. This ensures that we can apply the rules of effective field
theory and write down the most general effective action compatible with the symmetries
of the system in order to obtain a good description of the phenomena of interest [12,13].
However, these arguments cannot guarantee that a vector field Aµ or a symmetric tensor
hµν will develop gauge symmetries. It is well known that gauge symmetries prevent the
propagation of ghost states and hence eliminate the potential instabilities of such theories.
The absence of gauge symmetries would leave us with a potentially unstable theory. Hence,
the low-energy description needs to be endowed with a mechanism that allows the effective
decoupling of the dangerous degrees of freedom. We discuss here a specific mechanism for
this decoupling, first introduced by some of us in [14] for an extended version of (quantum)
electrodynamics.

Here is a brief outline of this work. In Section 2, we review on general grounds the
mechanism for the emergence of gauge symmetries in systems displaying no gauge symme-
tries ab initio. Section 3 is devoted to discussing some examples. In Section 3.1, we review
how this mechanism works for an extended version of linearized Yang–Mills theory and
how a non-linear completion of such theory can be obtained through a bootstrapping proce-
dure, which was studied in detail in [15] where further details can be found. In Section 3.2,
we consider the most general linear theory that can be written down for a symmetric
tensor field hµν. We study the mechanism for the emergence of gauge symmetries and find
the emergence of the closest gauge symmetries to diffeomorphisms and WTDiff within
this framework. We discuss the relation of this result with the emergence of linearized
gravity and discuss ongoing work on the possible non-linear completions of the theory. In
Section 4, we revisit some theorems, namely the Weinberg–Witten theorem in Sections 4.1
and 4.2 that are often invoked as no-go theorems for emergent gravity and discuss their
limitations and interplay with our results. We conclude in Section 5. Furthermore, we
have added Appendix A where we discuss some specific cases associated with particular
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choices of parameters for the hµν-theory from Section 3.2 that make the discussion of the
emergence of gauge symmetries slightly different.

Notation and conventions. We work in four-dimensional spacetime and we use the
signature (−,+,+,+). The symbol ∇ represents the covariant derivative compatible with
the flat metric of Minkowski spacetime ηµν. We use greek (µ, ν...) indices for the spacetime
indices and latin indices (a, b...) for the internal indices of vector fields.

2. A Mechanism for the Emergence of Gauge Symmetries

The first step in the logic of our construction is to consider a non-relativistic condensed-
matter-like theory that in some regime can be accurately described in terms of a set of
Lorentz-invariant and weakly coupled fields over a flat background. The emergence
of Lorentz invariance in this kind of systems is typically associated with the presence
of Fermi-like points in the theory [4,5,7]. Here, we take for granted this first step and
analyze under which conditions this effective field theoretic description develop emergent
gauge symmetries.

We will work in configuration space to avoid introducing Dirac’s machinery for the
classification of constrained systems [9]. Thus, we need a characterization of gauge symme-
tries within this formulation. Such characterization is offered by Noether’s theorem [16].
Generally, given a symmetry we can find a conserved current associated with it. If the
symmetry is a gauge symmetry, the Noether charges associated with the corresponding
current are trivial. Hence, for a gauge symmetry the current can always be written as

Jµ = Wµ + Sµ, (2)

with Wµ being a term that is zero on shell and Sµ = ∇νNνµ a superpotential, i.e., an
identically conserved term. Once the theory is provided with suitable fall-off conditions,
the contribution of the superpotential term to the charges identically vanishes, as it can be
seen by applying the Gauss theorem [17].

This characterization of gauge symmetries is the starting point for our discussion
of emergent gauge symmetries. Let us consider a field theory characterized by a set of
fields, which we call Φ, with a well-posed initial value problem. For the sake of simplicity,
we assume that such system is free of gauge symmetries from the beginning. There
always exists a set of symmetries whose Noether charges parametrize the space of initial
conditions [18], and hence the whole space of solutions which we call S . These symmetries
are in general complicated symmetries that cannot be found explicitly; they can only be
found for integrable systems. Knowing that they exist is enough for our purposes.

Now let us consider a set of constraints defined by the condition Ψ = 0. Here,
Ψ represents a set of equations that combine the fields Φ and their derivatives. Let us
represent the subspace defined by this constraint as U ⊂ S . We demand such a space to
be non-trivial in the sense of having more than one element. This means that there exist
solutions for the constraint Ψ = 0, apart from the trivial one in which all the fields vanish,
Φ = 0.

Let us denoteQ the complete set of charges that parametrizes the space of solutions S .
It is convenient to choose a parametrization of the space of charges, i.e., a set of coordinates
in charge space, such that the subspace U is characterized by the condition that some of
the charges vanish. In other words, we choose a subset of charges Q⊥Ψ ⊂ Q such that
Ψ = 0 if and only if Q⊥Ψ = 0. Furthermore, it is useful for our purposes to choose the

remaining coordinates, which we denote asQ‖Ψ, in such a way that they leave the subspace

U untouched. This means that the symmetries associated with the charges Q‖Ψ can be
defined within U since they preserve the condition Ψ = 0. Now we have two possibilities
depending on the values of the charges Q‖Ψ within the subspace U .

Non-emergence of gauge symmetry: This corresponds to the standard situation in
which the charges Q‖Ψ parametrize the space U without redundancies. In this case, we will
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have that the projection onto the subspace U simply eliminates the degrees of freedom
directly encoded in the conditions Ψ = 0.

Emergence of gauge symmetry: This case corresponds to the situation in which some
of the charges Q‖Ψ vanish when we restrict to U . In this case, not all the solutions in U
can be distinguished by just using operations within U . Hence, the solutions related by
a finite transformation associated with the charges Q‖Ψ can be interpreted as describing a
single physical configuration. A pictorical representation of this situation can be found in
Figure 1.

Figure 1. We represent the space of solutions S and the set of surfaces characterized by constant
values of Q⊥Ψ . Among them, there is a privileged one represented in darker blue characterized by
Q⊥Ψ = 0, i.e., it represents the subspace U from the discussion above. The solid blue and brown curves

represent curves of constant Q‖Ψ within the surfaces of Q⊥Ψ = constant. The dashed brown curves
within the subspace U represent the emergent gauge orbits, i.e., they connect points that cannot be
distinguished by performing operations within U and are characterized by the same vanishing value

of some of the charges Q‖Ψ in U .

Interpreting these configurations as a single physical configuration means that these
finite transformations would correspond to emergent gauge symmetries. Furthermore,
we would interpret the orbits generated by these transformations as emergent gauge
orbits. This translates into the elimination of entire dynamical degrees of freedom, each
corresponding to a pair of initial conditions or charges that parametrize S . Notice that this
mechanism relies on the naturalness of the condition Ψ = 0 in some regime of the theory,
e.g., a low-energy regime or a weakly-coupled one. We will come back to this point when
considering specific examples below.

This mechanism has been implemented successfully for Maxwell [14] and linearized
Yang–Mills theories [15]. To extend this mechanism to non-linear theories, in [15] we
demanded the existence of a bootstrapping procedure that determines the self-coupling
of the linear theory, thus connecting smoothly the linear and non-linear theories. In this
paper, we start exploring the application of this mechanism to gravity.

3. Two Examples: Yang–Mills Theories and Linearized Gravity
3.1. Yang–Mills Theories

Let us present here an extended version of Yang–Mills theory that will allow us to illus-
trate the emergence of gauge symmetries. Our starting point is the most general quadratic
and Lorentz-invariant Lagrangian giving rise to second-order differential equations that
can be written for a set of N vector fields Aa

µ, with the latin indices (a, b, c...) running from
1 to N:

S2 =
∫

d4x
√
−η

[
−1

4
Fa

µνFµν
a +

1
2

ξab(∇µ Aaµ)(∇ν Abν)− 1
2

Mab Aaµ Ab
µ + Aaµ jaµ

]
, (3)



Appl. Sci. 2021, 11, 8763 5 of 20

up to a boundary term which we skip here. We have introduced the notation Fa
µν = 2∇[µ Aa

ν]
,

where ∇ is the affine connection compatible with ηµν, and we have introduced the non-
degenerate matrix ξab and the mass matrix Mab. The case which is especially interesting
for us is the massless case Mab = 0, since it is a generic feature that field theories emerging
around Fermi points in condensed-matter systems give rise to massless excitations [5].
Masses can be acquired in a second step through a Higgs-like mechanism. However, for
the moment, we will keep the Mab term since it is instructive to study the massive and
massless cases as representatives of the two possible situations described in the previous
section regarding the mechanism for the emergence of gauge symmetries. The equations
of motion can be derived straightforwardly from action (3) by taking a simple functional
derivative,

∇µFµν
b − ξab∇ν∇µ Aaµ −Mab Aaν = jν

b . (4)

It is possible to identify a set of symmetries for this theory associated with the follow-
ing transformations:

Aa
µ → Aa

µ +∇µχa, jaµ → jaµ, (5)

where χa are functions that need to obey

(ξab�+ Mab)χ
a = 0. (6)

The currents associated with these symmetries, once evaluated on shell, can be written
as follows [15]:

Jµ|on shell = −∇ν(Faµνχa) + ξab

(
∇ν Aaν∇µχb − χb∇µ∇ν Aνa

)
(7)

Notice that the first part of this equation is a superpotential and hence it does not
contribute to the charges. Furthermore, the second term vanishes if we restrict ourselves
to the subspace U of solutions of Equation (4) satisfying ∇µ Aaµ = 0. Hence, projecting
onto the subspace U makes the current acquire the form of a gauge current encapsulated in
Equation (2). Notice that although Equation (7) is associated with a transformation whose
generators χa are spacetime-dependent local functions, it does not constitute a gauge
transformation a priori. Gauge transformations are associated with local transformations
whose generators are arbitrary functions of spacetime. However, in our case they are
constrained to obey Equation (6). Thus, the transformation we are discussing does not
constitute a gauge transformation from the beginning although it is generated by local
functions. A further discussion of this point with a concrete example can be found in
Sections 2.1 and 2.2 from [14].

The projection introduced above is quite natural once we consider the dynamical
equations that the scalar fields ϕa = ∇µ Aaµ obey, which can be obtained by taking the
divergence in Equation (4): [

�δc
a +

(
ξ−1

)cb
Mab

]
ϕa = 0. (8)

We have a set of sourceless Klein–Gordon equations for these scalars ϕa, and hence it
is quite natural to restrict ourselves to the subspace U defined by ϕa = 0, since there are no
Lorentz-invariant sources that might generate excitations of these scalars. From this point
onwards, there are two possible situations which we discuss below.

Massive case Mab 6= 0. In this case no gauge symmetries emerge, since the putative
emergent gauge symmetries from Equations (5) and (6) do not leave U invariant. Actually,
they translate into the following map for ϕa

ϕa → ϕa −
(

ξ−1
)ab

Mbcχc, (9)

which takes ϕa = 0 to a non-vanishing value for ϕa 6= 0.
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Massless case Mab = 0. In this case gauge symmetries emerge naturally, since the
transformations from Equations (5) and (6) become gauge symmetries by leaving the scalar
fields ϕa invariant (note that the last term of (9) now vanishes).

It is better to pause at this point to summarize what we have obtained so far and
what are we pursuing for the non-linear theory. We began with the most general Lorentz-
invariant vector field theory for a set of N vector fields Aa

µ. If these vector fields represent
massless excitations, we have shown that the coupling to a conserved current leads to
a set of sourceless Klein–Gordon equations for the scalar sector of the theory. Since no
excitations can be produced within that subspace, we have removed the scalar sector by
projecting onto the subspace ϕa = 0. The resulting effective field theory that we have found
displays emergent gauge symmetries given by Equation (5), with χa satisfying �χa = 0.
Notice that these transformations are just the residual gauge symmetries of linearized
Yang–Mills theory after the Lorenz gauge is chosen.

The next natural step would be to study non-linear vector-field theories. Among the
possible non-linear vector-field theories, Yang–Mills theories are special since their gauge
symmetry avoids the propagation of ghosts when one linearizes them. Furthermore, they
are such that they can be derived from the linear theory through a bootstrapping procedure
in which one analyzes the self-coupling of the theory [19]. However, such procedure does
not lead to a unique theory by itself due to the ambiguities inherent to the definition of a
Noether current [20,21], at least not with further specifications [22]. The combination of the
mechanism introduced here for the emergence of gauge symmetries with the bootstrapping
procedure allowed us to make an incursion on the non-linear vector-field theories that are
free from instabilities. We present here the main idea and refer the reader to [15] for further
technical details.

The idea of the bootstrapping procedure is the following. Consider a linear field
theory displaying a symmetry and hence having a conserved current which we call Jaµ

1 .
We assume that our theory couples perturbatively to such current in such a way that we
recover a smooth limit for the free theory when we take the coupling constant to be zero.
We call such a coupling constant g. Thus, schematically we will have equations of motion
of the form

δS2

δAaµ
= gJaµ

1 +O
(

g2
)

. (10)

To derive the right-hand side from an action principle, we would need to add a
suitable interacting term S3 to the action such that

δS3

δAaµ
= Jaµ

1 . (11)

However, notice that S3, which needs to be also symmetric under the transformations
that we introduce for the bootstrapping procedure, would contribute to the conserved
current due to Noether’s theorem. Hence, we would obtain a contribution to the current of
the form gJaµ

2 which we would want to derive from an action principle, from S4. In this
way, we would obtain an infinite set of constraints for the successive actions Sn and Sn+1.
More concretely, we would have

δSn+1

δAaµ
= Jaµ

n−1, (12)

where Jaµ
n−1 is obtained from Sn through Noether’s theorem. In this way, it is possible to

obtain a potentially infinite set of equations which we would need to solve in order to find
the non-linear theory described by the action

S =
∞

∑
n=2

gn−2Sn. (13)
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There are two points we want to stress. First, we need to remember that conserved
currents are defined up to the addition of identically conserved quantities. Hence, at
each order in the bootstrapping procedure we have ambiguities that need to be taken
into account. For instance, in the gravitational context they are crucial to recover general
relativity from Fierz–Pauli theory through this procedure [23]. Second, at each order we
need to ensure that the generated contribution to the action Sn+1 is still invariant under
the symmetry transformations that were used to define the current Jaµ

n−1. This imposes
non-trivial constraints on the partial actions [15].

For the case of emergent Yang–Mills theories, we need to consider the following
quadratic action as the starting point,

S2 =
∫

d4x
√
−η

[
−1

4
Fa

µνFµν
a +

λ

2
(∇µ Aµ

a )(∇ν Aaν)

]
, (14)

which is the action from Equation (3) with Mab = 0, as we demand for the emergence
of gauge symmetries. We have omitted the material content which we will discuss later,
and we have restricted ourselves to the case ξab = λδab for the sake of simplicity. The
symmetries that we can identify to begin the bootstrapping procedure are the following
rigid transformations:

Aaµ → Aaµ + f abc Aµ
b ζc, (15)

where ζc is the arbitrary real constant and f abc is a constant tensor antisymmetric in the
first two indices, i.e., obeying f abc = f [ab]c.

It turns out that the bootstrapping procedure imposes two non-trivial constraints
that must be fulfilled to be self-consistent [15]. On the one hand, the constants f abc must
be the structure constants of a semi-simple compact Lie Algebra for the symmetry in
Equation (15) to be also a symmetry of S3. On the other hand, we need to impose the
constraint ∇µ Aµ

a = 0 to avoid breaking the bootstrapping procedure since, if we do not
impose it, the equations of motion cannot be derived from an action principle. The resulting
action from the bootstrapping procedure can be written as

S =
∫

d4x
√
−η

[
−1

4
F a

µνF
µν
a +

λ + gϑ

2
(∇µ Aµ

a )(∇ν Aaν)

]
, (16)

where g is the coupling constant introduced above, ϑ is a Lagrange multiplier that enforces
the constraints ∇µ Aµ

a = 0, and we have introduced the object

F a
µν = 2∇[µ Aa

ν] + g f bca Abµ Acν. (17)

This resulting theory has the properties that we were looking for. Namely, its g→ 0
limit is the free emergent linearized Yang–Mills theory discussed above. The same comment
applies to the infinitesimal emergent non-linear gauge transformations, given by

Aa
µ → Aa

µ +∇µχa + g f abc Abµχc (18)

with the fields χa obeying
�χa + g f abc Aµ

b∇µχc = 0. (19)

These reduce to the emergent gauge symmetries of the linear theory from
Equations (5) and (6) in the g → 0. These transformations are such that they preserve
the subspace U defined by the constraint ∇µ Aaµ = 0. Finally, we notice that the inclusion
of matter is straightforward, since the bootstrapping procedure in the matter sector is
disentangled from the bootstrapping procedure in the gauge sector that we have sketched
here. The self-consistency constraint that appears in the matter sector is that the fields need
to transform under a representation of the gauge group whose associated Lie Algebra has
the structure constants f abc that we introduced above. For scalar fields, this procedure
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needs two iterations, like for the Yang–Mills case, whereas for fermionic fields it requires
just one iteration to be completed.

This has been just a brief summary of how an emergent Yang–Mills theory can be
obtained by a suitable combination of the mechanism introduced in Section 2 and the
bootstrapping procedure. For further details, see [15]. In the following we will focus on a
situation that has not been studied previously.

3.2. Linear Graviton Physics

The discussion of the case for a symmetric tensor field hµν is completely parallel to the
above section. The first step is to write down the most general quadratic Lorentz-invariant
action for such a field. This means that the hµν-field is a good variable to describe our
effective field theory. For instance, it can represent the deformations of a given condensed-
matter-system near a Fermi point, as we have explained in the introduction. Therefore, the
resulting effective theory does not need be gauge-invariant: this is definitely asking too
much since everything we know about it at this stage is that it can be described by a field
hµν. Explicitly, this action has the form

S =
∫

d4x
√
−η

[
−1

4
∇µhαβ∇µhαβ +

1
2
(1 + ξ1)∇µhµα∇νhν

α

−1
2
(1 + ξ2)∇µhµν∇νh +

1
4
(1 + ξ3)∇µh∇µh− 1

4
m2

1hµνhµν − 1
4

m2
2h2
]

, (20)

where indices are raised and lowered with the flat spacetime metric ηµν, we have intro-
duced the trace of the field hµν as h = hµνηµν, and we have introduced the dimensionless
parameters ξi and the mass parameters mi.

We can also include a coupling to matter by adding a term of the form hµνTµν to the
previous Lagrangian, with the properties of Tµν being discussed in more detail below (for
the moment we will just assume that it is a symmetric tensor). The equations of motion can
be computed by performing a variational derivative, which results in

1
2
�hµν − (1 + ξ1)ηβ(µ∇ν)∇αhαβ +

1
2
(1 + ξ2)

(
∇µ∇νh + ηµν∇2 · h

)
− 1

2
(1 + ξ3)ηµν�h− 1

2
m2

1hµν −
1
2

m2
2ηµνh = Tµν, (21)

where we have introduced the notation ∇2 · h = ∇µ∇νhµν and we will keep using it
throughout this section.

Before moving forward, it is better to pause and discuss the values of the parameters
ξi and mi for which the system has a gauge symmetry from the beginning, in order to avoid
those cases in the discussion of emergent gauge symmetries. We will follow the discussion
of [24]. On the one hand, for ξ1 = m1 = 0, the equations of motion are invariant under the
group of linearized transverse diffemorphisms, whose infinitesimal transformations are
generated by a divergenceless vector field χµ as follows:

hµν → hµν + 2∇(µχν), ∇µχµ = 0. (22)

In addition, for m2 = 0, ξ2 = ξ3 = 0 we can relax the condition on the divergence for
the vector field ∇µχµ = 0 and recover the full group of linearized diffeomorphisms, i.e.,
one recovers the Fierz–Pauli theory [25], i.e., transformations generated by arbitrary vector
fields χµ as

hµν → hµν + 2∇(µχν). (23)

We could have considered a set of transformations that is slightly more general than
the ones introduced here, namely transformations generated also by a vector field χµ as

hµν → hµν + 2∇(µχν) + kηµν∇αχα (24)
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However, these transformations do not add anything new. To understand this, we
first notice that when we put the masses equal to zero m1 = m2 = 0, a field redefinition of
the form

hµν → hµν + ληµνh, (25)

(with λ 6= −1/4 in order for it to be invertible) leaves the functional form of the Lagrangian
invariant at the expense of changing the parameters ξ2 and ξ3 as [24]

ξ2 → ξ2 + 4λ + λ(4ξ2 − 2), (26)

ξ3 → ξ3 + 2λ(2 + 4ξ3 − ξ2) + λ2(16ξ3 − 8ξ2 + 6). (27)

Had we begun with the case ξ1 = ξ2 = ξ3 = 0, for which the theory is invariant
under the whole set of diffeomorphisms, we would have ended up with new parameters
ξ2 and ξ3

ξ2 = 2λ, (28)

ξ3 = 4λ + 6λ2. (29)

Furthermore, notice that within this new parametrization of field space, the theory
is not invariant under the standard transformations of the form (23) but transformations
of the form (24) with k = 2λ. Thus, it is clear that the more general set of transformations
of the form (24) is included in the set of transformations of the form of ordinary linear
diffeomorphisms (23) upon, possibly, a field redefinition. Hence, we will focus only on the
set of transformations (23) since the transformations (24) do not add anything new.

On the other hand, if m1 = m2 = 0 and the parameters ξi satisfy the relations
−2 + ξ2 − 4ξ3 = 0 and 1− ξ1 + 2ξ2 = 0, we have the following Weyl transformations,
generated by a scalar field φ, as gauge transformations:

hµν → hµν +
1
2

ηµνφ. (30)

This Weyl symmetry can be combined with transverse diffeomorphisms to build
the so-called linearized WTDiff (Weyl transverse-diffeomorphism) invariant gravity by
choosing ξ1 = 0, which guarantees that transverse diffeomorphisms are gauge symmetries
as explained above. This forces ξ2 = −1/2 and ξ3 = −5/8 (this corresponds precisely to
the case of considering the theory with ξ1 = 0 and performing a putative field redefinition
of the form (25) with the limiting value λ = −1/4 for which the transformation becomes
singular. Thus, it is not a true field redefinition since one can not recover the trace of h from
the transformed field [24]).

The Fierz–Pauli theory (with the whole linearized group of diffeomorphisms) and
WTDiff (with linearized Weyl and transverse diffeomorphism transformations) are the two
largest possible gauge symmetry groups for a tensor field hµν [24].

Once we have discussed the choices of parameters for which the theory displays
gauge symmetries, let us go back to the discussion of emergent gauge symmetries. We
will be assuming that the parameters ξi are such that the theory is generic, in the sense that
the coefficients of the different terms that will appear from now in equations of motion,
conserved currents, etc. do not vanish. Furthermore, we will assume that they take
generic values different from the ones that endow action (20) with gauge symmetries from
the beginning. The discussion of special choices of the parameters has been moved to
Appendix A since it just involves the analysis of different particular cases and does not
affect the main point of this section.

Following the discussion in Section 2, the first step is to identify a set of physical sym-
metries in our system that can become potential gauge symmetries. The key observation is
that the following transformations

hµν → hµν + 2∇(µχν), (31)
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with the field χµ obeying the following conditions,

− ξ1�∇(µχν) + (ξ2 − ξ1)∇µ∇ν(∇αχα)

+ (ξ2 − ξ3)ηµν�∇αχα −m2
1∇(µχν) −m2

2ηµν∇αχα = 0. (32)

are physical symmetries of the action defined in Equation (20). This can be seen by
computing their Noether currents. The previous expression can be written in a more
illustrative form as

∇(µVν) + ξ4ηµν(∇αVα) +

(
ξ4

ξ1
m2

1 −m2
2

)
ηµν(∇αχα) = 0,

Vν = �χν +

(
1− ξ2

ξ1

)
∇ν(∇σχσ) +

m2
1

ξ1
χν, (33)

with ξ4 = (ξ3 − ξ2)/(2ξ1 − ξ2). As we are interested in physical symmetries that can
become emergent gauge symmetries, let us concentrate on the massless case. Then we have

∇(µVν) + ξ4ηµν(∇αVα) = 0,

Vν = �χν +

(
1− ξ2

ξ1

)
∇ν(∇σχσ). (34)

Taking the trace of the equation on the first line (contracting with ηµν), we obtain that
∇αVα = 0 and thus ∇(µVν) = 0. Imposing also that χµ goes to zero at infinity, we deduce
that Vµ = 0.

At this stage and as an aside, it is interesting to realize that the condition Vµ(χ) = 0 for
a given vector field χµ can be extracted by requiring that the infinitesimal transformations
from Equation (31) leave the subspace of hµν invariant, obeying the following (putative
gauge) condition of the form

∇µhµν −
ξ2

2ξ1
∇νh = 0. (35)

Let us now pass to explicitly analyze the structure of the Noether charges. Applying
Noether’s theorem to the symmetries satisfying Equation (31) and suitably rearranging the
terms, we get the following expression for the current with Vµ = 0,

Jµ = Wµ + 2∇νN[µν] + Mµ + Dµ, (36)

where the terms in the previous expressions read

Wµ = −�hµνχν + 2Tµνχν, (37)

Nµν = ∇νhµρχρ + hνρ∇µχρ, (38)

Mµ = −
[
(1 + ξ2)∇αhµα + (1 + ξ3)∇µh− (1 + ξ1)hµα∇α

+
1
2
(1 + ξ2)h∇µ + (1 + ξ2)hµν∇ν − (1 + ξ3)h∇µ

]
∇ρχρ, (39)

Dµ = −∇αhαβ∇µχβ +∇µ∇αhαβχβ + (1 + ξ1)∇βhβ
ν∇µχν + (1 + ξ1)∇βhβ

ν∇νχµ

− 1
2
(1 + ξ2)∇νh∇µχν − 1

2
(1 + ξ2)∇νh∇νχµ + (1 + ξ2)h�χµ. (40)

The charges associated with these currents Jµ do not identically vanish as long as we
avoid the particular choices of parameters discussed above. We can also check that by
restricting to a subspace of solutions satisfying the condition (35) one is still not able to make
all Noether charges associated with the symmetry Vµ = 0 to vanish with full generality.
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However, we can focus our attention on a reduced set of symmetries, defined as
transformations of the form (31) with the generators obeying

�χν = 0,

∇ν(∇σχσ) = 0. (41)

Notice that these conditions automatically ensure that Vµ(χ) = 0, since they cor-
respond to independently putting to zero the two terms entering the definition of Vµ

in (33). It is not difficult to realize that the corresponding Noether charges all vanish
when restricted to a subspace of solutions of the theory, which we call U , characterized by
the conditions

∇µhµν = 0, ∇νh = 0. (42)

The conditions from Equation (41) for the transformations (31) introduced above
precisely correspond to the subset of such transformations that preserve the conditions
from Equation (42). We will come back to this point shortly. Furthermore, notice that the
conditions defining this subspace are Lorentz-invariant themselves.

To see why when we restrict ourselves to the subspace of solutions U the Noether
charges of the symmetries satisfying Equation (41) identically vanish, it is useful to notice
that we have rearranged the conserved current (36) in a sum of four pieces, where:

1. The first term, Wµ, vanishes on shell within the subspace U ;
2. The second term, given by the divergence of Nµν, is a superpotential;
3. The third term, Mµ, vanishes identically if we take the transformations such that

∇α

(
∇µχµ

)
= 0;

4. The fourth term, Dµ, is such that it also identically vanishes within the subspace U .

This discussion allows us to conclude that if we define a projection onto the subspace
U , defined by the constraints ∇µh = 0 and ∇µhµν = 0, of the massless theory, these
physical symmetries become emergent gauge symmetries within that subspace. We will
discuss in a moment how this subspace could be selected dynamically.

In addition to the diffeomorphism-like transformations from Equation (31) already dis-
cussed, we can also ask whether the Weyl transformations introduced in Equation (30) can
become emergent gauge symmetries using the same mechanism. The first step is identify-
ing the following Weyl-like physical symmetries of the theory, given by the transformations
hµν → hµν + ηµνφ/2 where the scalar field φ needs to obey the following equation:[(

−1
2
+

1
4

ξ2 − ξ3

)
�− 1

4
m2

1 −m2
2

]
ηµνφ +

[
1
2
+ ξ2 −

1
2

ξ1

]
∇µ∇νφ = 0. (43)

Taking the trace of this equation and considering the case m1 = m2 = 0, we find the
condition

�φ = 0, (44)

and plugging it back in (43) we find the condition

∇µ∇νφ = 0, (45)

for the Weyl transformations to be symmetries of the theory. The solutions to this equations
are of the following form

φ(x) = A + Bµxµ A, Bµ ∈ R. (46)

Now, we can compute the Noether currents associated with these symmetries which read

Jµ =
1
4
(2− ξ2 + 4ξ3)(h∇µφ− φ∇µh), (47)
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where we recall that we have set the masses to zero m1 = m2 = 0. To ensure that these
transformations correspond to gauge symmetries, we need to ensure that they have trivial
Noether charges. For that purpose, we have two options.

First case: Bµ 6= 0. If we take Bµ 6= 0 we need to restrict ourselves to the subspace
h = 0 in order to have a trivial current. However, notice that these transformations do not
preserve such subspace and hence we would be in the first situation described in Section 2,
namely the non-emergence of gauge symmetry.

Second case: Bµ = 0. In this second case we can relax the condition on h to be∇µh = 0
in order to have a trivial current. Notice that these transformations preserve the subspace
∇µh = 0 and hence this second option corresponds to the second situation described in
Section 2, i.e., the emergence of gauge symmetry. More explicitly, to have WTDiff emergent
transformations, we need to restrict ourselves to the same subspace U introduced above.
We recall that such space is defined by the conditions (42) and that we need to choose it
because the emergent Weyl gauge symmetries preserve them and the Noether currents
restricted to such subspace give identically vanishing charges. Hence, we conclude that
it is possible to also find emergent Weyl symmetries with the mechanism introduced in
Section 2.

It is interesting to realize that the space U in which we find the emergence of gauge
symmetries is the same independently of whether we are trying to find the closest theory
to Fierz–Pauli theory or to linearized WTDiff within this emergent paradigm. In fact, a
(non-transverse) diffeomorphism generated by a vector field with constant divergence
∇αχα = κ ∈ R, such as the ones we have considered above, is equivalent to the composition
of a transverse diffeomorphisms generated by the transverse part of such vector field χµ

and a Weyl transformation generated by a constant scalar field with φ = 4κ. Both of them
can be seen to produce constant shifts in h and hence preserve the subspace U . In other
words, when we understand the conditions defining subspace U , i.e., ∇µhµν = ∇νh = 0,
as gauge fixing conditions for either Fierz–Pauli or linearized WTDiff, the residual gauge
symmetries that leave such subspace invariant for both theories are exactly the same. Thus,
whether one decides to understand the emergent gauge theory we have built as having a
Fierz–Pauli flavor or a linearized WTDiff flavor is inconsequential for the discussion at the
linear level.

Now, let us pass to discuss under which conditions the space U is selected naturally
by the dynamics of the theory. If we assume that the tensor Tµν is conserved, taking the
divergence of the equations of motion uncovers a structural constraint:

− 1
2

ξ1�∇µhµν +
1
2
(ξ2 − ξ1)∇ν∇2 · h +

1
2
(ξ2 − ξ3)∇ν�h = ∇µTµν = 0. (48)

Taking an additional divergence we find

�
[
(ξ2 − 2ξ1)(∇2 · h) + (ξ2 − ξ3)�h

]
= 0. (49)

Given this structural equation, which is a wave equation without a source, we can
argue as we have already done before that the following solutions are selected dynamically,

(ξ2 − 2ξ1)(∇2 · h) + (ξ2 − ξ3)�h = 0. (50)

Plugging this condition into Equation (48) we obtain

�
[
∇µhµν +

(ξ2 − ξ3)

(ξ2 − 2ξ1)
∇νh

]
= 0, (51)
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and applying again the argument that the lack of sources selects naturally the trivial
solution, we conclude that

∇µhµν +
(ξ2 − ξ3)

(ξ2 − 2ξ1)
∇νh = 0. (52)

Notice that this condition does not imply that the two terms in the previous expression
are zero independently. For this to happen one needs to impose further constraints.

One possibility is to further require that the trace of Tµν is a constant over spacetime.
Taking the trace of the equations of motion for the field hµν and introducing the following
notation T = ηµνTµν, we find

1
2

[
(−2 + ξ2 − 4ξ3)�h + (2− 2ξ1 + 4ξ2)∇2 · h

]
= T. (53)

Taking a derivative, using the assumption of constant trace for the current, i.e.,
∇µT = 0, and using also (50) we obtain the following condition (assuming that the param-
eters do not take specific values, which we discuss in Appendix A):

�(∇νh) = 0. (54)

Again, for a generic system, and applying the argument that the lack of sources leads
naturally to the trivial solution, we obtain the condition∇νh = 0. Inserting this condition in
Equation (52) we precisely see that the subspace U introduced in Equation (42) is naturally
recovered. Thus, under the assumption of coupling to a conserved current ∇µTµν = 0
with constant trace, ∇µT = 0, we have found that the system develops emergent gauge
symmetries that can either be understood as emergent diffeomorphisms or emergent
Weyl-transverse diffeomorphisms.

Let us summarize the discussion concerning the emergence of gauge symmetries for
the two-index symmetric tensor field hµν up to this point. We have managed to prove
that for the most general Lorentz-invariant theory constructed from such tensor field, the
mechanism presented in Section 2 works and provides us with emergent gauge symmetries.
At the linear level, the gauge transformations that emerge can be either understood as
the manifestation within this emergent framework of either linearized diffeomorphisms
or linearized Weyl and transverse diffeomorphisms transformations. To put it explicitly,
consider any generic Lorentz-invariant theory of hµν which fulfills the following conditions:

1. It describes massless excitations, namely the masses from the Lagrangian in Equation (20)
are equal to zero (m1 = m2 = 0).

2. It couples to a two-index symmetric source Tµν that is conserved, i.e., divergenceless
∇µTµν = 0.

3. The source has constant trace, namely ∇µT = 0.

Our analysis implies that at the linear level, such a theory has a natural truncation
that is indistinguishable from either Fierz–Pauli theory or linearized WTDiff theory in
the gauge described by (42). Notice that, instead of a projection to a given dynamical
subspace of the theory, for these theories we understand the conditions ∇µhµν = ∇νh = 0
as gauge fixing conditions. Actually, we emphasize that Fierz–Pauli theory and linearized
WTDiff are indistinguishable in this specific gauge, in the sense that the residual gauge
transformations that emerge are of the same form. This is the reason for understanding
this emergent gauge theory as the manifestation of either WTDiff and Fierz–Pauli theory in
the emergent framework: both theories are indistinguishable in this specific gauge.

The extension to the non-linear regime of the gravitational case through a boot-
strapping procedure is expected to be much more involved than for the vector-field case
discussed in Section 3.1 and it is left for future work. It constitutes an ongoing project on
which we expect to report soon. Here we simply advance that the source of this difficulty
arises, apart from the obvious technical complications appearing due to the presence of
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much more terms in the Lagrangian, from the nature of the non-linear terms appearing in
the series generated through the bootstrapping procedure. Whereas for vector fields there
appears a finite series that finishes after two iterations, for gravity we need to deal with an
infinite “formal” series to obtain the non-linear theory [22,26].

4. No-Go Theorems for Emergent Gravity Reconsidered

The Weinberg–Witten theorem [27] is often used to make a case against emergent
gravity, attempting to claim that any research program pursuing to describe gravitational
dynamics as an emergent phenomenon is condemned to fail. Marolf’s recent arguments
seem to present also an important obstruction towards the emergent gravity paradigm [28],
at least from the perspective of constraining the required characteristics of emergent
approaches. In this section, we will review the Weinberg–Witten theorem and also revisit
Marolf’s argument and point out why the possibility that gauge symmetries may be
emergent cannot be ignored when attempting to use these theorems in this way. Although
our results for gravity are still for the linear theory, there is a clear interplay between our
results and these obstructions as we will discuss. Let us note that these theorems assume a
quantum character for the gravitational field. Our results for linear fields, although derived
for classical fields, can be straightforwardly extended to the quantum level through a
quantization procedure, see Section 3.4 of Ref. [14]. The issue of the non-linear theory is
much more subtle, since we do not have a non-perturbative definition of quantum field
theories that does not involve a lattice regularization. Hence, a careful analysis of that
point would be required, although our main conclusions below do not depend crucially on
this issue.

4.1. Weinberg–Witten Theorem

The Weinberg–Witten theorem [27] states that a theory that allows the construction of
a conserved Lorentz-covariant energy-momentum tensor cannot contain gravitons, neither
fundamental nor composite in the spectrum of asymptotic states (in fact, the theorem
applies to particles with spin j > 1). The content of the theorem can be rephrased as saying
that gravitons are so special that one cannot build a Lorentz-covariant and gauge-invariant
energy-momentum tensor for them. This distinctive feature already appears in the Fierz–
Pauli theory for linear gravitons. One can certainly build different Lorentz-invariant
energy-momentum tensors for hµν; however, none of them happens to be invariant un-
der the (linear) gauge transformation generated by a vector field χµ that take the form
δhµν = 2∇(µχν), with∇ representing the connection compatible with flat spacetime metric,
as before.

From the perspective of emergent gravity the theorem implies that, if excitations
with the properties of gravitons arise in a suitable regime, these excitations cannot have a
Lorentz-invariant energy-momentum tensor that is gauge invariant. This is often taken
as an indication that obtaining gravitons from systems akin to condensed-matter systems
is not possible. However, our discussion of emergent gauge symmetries above indicates
that such an interpretation is pulling too far, or misunderstanding, the significance of the
theorem. Let us discuss this more explicitly.

The key aspect is the emergent nature of gauge symmetries and what this implies for
observables, in particular for the energy-momentum tensor. Our starting point is a system
akin to a condensed-matter system which develops excitations with the properties of
gravitons at low energies. We have seen that this requires certain conditions on the source
to which the field hµν couples which, when satisfied, are equivalent to the decoupling of
some degrees of freedom leading to the natural restriction to the subspace U described
in previous sections. As the original high-energy theory has no gauge symmetries, all
configurations are different and, therefore, in general will have different values for most
observables (in this section, this word will always refer to the high-energy theory), which
includes the fields themselves and the energy-momentum tensor as specific examples.
However, the development of emergent gauge symmetries implies the emergence of
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equivalence classes for which the values of certain observables do not change, which are
then denoted as gauge invariant. The specific observables that change or not within a given
equivalence class are determined by the structure of the theory. The basic fields Aµ

a and
hµν are examples of observables of the high-energy theory that change under the emergent
gauge symmetries. On the other hand, for vector fields Aµ

a the energy-momentum tensor is
gauge-invariant [14,15], while for gravity it is not.

In summary, that certain observables of the high-energy theory turn out to be non
gauge invariant does not pose a problem for emergence. From the perspective of the high-
energy theory, all observables retain their meaning and have well-defined values regardless
of the emergence of gauge symmetries. It is certainly not required and even unreasonable
to assume that all observables of the high-energy theory become gauge invariant. In
general, the process of emergence separates observables in two categories, depending on
their behavior under gauge transformations. However, whether the set of gauge-invariant
observables includes the energy-momentum tensor, or any other observable for that matter,
is inconsequential for the rationale of emergence.

We have discussed the Weinberg–Witten theorem from a purely conceptual point of
view and highlighted that, although it points out a particular property of gravity, it does not
forbid the emergence of gravity. From a technical point of view, it applies to gravity when
understood as a perturbative quantum field theory built on top of flat spacetime having
a well-defined notion of gravitons as asymptotic states. Let us also mention that, within
this framework, several technical aspects of the theorem have been criticized throughout
the years [29–33]. These criticisms further limit the application of the theorem to realistic
physical situations. Furthermore, a comprehensive and systematic discussion of the ways
in which the Weinberg–Witten theorem can be avoided can be found in [34].

4.2. Marolf’s Theorem

The very interesting work of Marolf [28] contains a theorem that seems to constrain the
kind of theories that might give rise to an emergent gravitational description. According to
Marolf [28], the only theories that might give rise to such a description are the ones that he
calls kinematically non-local (we will introduce their definition of kinematical non-locality in
a moment). From our perspective, although Marolf’s theorem pinpoints the particularities
of constructing an emergent theory of gravity from a kinematically local theory, it does not
automatically imply that such theories cannot have an effective gravitational description in
some regime. Let us now introduce Marolf’s theorem and carefully analyze it as well as its
implications. Quoting it literatelly, Marolf’s theorem states [28]:

Marolf’s theorem: “Consider any limit where the effective description of a local theory is a
gravitational theory with universal coupling to energy, the same notion of time evolution, and a
compatible definition of locality. In this limit all local observables away from the boundary become
independent of time.”

The theorem above contains several definitions that need to be clarified to make it
intelligible, which we review here for the benefit of the reader. On the one hand, Marolf
restricts their study to what he calls gravitational theories with universal coupling to the
energy, namely theories for which the Hamiltonian can be written as the integral over the
boundary of space at each time of some local function, which he calls gravitational flux.
Furthermore, such gravitational flux needs to be a gauge-invariant function of the gravita-
tional field and its derivatives. All diffeomorphism-invariant theories fall into this category
(non-Lorentz-invariant theories like for instance Hořava-Lifshitz gravity [35] do not in a
strict sense, although Marolf suggests the existence of a straightforward generalization
of this theorem that would apply to such theories). Massive gravity theories, like dRGT
theory [36], and scalar gravities, like the so-called Nordström gravity [37], do not fall into
this category since they do not have universal coupling to the energy.
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On the other hand, by locality he assumes a version of microcausality which he calls
kinematic locality. According to their definition, a kinematically local theory is one for which
every pair of local bosonic gauge-invariant Heisenberg operators evaluated at spacelike
points commute.

Then, he states that if there were a kinematically local (non-gravitational) theory that
in some regime gave place to an effective description in terms of a gravitational theory with
universal coupling to energy, all of its local bulk observables would freeze out unless there
were a change on the notion of time evolution or locality between the gravitational and
non-gravitational descriptions (these are notes of caution). Technically speaking, Marolf’s
observation is that given the gravitational flux which is a gauge-invariant operator, it
should be possible to write it in the microscopic underlying theory as an integral over
gauge-invariant operators supported near the boundary. Otherwise, it would correspond to
a theory in which the notions of locality between the microscopic and effective gravitational
theory would be very different. Assuming this compatible-locality property among both
descriptions, Marolf reaches the conclusion that, given a kinematically local underlying
theory and having expressed the Hamiltonian as an operator in that theory just supported
near the boundary, all the local (or bulk) observables of the theory need to freeze out in
the regime in which the effective gravitational description applies. This is because the
Hamiltonian (as it is itself another observable) will commute with any local observable
away from the boundary.

Given the theorem, he then concludes that it is difficult to obtain an emergent gravita-
tional description starting from microscopic kinematically local theories, without changing
abruptly the notion of locality. Otherwise, the emergence would entail a rather strange
behaviour on the non-gravitational description. Thus, he interprets the theorem as saying
that one would rather start looking for emergence from microscopic theories which are
already kinematically non-local at a fundamental level, as it is done for instance in the con-
text of gauge-gravity duality [38,39] which, to some extent, can be interpreted as emergent
theories for the bulk gravity theory. However, this conclusion is based on the additional
assumption that all observables in the UV completion of the theory must freeze at low
energies or, equivalently, that all these observables must be gauge invariant, which may not
be the case in an emergent framework. If at least one observable of the UV completion is
not gauge invariant, then the notion of locality can be preserved. This would be generally
the case if gauge symmetries are emergent.

If we take our discussion of the linear setting above and assume the existence of a
suitable non-linear extension along the lines realized in the discussed Yang–Mills case, we
can make the following observation. When an effective gauge invariance is developed
in the low-energy regime of the theory, the observables of the high-energy theory can be
separated into those that are gauge invariant from the perspective of the emergent gauge
symmetry and those that are not. As an intermediate stage of emergence, we started with
a generic massless Lorentz-covariant system described by action (20) for an object hµν.
Without further considerations, this system does not describe gravity, as for instance it
contains additional degrees of freedom, and, therefore, does not satisfy the conditions of
Marolf’s theorem. However, we have discussed that, if the field hµν couples to a conserved
and constant-trace two-index symmetric current, there is a natural decoupling of certain
degrees of freedom and a simultaneous emergence of gauge symmetries. Interestingly, this
decoupling makes the construction compatible with Marolf’s conditions for the theorem.
Then, it is true that all the local gauge-invariant observables away from the boundary need
to freeze out. However, non-gauge-invariant observables, which are still meaningful from
the point of view of the high-energy UV-completion of the theory, do not need to freeze out.
In fact, our example shows that actually they (i.e., the hµν) do not freeze out. As we have
pointed out above, these observables are not constrained to be frozen by the theorem. The
freeze out only affects a subset of the observables of the high-energy theory, namely those
observables that are invariant under the emergent gauge transformations. In this way, the
high-energy theory retains an “interesting enough” bulk dynamics.
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Another aspect that we think is worth keeping in mind is the effect of having a
background metric. As our underlying theory has a (flat) background metric the degrees
of freedom are defined with respect to this background and are perfectly local, as for
electrodynamics and other quantum field theories. In the same vein, our theory has a
well-defined local Hamiltonian density and does not have a fundamental gauge invariance.
However, one could decide—and this is a choice—to analyze the theory from a gauge
perspective, arguing that the background metric is not operationally measurable. Then,
for consistency one has to change the notion of degree of freedom as now one cannot use
the background metric as an external reference. The degrees of freedom must now be
gauge-invariant variables defined with respect to the metric, variables which in general
relativity are highly non-local. Now, the former Hamiltonian density is not gauge invariant
and therefore one can no longer think of it as locally defining an energy density. Instead,
from the gauge perspective the Hamiltonian appears as a gauge-invariant and non-local
(holographic) quantity. The curvatures in the bulk of spacetime certainly evolve, but
even those do not constitute gauge-invariant degrees of freedom as we do not have an
independent notion of what is a point (or event). If the notion of what is a degree of freedom
did not change from the underlying theory to the gravitational emergent theory, then
Marolf’s theorem would be true in asserting that any local (gauge-invariant!) observable
would need to freeze in the effective gravitational regime. However, the change in the
notion of degree of freedom permits that local degrees of freedom in the bulk of the
underlying theory have a well-defined local kinematics.

Therefore, a decoupling from the high-energy perspective has as consequence a freeze
out of certain non-local observables. While we have not provided a complete non-linear
model satisfying the criteria that guarantee the decoupling, the latter are general enough to
make us think that such models should exist (assuming that the extension of our theory
into the non-linear regime is completely parallel to the one we have already done with
Yang–Mills theory [15]). At this stage we can safely conclude that searching for models
satisfying these criteria is a well-motivated endeavour.

5. Discussion and Conclusions

In this work, we have reviewed a mechanism proposed by some of the authors for the
emergence of gauge symmetries in field theories based on the natural decoupling of some
of their degrees of freedom. We have also reviewed how this mechanism for the emergence
of linear gauge theories combined with a suitable bootstrapping procedure linking the
linear and non-linear regimes can give rise to emergent gauge symmetries resembling
Yang–Mills theories. This example serves as a warm-up exercise for the more convoluted
case of finding an emergent gravitational theory.

We have analyzed in detail the case of linear gravitons and found that it is possible to
give rise to the gauge symmetries characteristic of linear gravity through this mechanism.
Although we have left the analysis of the non-linear extensions through a bootstrapping
procedure for future work, we expect no substantial differences from the standard boot-
strapping for gravity. The main difficulties actually come from the problems that are
present already for the Fierz–Pauli theory: namely the infinite nature of the series, the
inherent ambiguities present in the construction, etc.

Additionally, we have discussed some results in the literature that are often invoked
as no-go theorems and discussed their interplay with our work. These results are indeed
technically correct and pinpoint some differential features of gravity and gravitons with
respect to other theories and gauge particles. However, using these results as no-go
theorems implies making additional assumptions about the possible UV-completions,
in particular regarding the preservation of gauge symmetries at high energies. As we
have discussed, these theorems cannot rule out emergent frameworks in which gauge
symmetries are emergent themselves.

We finish this work by mentioning that, although many technical details remain to be
understood and analyzed within this framework, it seems to provide a successful approach
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towards building an emergent gravitational description of a certain theory. Given that
a theory acquires an effective (typically we think of it as a low-energy regime) Lorentz-
invariant description for which a field hµν describes adequately the excitations of the theory,
we have found that the decoupling of some of its degrees of freedom (which is quite natural
from a dynamical point of view) automatically gives rise to an emergent gauge symmetry.
The remaining extension into the non-linear regime through a bootstrapping procedure
would allow us to constrain the possible non-linear completions of such linear theory.
As a result, we would be able to build emergent gravitational description of systems, by
simply developing a low-energy Lorentz-invariant regime and having a hµν field in their
low-energy spectrum. We expect to report soon on these issues.

Another future line of research that is worth exploring is understanding the emergence
of gauge symmetries in alternative descriptions of gravity. For instance, the reformulation
of gravity as a more standard gauge theory of the local Poincaré group [40] seems to be a
promising place to test the generality of the applicability of our mechanism.
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Appendix A. Special Cases of Parameters for Linear Graviton Fields

We have omitted the discussion of special cases of the parameters (ξ1, ξ2, ξ3) for which
some of the terms in the equations from Section 3.2 vanish. The unique special case that
gives new insights is the case in which the three of them are equal: ξ = ξ1 = ξ2 = ξ3. For
the remaining cases, for example the case for which some of the terms in Equation (53)
vanish, namely−2+ ξ2− 4ξ3 = 0 or 1− ξ1 + 2ξ2 = 0, one can see that the same arguments
presented Section 3.2 for the selection of the subspace U straightforwardly apply and hence
we do not need to discuss them separately.

The case ξ = ξ1 = ξ2 = ξ3 where the masses have been put to zero is interesting
because the condition (32) that the generators χµ of the transformations (31) need to verify
reduces to

∇µ�χν = 0. (A1)

Thus, it seems that for this specific choice of parameters the transformations of
the form

hµν → hµν + 2∇(µχν), �χµ = 0, (A2)

have a chance to become emergent gauge symmetries. Actually, for this choice of parame-
ters the terms of the associated current can be recast in the form (36) without the M′µ. This
means that we have a current of the form

J′µ = W ′µ + 2∇µN′µν + D′µ, (A3)
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with W ′µ a term that vanishes on shell, N′νµ a superpotential and D′µ a term that identically
vanishes within the subspace ∇µhµν = 0. Their explicit form is:

W ′µ = −�hµαχα − (1 + ξ)∇ν∇µhχν + (1 + ξ)�hχµ + 2Tµνχν, (A4)

N′µν = ∇νhµρχρ + hνρ∇µχρ +
1
2
(1 + ξ)h∇νχµ + (1 + ξ)∇µhχν, (A5)

D′µ = −∇αhαβ∇µχβ +∇µ∇αhαβχβ + (1 + ξ)∇βhβ
ν∇µχν + (1 + ξ)∇βhβ

ν∇νχµ. (A6)

Thus, if we define a projection onto the subspace Ũ defined by the condition

∇µhµν = 0, (A7)

the transformations of the form (A2) become emergent gauge symmetries.
The naturalness of such construction relies again on how natural it is to restrict

the dynamics to the subspace Ũ . We want to see if that subspace for this particular
choice of parameters is selected dynamically. For this particular choice of parameters,
the divergence of the equations of motion assuming we couple the theory to a conserved
source automatically gives

�∇µhµν = 0, (A8)

as it can be seen by putting all the ξi parameters equal to the same value ξ in Equation (48).
Thus, for this choice of parameters, the transformations of the form (A2) naturally emerge
as gauge symmetries since the subspace onto which we need to project for them to become
emergent gauge symmetries is naturally selected from a dynamical point of view.

Although this construction seems to be closer to Fierz–Pauli theory since it is equiva-
lent to Fierz–Pauli theory in the partial gauge fixing given by the only condition∇µhµν = 0,
it does not seem to be natural due to the fine-tuning among the parameters that it requires.
For instance, we expect that, at the quantum level, radiative corrections may tend to rapidly
break the equality among parameters. However, it is possible that the emergent gauge
symmetries themselves are enough to protect this equality among the parameters and
render them radiatively stable. We leave this question for future work, when we extend
this construction to the whole non-linear and quantum regime, in which these radiative
corrections enter and may play a relevant role.
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