
applied  
sciences

Article

Empirical Study of Constraint-Handling Techniques in the
Optimal Synthesis of Mechanisms for Rehabilitation

José Saúl Muñoz-Reina 1 , Miguel Gabriel Villarreal-Cervantes 1,* and Leonel Germán Corona-Ramírez 2

����������
�������

Citation: Muñoz-Reina, J.S.;

Villarreal-Cervantes, M.G.;

Corona-Ramírez, L.G. Empirical

Study of Constraint-Handling

Techniques in the Optimal Synthesis

of Mechanisms for Rehabilitation.

Appl. Sci. 2021, 11, 8739. https://

doi.org/10.3390/app11188739

Academic Editor: Augusto Ferrante

Received: 2 July 2021

Accepted: 13 September 2021

Published: 19 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Centro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional,
Ciudad de México 07738, Mexico; jmunozr1002@alumno.ipn.mx

2 Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas,
Ciudad de México 07340, Mexico; lgcorona@ipn.mx

* Correspondence: mvillarrealc@ipn.mx

Abstract: Currently, rehabilitation systems with closed kinematic chain mechanisms are low-cost
alternatives for treatment and health care. In designing these systems, the dimensional synthe-
sis is commonly stated as a constrained optimization problem to achieve repetitive rehabilitation
movements, and metaheuristic algorithms for constrained problems are promising methods for
searching solutions in the complex search space. The Constraint Handling Techniques (CHTs) in
metaheuristic algorithms have different capacities to explore and exploit the search space. However,
the study of the relationship in the CHT performance of the mechanism dimensional synthesis for
rehabilitation systems has not been addressed, resulting in an important gap in the literature of such
problems. In this paper, we present a comparative empirical study to investigate the influence of four
CHTs (penalty function, feasibility rules, stochastic-ranking, and ε-constraint) on the performance
of ten representative algorithms that have been reported in the literature for solving mechanism
synthesis for rehabilitation (four-bar linkage, eight-bar linkage, and cam-linkage mechanisms). The
study involves analysis of the overall performance, six performance metrics, and evaluation of the
obtained mechanism. This identified that feasibility rules usually led to efficient optimization for
most analyzed algorithms and presented more consistency of the obtained results in these kinds
of problems.

Keywords: constraint-handling; mechanism synthesis; metaheuristic algorithms; rehabilitation systems

1. Introduction

The increasing number of people with motor deficiencies has been a crucial factor
in developing rehabilitation devices. Motor injuries frequently occur in the upper and
lower extremities due to degenerative diseases, neuronal disorders, sports injuries, traffic,
and work accidents. Presently, rehabilitation devices for upper and lower limbs have
been developed [1,2]. Stationary rehabilitation devices are used more frequently in the
rehabilitation of the patient. However, these devices are generally expensive because
the control of several degrees of freedom is required to generate a rehabilitation routine.
Rehabilitation systems based on closed-chain mechanisms are a low-cost alternative for
health care [3]. These systems can provide a pre-established rehabilitation routine that
controls a degree of freedom. Therefore, these devices can be considered for rehabilitation
at home.

In the design of closed-chain mechanisms, a synthesis process of the mechanism is
carried out [4]. In this process, the length of links is determined to achieve the desired
movements for rehabilitation. The graphic, analytic, and optimal methods [5] are the used
techniques for the synthesis of closed-chain mechanisms. Graphic synthesis of mechanisms
is performed by a visual representation of the mechanism, where Euclidean geometry
concepts are used to obtain the design solutions. This method is characterized by providing
quick solutions with a low precision rate.
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The analytical synthesis is based on getting algebraic expressions that describe the
movement of the mechanism. This method offers solutions with a high precision rate.
However, the number of precision points is limited by the number of independent variables
of the closed-chain mechanism because it results in an overdetermined system of equa-
tions [6] requiring a numeric solution to solve them. The optimal synthesis of mechanisms
is performed through the optimization problem solution. This synthesis method supports
multiple-precision points, but the precision rate can decrease caused by the numerical
optimization technique used. Currently, the last method is frequently used for the synthesis
of mechanisms.

In the optimal synthesis of closed-chain mechanisms for rehabilitation, indirect and
direct search methods (numerical optimization techniques) [7] have been used to find
suitable solutions. In the indirect search methods, derivatives of the objective function and
constraints are required. For instance, Ávila-Hernández and Cuenca-Jiménez [8] designed
a thumb prosthesis using a nine-bar spatial mechanism. For the solution of the synthesis
problem, the function “findminimum” of Mathematica® was used. Zhiming Ji and Yazan
Manna [9] designed a lower limb rehabilitation system using a four-bar linkage. In the
syntheses process, the method “lsqnonlin” of MATLAB® was implemented.

Wang et al. [10] designed a rehabilitation system using a four-bar linkage mechanism
in the synthesis process. In that work, the search method “fmincon” of MATLAB® was
implemented. Tsuge et al. [11] designed a rehabilitation system using a ten-bar linkage
mechanism. The synthesis problem was solved by Bertini™ software.

Tsuge et al. [12] designed a rehabilitation system using a Stephenson III linkage
mechanism. The synthesis problem was solved using algorithms, such as Fletcher–Reeves,
Newton, conjugate gradient, interior point, and Quasi-Newton.

On the other hand, direct search methods do not require such derivatives, and the
objective function is considered in its original form to find a solution. The use of meta-
heuristic algorithms as the direct search method is gaining more attention in the solution
of mechanism synthesis problems [13] because they do not depend on the problem fea-
tures (nonlinear, discontinuous, etc.), they can endow different operators to find the most
promising solution, and they are easy to implement. A summary of various studies found
in the literature that use metaheuristic algorithms in the synthesis problem of mechanisms
is presented in Table 1.

The particular interest in this study is in the works related to the mechanism design
for rehabilitation presented at the end of such table. For instance, Bataller et al. [14] pro-
posed a mechanism for finger rehabilitation, where the direct search algorithm Málaga
University Mechanism Synthesis Algorithm (MUMSA) was used, and a penalty function
was implemented as a constraint-handling technique in the synthesis process.

Shao et al. [15] designed a rehabilitation system using a cam-linkage mechanism for the
lower limb rehabilitation to perform the gait. The synthesis problem was solved by a genetic
algorithm, where a penalty function was considered as the constraint-handling technique.

Calva-Yáñez et al. [16] designed a gait rehabilitation system for children using a four-
bar linkage mechanism. The indirect search algorithm Sequential Quadratic Programming
(SQP) and the direct one given by Differential Evolution (DE) algorithm were used in
the synthesis process. In this work, feasibility rules were considered as a constraint-
handling technique.

Singh et al. [17] designed knee–ankle–foot, hip–knee–ankle-foot, and knee orthoses
using a four-bar linkage mechanism. Metaheuristic algorithms, such as Particle Swarm
Optimization (PSO) and the Teaching-Learning-Based Optimization (TLBO) algorithm,
were considered.

In this work, mechanical constraints in the synthesis process are not considered.
Leal-Naranjo et al. [18] presented the design of a wrist prosthesis using a spherical parallel
manipulator. In the synthesis process, Nondominated Sorting Genetic Algorithm (NSGA-
II), Multiobjective Particle Swarm Optimization (MOPSO), and Multiobjective Evolutionary
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Algorithm based on Decomposition (MOEA/D) algorithms were considered, and the
feasibility rules were implemented as constraint-handling technique.

Muñoz-Reina et al. [3] designed a lower limb rehabilitation machine. The differential
evolution algorithm was considered in the synthesis process, and the feasibility rules were
used as the constraint-handling technique.

Table 1. Summary of investigations tackling metaheuristic algorithms in the kinematic synthesis
problem. “-” indicates that the use of CHT is not required.

Study Application of the Synthesis Problem Metaheuristic Algorithms CHT

[19] Four-bar mechanism Genetic Algorithm -
[20] Four-bar mechanism Genetic Algorithm -

Stephenson’s six-bar mechanism
Watt’s six-bar mechanism

[5] Four-bar mechanism Genetic Algorithm Penalty Function
[21] Hand robot mechanism Pareto Optimum Evolutionary Feasibility rules

Multiobjective Algorithm (POEMA)
[22] Four-bar mechanism Differential Evolution Penality Function
[23] Six-bar mechanism Differential Evolution Penality Function
[24] Four-bar mechanism Differential Evolution Penality Function
[25] Four-bar mechanism Genetic algorithm–fuzzy logic Penality Function
[26] Four-bar and six-bar mechanisms MUMSA Penality Function
[27] Four-bar mechanism Genetic Algorithm, Penality Function

Differential Evolution,
Particle Swarm Optimization

[28] Four-bar mechanism Ant-gradient Penality Function
[29] Four-bar mechanism GA–DE Penality Function
[30] Six-bar mechanism Cuckoo Search Penality Function
[31] Four-bar mechanism NSGA-II Feasibility rules
[32] Four-bar mechanism Imperialist competitive algorithm, Penality Function

Genetic Algorithm,
Differential Evolution,

Particle Swarm Optimization
[33] Four-bar mechanism Modified Krill Herd Penality Function
[34] Four-bar mechanism TLBO Penality Function

Genetic Algorithm,
Particle Swarm Optimization

[35] Four-bar mechanism Hybrid Lagrange Interpolation DE Penality Function
(HLIDE)

[36] Four-bar and six-bar mechanisms Hybridization Differential Evolution Penality Function
with Generalized Reduced Gradient

Mechanisms for rehabilitation

[18] Spherical parallel manipulator NSGA-II, MOPSO, MOEA/D Feasibility rules
in prosthetic wrist

[14] Six-bar mechanism in MUMSA Feasibility rules
finger rehabilitation

[15] Cam-linkage mechanism Genetic Algorithm Penalty Function.
in gait rehabilitation

[16] Four-bar mechanism Differential Evolution Feasibility rules
in gait rehabilitation

[17] Four-bar mechanism in Particle Swarm Optimization and TLBO -
gait rehabilitation and

orthotic devices
[3] Eight-bar mechanism in Differential Evolution Feasibility rules.

lower limb rehabilitation

We observed in the literature that metaheuristic algorithms in their original versions
were proposed to solve unconstrained optimization problems. Thus, it is important to find
the most promising techniques for including real-word constraints [37–39]. Currently, for
the solution of constrained optimization problems, CHTs have been proposed. According
to [40], these can be classified into two generations, where the penalty functions, decoders,
special operators, and separation of the objective function and constraints are included
in the first generation. On the other hand, the feasibility rules, stochastic ranking, and
ε-constraint involve the second generation. The first generation is characterized by a
high calibration complexity and a high probability of convergence to local minimums.
The second generation is characterized by overcoming the mentioned limitations in the
first generation.

From the literature review regarding the design of closed-chain mechanisms for
rehabilitation and the general framework of kinematic synthesis of mechanisms, both
included in Table 1, the metaheuristic algorithms incorporate only one constraint-handling
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technique to solve the constraint optimization problem. Figure 1 shows the use of CHTs
reported in the literature for the synthesis of mechanisms using metaheuristic algorithms.
As observed in that figure, 64% of the reviewed literature uses the penalty functions,
followed by the feasibility rules with a 24% of use.

According to [37,39,41], the constraint-handling technique is an essential factor to solve
constrained optimization problems because these techniques influence the exploration
and exploitation capabilities of algorithms for the search of the most promising solution.
However, other CHTs in the second generation, such as stochastic ranking and ε-constraint
have not been evaluated in solving these types of problems.

12%

24%

64%

Unconstrained Feasibility Rules Penalty function

Figure 1. Use of the constraint-handling techniques in the optimal synthesis of mechanisms with
metaheuristic algorithms according to Table 1.

Depending on the problem nature in the kinematic synthesis for rehabilitation (mul-
timodality, types of functions, design variable space, and the feasible space ratio), the
most frequently used algorithms and the constraint-handling techniques can be suitable
during the search process of the metaheuristic algorithms. Nevertheless, the high interac-
tions in the problem nature and the metaheuristic algorithms make it difficult to suggest a
constraint-handling technique that is more likely to perform well against different algorithms.

Motivated by these facts, and to the best of the author’s knowledge, there is a gap
in the comparative study of the performance of different constraint-handling techniques
in the dimensional synthesis of mechanisms. This research can aid researchers or prac-
titioners interested in applying metaheuristic algorithms in the kinematic synthesis of
this kind of problem with insights about the quality and consistency of the obtained re-
sults in the studied CHTs and can identify the most promising CHT alternatives for the
synthesis problems.

Thus, researchers and practitioners can have some basic knowledge in the analyzed
CHTs about the likelihood of increasing the optimization efficiency and the consistency of
the obtained results when those CHTs are included in different metaheuristic algorithms.
Hence, this work can suggest the use of a particular CHT in the optimizers to achieve
optimum kinematic synthesis.

Therefore, in this work, the performance of the penalty function, feasibility rules,
stochastic-ranking, and ε-constraint is studied to solve three real-world engineering prob-
lems reported in the literature related to the synthesis of mechanisms for rehabilitation by
using metaheuristic algorithms. In this study, ten metaheuristic algorithms commonly used
in the synthesis of mechanisms for rehabilitation are implemented in such CHTs. These
are eight variants of a differential evolution algorithm, a Genetic Algorithm (GA), and a
Particle Swarm Optimization (PSO) algorithm.
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The parameters of the algorithms are tuned using the irace package to make a fair
comparison and provide useful insights about the studied CHTs. On the other hand,
the four-bar linkage mechanism, the cam-linkage mechanism, and the eight-bar linkage
mechanism are considered in the mechanism synthesis for rehabilitation.

This paper is organized as follows: In Section 2, the general problem of mechanism
synthesis for rehabilitation is presented. Section 3 describes the metaheuristic algorithms
and the constraint-handling techniques used in this study. Section 4 states three state-of-art
synthesis problems for rehabilitation to be solved. In Section 5, the study of the constraint-
handling techniques is presented and discussed. In addition, the best and worst solution
are analyzed and compared. Finally, Section 6 presents our conclusions.

2. Optimization Problem Statement

In this work, optimization problems for the synthesis of rehabilitation mechanisms
are studied. The synthesis problem usually requires satisfying more than one design
objective and constraint. Therefore, the design problems can be considered as a Constrained
Multiobjective Optimization Problem (CMOPs). According to literature related to the
synthesis of mechanisms for rehabilitation presented in Table 1, it is observed that CMOPs
are typically transformed into constrained mono-objective optimization problems by the
weighted sum approach [42,43]. Hence, mono-objective optimization problems for the
mechanism synthesis are only considered in this study. These are formally stated as follows:

Min
x

J̄(x) (1)

subject to:

gj(x) ≤ 0 ∀ j = {1, 2, . . . , m} (2)

hk(x) = 0 ∀ k = {1, 2, . . . , r} (3)

xmin ≤ x ≤ xmax (4)

where J̄(x) = ∑n
i=1 wi Ji(x) is the weighted objective function; Ji is the i− th design objective

of the system; x is the design variable vector; wi is the i − th weight attributed to each
objective; n is the number of design objectives; gj(x) and hk(x) are the inequality and
equality constraints, respectively; and xmin, xmax are the design variable bounds.

3. Constraint-Handling Techniques in Metaheuristic Algorithms

Metaheuristic algorithms are optimization strategies used to solve a wide range of
hard optimization problems. The metaheuristics are inspired by biological systems, social
behaviors, among others.

In recent years, metaheuristic algorithms have been used to provide satisfactory
solutions to optimization problems related to the mechanism synthesis, see Table 1. The
behavior of metaheuristic algorithms to search for better solutions can be improved through
suitable constraint handling. In this work, the behavior of four Constraint-Handling
Techniques in different metaheuristic algorithms is studied. The CHTs [44] involve the
Penalty Functions (PF), Feasibility Rules (FR), Stochastic Ranking (SR), and ε-Constraint
(εC) method.

The considered metaheuristic algorithms are eight Differential Evolution variants [45],
the Genetic Algorithm [46], and the Particle Swarm Optimization [47]. Those techniques
and algorithms are frequently used in mechanism synthesis for rehabilitation and have
provided satisfactory solutions, as is shown in Table 1. However, according to that table,
differential evolution is one of the most promising reported optimizers. Therefore, the
main DE variants [48] are analyzed in this study.
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3.1. Metaheuristic Algorithms
3.1.1. Differential Evolution Algorithm

The DE algorithm was proposed by Storn and Price [45], and it is a direct and stochastic
search method. DE was inspired by the theory of natural selection and is shown in the
Algorithm 1.

Algorithm 1 Differential evolution pseudocode.

1: Generate an initial population X0 with NP individuals.
2: Evaluate X0.
3: Initialize the best individual xbest.
4: G ← 0
5: while G ≤ Gmax do
6: for all xi ∈ XG do
7: Generate a child individual ui based on (5)–(12).
8: Evaluate ui and UG ← ui.
9: end for

10: Select the new population XG+1 between XG and UG according to CHT.

[XG+1, x
best

swarm]← f ncCHT(XG, UG, xbest) (This function is associated to the CHT.)
11: G ← G + 1
12: end while

DE starts with a population of individuals called parents X0 = {x1, x2, ..., xNP}, where
NP is the number of individuals in the population. At each generation G, the individuals in
the population XG perform a crossover and mutation process to generate a population of child
individuals UG. The crossover and mutation process depend on the used DE variant. In this case,
eight DE variants are chosen, and these are: DE/rand/1/bin (DER1B), DE/rand/1/exp (DER1E),
DE/best/1/bin (DEB1B), DE/best/1/exp (DEB1E), DE/current to rand (DECR), DE/current to
best (DECB), DE/current to rand/1/bin (DECR1B), and DE/current to rand/1/exp (DECR1E).

The crossover and mutation process for each variant is defined by Equations (5)–(12),
where CR is the crossover factor, F and K are scale factors, r1, r2, and r3 are three random
individuals from the current population, D is the number of design variables and jrand ∈
{1, 2, . . . , D} is a random value that represents the crossover point.
Binomial recombination:

Rand/1/Bin:

uj
i =

{
xj

r3 + F(xj
r1 − xj

r2 ), if randj(0, 1) < CR or j = jrand

xj
i , Otherwise

(5)

Best/1/Bin:

uj
i =

{
xj

best + F(xj
r1 − xj

r2 ), if randj(0, 1) < CR or j = jrand

xj
i Otherwise

(6)

Exponential recombination:
Rand/1/Exp:

uj
i =

{
xj

r3 + F(xj
r1 − xj

r2 ), from randj(0, 1) < CR or j = jrand

xj
i , Otherwise

(7)

Best/1/Exp:

uj
i =

{
xj

best + F(xj
r1 − xj

r2 ), from randj(0, 1) < CR or j = jrand

xj
i Otherwise

(8)

Arithmetic recombination:
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Current-to-Rand/1:

~ui = ~xi + K(~xr3 −~xi) + F(~xr1 −~xr2 ) (9)

Current-to-Best/1:

~ui = ~xi + K(~xbest −~xi) + F(~xr1 −~xr2 ) (10)

Arithmetic-binomial recombination:
Current-to-Rand/1/Bin:

uj
i =

{
xj

i + K(xj
r3 − xj

i) + F(xj
r1 − xj

r2 ) if randj(0, 1) < CR or j = jrand

xj
i Otherwise

(11)

Current-to-Rand/1/Exp:

uj
i =

{
xj

i + K(xj
r3 − xj

i) + F(xj
r1 − xj

r2 ) if randj(0, 1) < CR or j = jrand

xj
i Otherwise

(12)

The population of parents XG and children UG compete at each generation to re-
main to a new population of individuals XG+1 for the next generation. The selection
process between the parents and children is based on the CHT, as defined in Section 3.2.
Then, the best individual in the population XGmax is considered the best solution for the
optimization problem.

3.1.2. Particle Swarm Optimization

The PSO algorithm was proposed by Kennedy and Eberhart [47]. This algorithm
is inspired by the collaborative behavior of species in search of food and is shown in
Algorithm 2.

Algorithm 2 Particle swarm optimization pseudocode.

1: Initialize the swarm position ui ∈ U0 with NP particles.
2: Evaluate the swarm U0.
3: Initialize the best known position X0 = U0.

4: Initialize the best position of the swarm x
best

swarm.
5: Initialize the velocity of each particle vi ∈ V0.
6: G ← 0
7: while G ≤ Gmax do
8: Update the inertial weight w based on (13).
9: for all ui ∈ UG do

10: Update the velocity vi based on (14).
11: Update the position ui based on (15).
12: Evaluate ui.
13: end for
14: Update the best known position XG+1 and the best particle in the swarm x

best
swarm with

the use of CHT between XG and UG.
[XG+1, x

best
swarm]← f ncCHT(XG, UG, x

best
swarm) (This function is associated to the CHT.)

15: G ← G + 1
16: end while

The PSO algorithm initializes with a swarm UG=0 with NP particles. Each particle
is located in a position ui with a velocity vi ∀ i = {1, 2, ..., NP}. The best known positions
of the particles are saved in the swarm XG=0. The best particle in the swarm X0 is stored

in x
best

swarm. In the time G (iteration), the i− th position and velocity of each particle ui are
updated by Equations (13)–(15), where w is the inertial weight, vmax and vmin are the
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maximum and minimum velocity values, xbest is the best neighborhood particle of xi in a
ring topology, and C1, C2 are weighting factors.

w = vmax −
G

Gmax
(vmax − vmin) (13)

vi = wvi + rand(0, 1)C1(xbest
i − xi) + rand(0, 1)C2(x

best
swarm
i − xi) (14)

ui = ui + vi (15)

Finally, the best particle x
best

swarm and the best particles positions XG are updated consid-

ering the CHT as is defined in Section 3.2. Then, the best solution is found in x
best

swarm.

3.1.3. Genetic Algorithm

The GA was proposed by John Henry Holland [49]. This algorithm is inspired by
genetic-molecular evolution. The essential operation of GA is shown in Algorithm 3.

Algorithm 3 Genetic algorithm pseudocode.
1: Generate a initial population X0 with NP chromosomes.
2: Evaluate X0
3: G ← 0
4: while G ≤ Gmax do
5: for all xi ∈ XG do
6: Obtain xr1 and xr2 in XG by tournament.
7: Generate a child vi by (16)
8: Generate a mutant ui by (17)
9: Evaluate ui

10: end for
11: Replace the population XG to XG+1 considering XG and UG in the CHT.

XG+1 ← f ncCHT(XG, UG,∼) (This function is associated to the CHT.)
12: G ← G + 1
13: end while

GA initializes with a group X0 = {x1, x2, ..., xNP} of NP chromosomes. In the group,
two parent chromosomes xr1 and xr2 are selected by tournament [50] and recombined
to generate a child chromosome vi as shown in (16). The recombination process uses a
piece-wise multipoint crossover [5], where the crossover points are given by a crossover
rate CR ∈ [0, 1] . The child chromosome vi can mute using uniform mutation [51] as
shown in (17), where MR ∈ [0, 1] is a mutation rate, and xj

min, xj
max are the minimum and

maximum values of the design variables, respectively.

vj
i =

{
xj

r1 , if randj(0, 1) < CR
xj

r2 , Otherwise
(16)

uj
i =

{
rand(xj

min, xj
max), if randj(0, 1) < MR

vj
i , Otherwise

(17)

Between the mutant chromosomes UG and the parent one XG, the best chromosomes
are selected based on the replacement mechanism using the CHT defined in Section 3.2.

3.2. Constraint-Handling Techniques

Metaheuristic algorithms have been used to solve complex optimization problems.
In their original versions, these have been designed to solve unconstrained optimization
problems. However, optimization problems in engineering usually have constraints. Cur-
rently, constraint-handling techniques, such as the PF, FR, SR, and εC method, have been
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the most popular techniques to solve constrained optimization problems [44]. Each one of
these techniques is described below.

3.2.1. Penalty Function

The PF [52] has been frequently used to solve constrained optimization problems in
the mechanism synthesis. The PF transforms an optimization problem with constraints
into an unconstrained problem. The most used transformation equation is:

J̄′(x) =

J̄︷ ︸︸ ︷
n

∑
i=1

wi Ji(x) +

Penalty term︷ ︸︸ ︷
m

∑
j=1

vjγj(x) (18)

where J̄′(x) is the new function to minimize, J̄ is the weighted objective function, x is the
vector of design variables, m is the number of constraints, γj(x) is the infeasible constraint
distance defined by (19), and vj is the penalty factor that can be static, dynamic, or adaptive.
In engineering optimization problems, the term vj is usually defined with a static value.

γj(x) = max(0, gj(x)) (19)

Algorithm 4 describes the operation of PF. This constraint-handling technique requires
three sets of solutions (three input arguments). At each iteration G, those solutions are
compared according to the new function J̄′(x) (18). The best solutions are stored in the
output arguments.

Algorithm 4 Penalty function pseudocode.

1: Function f ncCHT(ã, b̃, c̃)
Input: ã ∈ XG and b̃ ∈ UG
Output: XG+1 and xbest

2: XG+1 = ã and xbest = c̃
3: for i = 1 to NP do
4: if J̄′(b̃i) < J̄′(ãi) then
5: XG+1 ← b̃i
6: if J̄′(b̃i) < J̄′(xbest) then
7: xbest ← b̃i
8: end if
9: end if

10: end for

3.2.2. Feasibility Rules

The FR were proposed by Deb [53]. Three rules define this constraint-handling
technique, these are:

1. Between two infeasible solutions, the solution with the fewest number of violated
constraints is chosen.

2. Between a feasible solution and an infeasible one, the feasible solution is chosen.
3. Among two feasible solutions, the solution with the best objective function is chosen.

In this work, the number of violated constraints is considered the sum of infeasible
constraint distance φ(x) and shown in (20).

φ(x) =
m

∑
j=1

max(0, gj(x)) (20)

Algorithm 5 describes the operation of FR. This constraint-handling technique requires
three sets of solutions (three input arguments). At each iteration G, those solutions are
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compared according to the feasibility rules. Finally, the best solutions are stored in the
output arguments.

Algorithm 5 Feasibility rules pseudocode.

1: Function f ncCHT(ã, b̃, c̃)
Input: ã ∈ XG and b̃ ∈ UG
Output: XG+1 and xbest

2: XG+1 = ã and xbest = c̃
3: for i = 1 to NP do
4: if (φ(ãi) > 0 and φ(b̃i) > 0 and φ(b̃i) < φ(ãi)) or (φ(ãi) > 0 and φ(b̃i) == 0) or

(φ(ãi) == 0 and φ(b̃i) == 0 and J̄(b̃i) < J̄(ãi)) then
5: XG+1 ← b̃i
6: if (φ(xbest) > 0 and φ(b̃i) > 0 and φ(b̃i) < φ(xbest)) or (φ(xbest) > 0 and

φ(b̃i) == 0) or (φ(xbest) == 0 and φ(b̃i) == 0 and J̄(b̃i) < J̄(xbest)) then
7: xbest ← b̃i
8: end if
9: end if

10: end for

3.2.3. ε-Constraint Method

The εC method was proposed by Takahama et al. [54]. This method relaxes the
constraints to select solutions close to the feasible region. The selection process is described
by (21).

( J̄(x1), φ(x1)) <ε ( J̄(x2), φ(x2))


J̄(x1) < J̄(x2), if φ(x1), φ(x2) ≤ ε
J̄(x1) < J̄(x2), if φ(x1) == φ(x2)

φ(x1) < φ(x2), otherwise
(21)

where ε is a relaxation factor defined by (22) and (23), cp is a parameter to control the speed
of reducing relaxation of constraints, Tc is the maximum number of iterations (generation
or time) to relax such constraints, φ(xθ) is θ-th best value of the objective function in the
initial solution vector (population, swarm, or chromosomes).

ε(0) = φ(xθ) (22)

ε(G)

{
ε(0)

(
1− 1

Tc

)cp
, 0 < G < Tc

0, Tc ≤ G
(23)

The ε-constraint method finds feasible regions using the gradient of constraints at an
infeasible region. Algorithm 6 describes the operation of the εC method. This constraint-
handling technique requires three sets of solutions (three input arguments). The gradient-
based mutation process can improve an infeasible solution to obtain a new solution unew

j .
The new solution unew

j and old solution are compared using (21), and the best solution
is stored in the current solution bj. The set of current solutions are compared according
to (21), and the best solutions are stored in the output arguments.
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Algorithm 6 ε-constraint method pseudocode.

1: Function f ncCHT(ã, b̃, c̃)
Input: ã ∈ XG and b̃ ∈ UG
Output: XG+1 and xbest

2: XG+1 = ã and xbest = c̃
3: for j = 1 to NP do
4: if rand(0, 1) < Pg then
5: k = 0
6: while k < Rg and φ(b̃j) > ε do
7: Obtain ∆b̃j = −∇C(b̃j)

−1∆C(b̃j)

∆C(b̃j) is the constraint vector, ∆C(b̃j)
−1 is the pseudo-inverse of the constraint’s

derivative obtained by Moore–Penrose pseudo-inverse using the singular value
decomposition and Rg is the number of attempts to improve the solution.

8: Obtain unew = b̃j + ∆b̃j

9: if ( J̄(unew), φ(unew)) <ε ( J̄(b̃j), φ(b̃j)) then
10: b̃j ← unew

11: else
12: break
13: end if
14: k = k + 1
15: end while
16: end if
17: if ( J̄(b̃j), φ(b̃j)) <ε ( J̄(ãj), φ(ãj)) then
18: XG+1 ← bj

19: if ( J̄(b̃j), φ(b̃j)) <ε ( J̄(xbest), φ(xbest)) then
20: xbest ← bj
21: end if
22: end if
23: end for

3.2.4. Stochastic-Ranking

SR was proposed by Runarsson and Yao [55]. This constraint-handling technique
makes the pseudo-random sort of solutions. The ranking of solutions is based on the
bubble sort algorithm with a probabilistic factor P f ∈ [0, 1]. The values close to zero in P f
mean a high probability that the sort is based on the constraint distance. On the contrary,
this is based on the objective function.

Algorithm 7 describes the operation of SR. This constraint-handling technique requires
two sets of solutions (two input arguments). At each iteration G, those solutions are
compared and stochastically ranked. The best first NP solutions in the ranking are stored
in the output arguments.
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Algorithm 7 Stochastic ranking pseudocode.

1: Function f ncCHT(ã, b̃,∼)
Input: ã ∈ XG and b̃ ∈ UG
Output: XG+1 and xbest

2: Obtain X̂G = ã ∪ b̃
3: for i = 2 to 2NP do
4: for j = 1 to 2NP− i do
5: if φ(x̂j) = φ(x̂j+1) = 0 or rand(0, 1) < P f then
6: if J̄(x̂j) > J̄(x̂j+1) then
7: swap(x̂j, x̂j+1)
8: end if
9: else

10: if φ(x̂j) > φ(x̂j+1) then
11: swap(x̂j, x̂j+1)
12: end if
13: end if
14: end for
15: if No swap then
16: break
17: end if
18: XG+1 ← {x̂j ∈ X̂G|j = 1, 2, ..., NP}
19: xbest ← x̂1 ∈ X̂G
20: end for

4. Study Cases in the Mechanism Synthesis for Lower Limb Rehabilitation

In this work, three study cases in engineering related to the mechanism design for the
rehabilitation of lower limbs are considered for testing four constraint-handling techniques
in different metaheuristic algorithms. Case 1 is related to a four-bar linkage mechanism,
Case 2 involves a cam-linkage mechanism, and Case 3 includes an eight-bar linkage
mechanism. Each study case is described below.

4.1. Case 1: Four-Bar Linkage Mechanism

The four-bar linkage mechanism has been used in lower limb rehabilitation for adults
and children with cerebral palsy [9,16]. The dimensional synthesis design problem consists
of finding the link lengths that approximate the coordinates [xi

P, yi
P] of the coupler link

point P to the coordinates [x̄i
P, ȳi

P] of the ankle trajectory in a standard gait cycle. The
schematic representation of the four-bar mechanism is presented in Figure 2.

According to Figure 2, the vector of design variables comprises the lengths of the links
r1, r2, r3, r4, the ground link angle θ1, the initial position of the mechanism [x0,y0] with
respect to the coordinate system x− y, and the crank angles θi

2 ∀i = {1, 2, ...n f }. The vector
of design variables is defined as:

x =
[
r1, r2, r3, r4, θ1, x0, y0, rcx , rcy , θ1

2 , θ2
2 , . . . , θ

n f
2

]
(24)

The optimization problem for the dimensional synthesis of the mechanism is presented
in (25)–(29), where the constant values w1 = 1 and w2 = 0.01 weight the design goals.
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Figure 2. Four-bar linkage mechanism.

Min
x

w1

n f

∑
i=1

[(xi
P − x̄i

P)
2 + (yi

P − ȳi
P)

2] + w2

n f

∑
i=1

(θi
2 − θ̄i

2)
2 (25)

subject to:

g1(x) ≤ 0 : r2 + r1 − r3 − r4 ≤ 0 (26)

g2(x) ≤ 0 : −r4 − r1 + r2 + r3 ≤ 0 (27)

g3(x) ≤ 0 : −r3 − r1 + r2 + r4 ≤ 0 (28)

xmin ≤ x ≤ xmax (29)

The first design goal refers to the error between the desired precision points [x̄i
P, ȳi

P]
related to the ankle trajectory and the path [xi

P, yi
P] of the mechanism’s coupler link point.

The second design goal refers to the angular displacement error between the desired angles
θ̄i

2 and the crank angles θi
2. In this problem, the desired angles θ̄i

2 are defined by (30).

θ̄i
2 = θ1

2 + 2π i−1
n f−1 ∀ i = {1, 2, ..., n f } (30)

The precision (desired) points [x̄i
P, ȳi

P] are defined based on the standard ankle tra-
jectory, these points are shown in Table A1 of Appendix A, and are obtained in [16]. On
the other hand, according to Figure 2, the points generated by the coupler link [xi

P, yi
P] are

defined by (31), where θ2 is the angle of the crank link (input link), and θ3 is shown in (32).
This is obtained by the Freudenstein equation. It is important to note that both solutions
in θ3 (related to the sign of the root) are computed, and the solution that provides a better
objective function is chosen. Thus, with the selection of θ3, the resulting mechanism can be
an open (+) and crossed (−) four-bar mechanism.[

xP
yP

]
=

[
x0 + r2 cos θ2 + rcx cosθ3 − rcy sinθ3
y0 + r2 sin θ2 + rcx sinθ3 + rcy cosθ3

]
(31)

θ3 = 2 atan2
(
−B±

√
B2 + A2 − C2, C− A

)
(32)
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where A = −2r1r3 cos θ1 + 2r2r3 cos θ2, B = −2r1r3 sin θ1 + 2r2r3 sin θ2, and
C = r2

1 + r2
2 + r2

3 − r2
4 − 2r1r2 cos(θ1 − θ2).

The design problem has three inequality constraints (26)–(28) that define a crank-
rocker mechanism according to the Grashof criterion [56]. The design variables vector
x ∈ R23 is bounded by its corresponding limit xmin and xmax. In Table 2 the limit values
used in this work are shown. These values are obtained by [16].

Table 2. The maximum and minimum parameters of the x vector for the four-bar mechanism.

x Parameter xmin xmax

x1 − x4 r1 − r4 0 [m] 0.6 [m]
x5 θ1 0[rad] 2π [rad]

x6 − x9 x0, y0 −0.6 [m] 0.6 [m]
x10 − x24 θ1

2 − θ14
2 −π [rad] π [rad]

4.2. Case 2: Cam-Linkage Mechanism

The second optimization problem is related to the synthesis of a cam-linkage mecha-
nism. The original design problem was presented by Yixin Shao et al. [15]. This mechanism
is designed to provide rehabilitation routines for adults with motor problems in the lower
limbs. The schematic diagram of the cam-linkage mechanism is shown in Figure 3.

Figure 3. Cam-linkage mechanism.

The design variable vector (33) is defined by the link lengths r1, r2, ..., r8, the angles
β, γ, η, the initial position of the mechanism [x0, y0] with respect to the x− y coordinate
system, and the position of the slide displacement axis defined by the length e and the
angle α.

x = [r1, r2, r3, r4, r5, r6, r7, r8, α, β, γ, η, x0, y0, e] (33)

The synthesis problem is presented in (34)–(46).

Min
x

w1
∑

n f
i=1(θ

i
1 − θ̄i

1)
2

Θre f
+ w2

R0

Rre f
(34)
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subject to:

g1 : r1 + r2 − r3 −
√

s2
min + e2 ≤ 0 (35)

g2 : r1 + r3 − r2 −
√

s2
min + e2 ≤ 0 (36)

g3 : r1 +
√

s2
max + e2 − r2 − r3 ≤ 0 (37)

g4 : r2
2 + r2

3 − (dAC)
2
min − 2r2r3 cos π/6 ≤ 0 (38)

g5 : −r2
2 − r2

3 + (dAC)
2
max +

2r2r3 cos(π − π/6) ≤ 0 (39)

g6 : r2
5 + r2

6 − (dDF)
2
min − 2r5r6 cos π/6 ≤ 0 (40)

g7 : −r2
5 − r2

6 + (dDF)
2
max +

2r5r6 cos(π − π/6) ≤ 0 (41)

g8 : (dOD)max − r4 − r1 ≤ 0 (42)

g9 : |r4 − r1| − (dOD)min ≤ 0 (43)

g10 : (dBe)max − r3 ≤ 0 (44)

g11 : 0.12R0 − 0.6|ρ|min ≤ 0 (45)

xmin ≤ x ≤ xmax (46)

The first term of the weighted objective function (34) refers to the error between the
crank angles θi

1 ∀i = {1, 2, ..., n f } and the desired angles θ̄i
1 ∀i = {1, 2, ..., n f }, where n f is

the number of precision points, and θ̄i
1 is defined by Equation (47).

θ̄i
1 = θ1

1 + 2π
i− 1

n f − 1
∀ i = {1, 2, ..., n f } (47)

On the other hand, the second term refers to the base radius R0 of the cam (see
Figure 3). Both design objectives are weighted by w1 = 0.3 and w2 = 0.7, and normalized
by Θre f = 0.4246 [rad] and Rre f = 0.3782 [m] according to the best results presented in [15].

To guarantee the functionality of the mechanism, the design problem has inequality
constraints. The first three constraints (35)–(37) guarantees a complete revolution of the
crank angle θ2 (Grashof criterion), where smin and smax are the minimum and maximum
values of s(θ1) in the precision points. The s(θ1) is given in (48) and is visualized in Figure 3.

s(θ1) = r1 cos(θ1 − α) + r2 cos(θ2 − α) +
√

r2
3 − (r1 sin(θ1 − α) + r2 sin(θ2 − α) + e)2 (48)

The next inequality constraints (38)–(41) provide high efficiency of the force transmis-
sion from the input link (crank link) to the output link, where the distances between point
A to C dAC, and between point D to F dDF are obtained by (49) and (50), respectively.

dAC =
√

(r1 cos θ1 − e sin α− s cos α)2 + (r1 sin θ1 + e cos α− s sin α)2 (49)

dDF =
√

(xD − x0 − r7 cos β)2 + (yD − y0 − r7 sin β)2 (50)

The inequality constraints (42)–(44) guarantee the path feasibility in the output link,
where the distances between point D to F dOD, and between point B to e dBe are obtained
by (51) and (52), respectively.

dOD =
√
(xD − x0)2 + (yD − y0−)2 (51)

dBe =
√
(yB − y0) cos α− (xB − x0) sin α + ε (52)
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The last inequality constraint (45) defines the minimum curvature radius of the cam
profile. Moreover, the design variable vector x is bounded by xmin and xmax. The limit
values used in this work are shown in Table 3.

Table 3. The maximum and minimum parameters of the vector x for the cam-linkage mechanism.

x xmin xmax x xmin xmax

x1 0.1 [m] 0.4 [m] x9 −2.0944 [rad] 2.0944 [rad]]
x2 0.3 [m] 0.6 [m] x10 −1.0472 [rad] 3.1416 [rad]
x3 0.4 [m] 0.9 [m] x11 −1.0472 [rad] 3.1416 [rad]
x4 0.3 [m] 0.7 [m] x12 −2.0944 [rad] 2.0944 [rad]
x5 0.4 [m] 0.8 [m] x13 −0.5 [m] 0.5 [m]
x6 0.3 [m] 0.7 [m] x14 −0.7 [m] 0.3 [m]

x7,x8 0.3 [m] 0.8 [m] x15 −0.2 [m] 0.2 [m]

The precision points (x̄i
P, ȳi

P) are presented in Table A2 of Appendix A. These coor-
dinates define the standard ankle trajectory in the human gait. The precision points are
obtained by the leg kinematics (53) considering an angular displacement of the hip and knee
joint in the sagittal plane. The thigh and shank lengths are defined as Lthigh = 0.3984 [m],
Lshank = 0.3956 [m], respectively. The knee angles θi

knee and the hip angles θi
hip ∀ i = {1, 2, ..., n f }

are found in [57]. [
x̄i

P
ȳi

P

]
=

[
−sinθi

hip sin(θi
knee − θi

hip)

−cosθi
hip −cos(θi

knee − θi
hip)

][
Lthigh
Lshank

]
(53)

The computation of the displacement angle θi
1 and the cam radius R0 in the optimiza-

tion problem are obtained by inverse kinematics analysis of the mechanism. Therefore, R0
is given in (54) and θi

1 in (55).

R0 = max

√(dh(θ1)/dθ1 ∓ e
tan π/6

− h(θ1)

)2

+ e2

 (54)

θ1 = 2 atan2
(
−B̃2 ±

√
B̃2

2 + Ã2
2 − C̃2

2 , C̃2 − Ã2

)
(55)

where

h(θ1) = s(θ1)− smin

θ2 = atan2
(

yD − r1 sin θ1 − y0

xD − r1 cos θ1 − x0

)
− η

Ã2 = −2r1(xD − x0)

B̃2 = −2r1(yD − y0)

C̃2 = r2
1 − r2

4 + (yD − y0)
2 + (xD − x0)

2

xD = xP + r8 cos(π + ϕ2 − γ) + r5 cos(ϕ2)

yD = xP + r8 sin(π + ϕ2 − γ) + r5 sin(ϕ2)

ϕ2 = 2atan2

 B̃1 ±
√

Ã2
1 + B̃2

1 − C̃2
1

Ã1 + C̃1

+ γ

Ã1 = 2r8(x̄P − x0 − r7 cos β)

B̃1 = 2r8(ȳP − y0 − r7 sin β)

C̃1 = r2
8 − r2

6 + (xp − x0 − r7 cos β)2 + (yp − y0 − r7 sin β)2
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The above equations are obtained according to the original design problem [15]. Except
for the Equation (55), which is rewritten in this work from a two-argument arctangent.
Equation (55) has two solutions that define the direction of crank rotation θ1. In this case,
the clockwise turn in the crank link is chosen. Then, the solution in (55) that presents a
positive increment between two different consecutive crank positions is selected.

On the other hand, the cam profile is obtained in (56) with respect to the coordinate
system x0 − y0.

ρ =

e cos(α− θ1)−
(√

R2
0 − e2 + h(θ1))

)
sin(α− θ1)

e sin(α− θ1) +
(√

R2
0 − e2 + h(θ1))

)
cos(α− θ1)

 (56)

4.3. Case 3: Eight-Bar Linkage Mechanism

Case 3 includes an eight-bar linkage mechanism for rehabilitation of the lower limbs.
This mechanism has been designed for rehabilitation routines for the average anthropome-
try for the Mexican population [3]. The integration among the kinematic synthesis, the link
shape design, and the mechanism dynamics are considered for its design. The schematic
diagram of the mechanism is displayed in Figure 4a.

(a) Eight-bar linkage mechanism. (b) Link shape.

Figure 4. Eight-bar linkage mechanism and the link shape.

According to Figure 4a, the design variables vector x is defined by (57).

x = [ p̃ki, p̃sh] ∈ R107 (57)

This vector is split into two kinds of parameters, the kinematic parameter vector
p̃ki = [l1, l2, . . . , l9, l′6, l′8, θ1, θ9, θ̂6, θ̂8, xini, yini, θ1

2 , θ2
2 , . . . , θ

n f
2 ]T ∈ R17+n f and the shape param-

eter vector p̃sh = [b2, . . . , b8, c2, . . . , c8, d2, . . . , d8, e2, . . . , e8, f2, . . . , f8, g2, . . . , g8, h2, . . . , h8,
i2, . . . , i8, j2, . . . , j8, k2, . . ., k8]

T ∈ R70. The shape parameters define the octagonal link shape
shown in Figure 4b and the link dynamic parameters, such as the masses, the mass centers,
and the inertia of links.

The synthesis problem for the eight-bar linkage mechanism is presented in (58)–(84).
The design objectives in (58) are weighted by parameters w1 = 1 and w2 = 1e− 6. The

first term refers to the average error between the precision points (x̄i
E, ȳi

E) and the points
(xi

E, yi
E) generated by the mechanism’s coupler link. The desired precision points [x̄i

E, ȳi
E]

are defined as a semi-elliptical rehabilitation trajectory. Those points are shown in Table A3
of Appendix A. On the other hand, the points [xi

E, yi
E] are set by the direct kinematics of

the mechanism, as shown in (85). For more details of the analysis, see [3].
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Min
x

w1
∑

n f
i=1[(x̄i

E − xi
E)

2 + (ȳi
E − yi

E)
2]

n f
+ w2

∑
n f
i=1 τ2

n f
(58)

subject to:

g1 : l2 + l1 − l3 − l4 ≤ 0 (59)

g2 : −l4 − l1 + l2 + l3 ≤ 0 (60)

g3 : −l3 − l1 + l2 + l4 ≤ 0 (61)

g4 : l2 + l9 − l3 − l′6 ≤ 0 (62)

g5 : −l′6 − l9 + l2 + l3 ≤ 0 (63)

g6 : −l3 − l9 + l2 + l′6 ≤ 0 (64)

g7 :
π

4
− cos−1

(
l2
3 + l2

4 − (l1 − l2)2

2l3l4

)
≤ 0 (65)

g8 :
π

4
− cos−1

(
l2
5 + l′6

2 − (l9 − l2)2

2l5l′6

)
≤ 0 (66)

g9 : cos−1

(
l2
3 + l2

4 − (l1 + l2)2

2l3l4

)
− 3π

4
≤ 0 (67)

g10 : cos−1

(
l2
5 + l′6

2 − (l9 + l2)2

2l5l′6

)
− 3π

4
≤ 0 (68)

g11 : θ8 − θ7 + 2π − 3π

4
≤ 0 (69)

g12 :
π

4
− θ8 − θ7 + 2π ≤ 0 (70)

g13:28 : Fcmin −
σadm
σk̂s

≤ 0 (71)

g29:35 : hs + is − bs − ls − ds ≤ 0 (72)

g36:42 : js + ks − bs − ls − ds ≤ 0 (73)

g43:44 : ψs −
√

x2
Ks

+ y2
Ks

+ φs ≤ 0 (74)

g45:46 : ψs −
√
(xKs − xBs)

2 + (yKs − yBs)
2 + φs ≤ 0 (75)

g47:62 : −yk̂s
− cs

2
− gs + ζs +

φs

2
≤ 0 (76)
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g63:78 :
−yk̂s

− gs
js xk̂s

− cs
2 + gsbs

js√
gs
js

2
+ 1

+ ζs +
φs

2
≤ 0 (77)

g79:94 : −xk̂s
− bs + ζs +

φs

2
≤ 0 (78)

g95:110 :
yk̂s
− fs

hs
xk̂s
− cs

2 −
fsbs
hs√

fs
hs

2
+ 1

+ ζs +
φs

2
≤ 0 (79)

g111:126 : yk̂s
− cs

2
− fs + ζs +

φs

2
≤ 0 (80)

g127:142 :
yk̂s

+ fs
is xs − cs

2 −
fs(as+ds)

is√
fs
is

2
+ 1

+ ζs +
φs

2
≤ 0 (81)

g143:158 : xk̂s
− as − ds + ζs +

φs

2
≤ 0 (82)

g159:174 :
−yk̂s

− gs
ks

xk̂s
− cs

2 −
gs(as+ds)

ks√
gs
ks

2
+ 1

+ ζs +
φs

2
≤ 0 (83)

xmin ≤ x ≤ xmax (84)[
xE
yE

]
=

[
l2 cos θ2 + l3 cos θ3 + l′8 cos(θ8 + θ̂8)
l2 sin θ2 + l3 sin θ3 + l′8 sin(θ8 + θ̂8)

]
(85)

The second term in (58) represents the average of the applied torque τ in the crank
link. The inverse dynamic model X̌ = Ǎ−1B̌ is used to obtain the torque τ considering
the position of the crank link known with a constant angular speed of ω2 = 2π [rad/s].
The vector X̌ = [FC2x

, FC2y
, FB2x

, FB2y
, FC3x

, FC3y
, FB3x

, FB3y
, FC4x

, FC4y
, FB5x

, FB5y
, FC6x

, FC6y
,

FB6x
, FB6y

, FB7x
, FB7y

, FC8x
, FC8y

, τ]T includes the joint forces Fk̂s
∀ k̂ = {B, C, K} ∧ s =

{2, 3, . . . , 8}, and the input torque τ. Moreover, Ǎ ∈ R21×21 and B̌ ∈ R21. For more
details, see [3].

For the synthesis of the mechanism, a set of inequality constraints are established.
Equations (59)–(64) define a crank-rocker mechanism configuration. The Equations (65)–(70)
are related to the high efficiency of force transmission from the crank link (input link) to
output link. In the coupler link, the patient’s ankle is placed. Equation (71) avoids tear
failure in the joint holes, where Fcmin = 1.5 is the safety factor, σadm = 6.2052× 107 [Pa]

is the allowable stress in the joint, σk̂s
=
||~Fk̂s
||

as
is the joint stress, as =

π
4 φses is the contact

area of the joint, φs = 0.01905 [m] is the constant diameter of the holes.
Equations (72)–(83) define the octagonal link shape of the mechanism, where ζs = 1.5φs

is the distance between the edge of the hole and the link edge, and ψs = 1.5φs is the distance
between holes. The final constraints are related to the limits of the design variable vector x
represented by the vectors xmin and xmax. These values are defined in the Table 4.
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Table 4. The maximum and minimum parameters for the design variable vector x for the eight-bar
linkage mechanism.

Kinematic Parameters p̃ki xmin xmax

x1 − x11 0 0.75
x12 − x15, x18 − x37 0 2π
x16 −1.875 1.875
x17 −1.875 −0.15

Shape Parameters p̃sh

x38 − x41, x43, x45 − x48, x50 0 0.1x66 − x69, x71, x73 − x76, x78,
x42, x44, x49, x51, x56, x58 0 0.5x70, x72, x77, x79
x52 0 0.3
x53 − x55, x57 0 0.15
x59 − x65 0.01 0.05
x80 − x107 0 1.875

5. Comparative Experimental Study

We analyzed four Constraint-Handling Techniques (CHTs) in lower limb rehabilitation
mechanism synthesis. These CHTs are the Feasibility Rules (FR), the Stochastic-Ranking
(SR), the ε-Constraint (εC) method, and the Penalty Function (PF). The constraint-handling
techniques are included in ten Metaheuristic Algorithms (MAs) frequently used in the
synthesis of mechanisms. These algorithms are: Particle Swarm Optimization (PSO),
Genetic Algorithm (GA), and eight variants of Differential Evolution (DER1B, DER1E,
DEB1B, DEB1E, DECR, DECB, DECR1B, and DECR1E).

Each metaheuristic algorithm solves three study cases of mechanism synthesis prob-
lems related to lower limb rehabilitation using four-bar linkage, cam-linkage, and eight-bar
linkage mechanisms. A summary of the main attributes of the study cases is included in
Table 5 because there is no single attribute to measure the problem’s complexity. In such a
table, the terms LI and NI mean the number of linear and nonlinear inequality constraints,
respectively.

The ratio ρ̄ = |F|/|S| ∈ [0, 1] provides the relative size of the feasible region in
the search space (a measure of how difficult is to generate feasible solutions) by using
|S| = 1× 106 random design variables (suggested in [58]), and the number of feasible
solutions |F|. A high value in ρ̄ indicates that the MA would find the feasible region in
an early number of generations. Based on those attributes, the less complex optimization
problem is given by study case 1, followed by study case 2, and study case 3, in that order.

Table 5. Summary of the main attributes of the mechanism synthesis optimization problems applied
to lower limb rehabilitation.

Study Case Variables Function Type ρ̄ LI N I

1 22 Nonlinear 0.125 3 0
2 15 Nonlinear 2.62 ×10−4 0 11
3 107 Nonlinear 0 86 88

The following comparative analysis is divided into three subsections. First, the con-
ditions for making the parameter tuning of the CHTs in the algorithms are described in
Section 5.1. In Section 5.2, the descriptive and inferential statistics of the overall perfor-
mance for each algorithm with different CHTs are compared and discussed. Six perfor-
mance metrics used in constrained optimization problems are included in Section 5.3 for
evaluating the behavior of the CHTs in the metaheuristic algorithms. In Section 5.4, the
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best and worse solutions per each study case are visualized and evaluated to investigate
the performance of the obtained mechanisms in the rehabilitation routine.

5.1. Parameter Tuning Conditions of the CHTs in the Algorithms

The parameter tuning for each metaheuristic algorithm with the different CHTs was
performed for each study case. The irace package [59] was used for parameter tuning and
to make the comparative study more fair and meaningful [60]. The parameters obtained by
the irace package are presented in Tables A4–A6 of Appendix B.

For solving each study case, the same number of objective function evaluations is also
considered to make fair comparisons. The penalty factor vk in the CHT by PF in (18) is
taken into account as a constant value in all cases. Thus, these parameters are set in Table 6.

Table 6. The Maximum Number of Objective Function Evaluation (MNFE), the Population Number
(NP), and the penalty factor chosen for each study case.

Parameter Study Case
1 2 3

NP 200 120 120
MNOFE 5 × 106 2.4 × 106 24 × 106

vk 10,000 10,000 10,000

5.2. Statistical Analysis of the Overall Performance

In this work at each study case, thirty executions of the four CHTs are carried out
per each of the ten metaheuristics. Each study case groups a total of forty samples (four
CHTs per ten metaheuristics). Each sample contains the best thirty objective functions of an
algorithm. Descriptive statistics analyzes those samples. The descriptive statistical results
are shown in Tables A7–A9 of Appendix C, and these consider the following measures: the
mean, the standard deviation (std), the median, and the maximum (max) and minimum
(min) values of the samples. The graphical visualization of the distribution of the samples
is shown in the box plot of Figure 5.

Based on the results presented in such tables, it is possible to define the CHT that
delivers the best performance in search of the most promising solution for each study
case. Thus, the best behavior of a metaheuristic algorithm is related to the ability to
search for the best solutions and provide more reliable results in different runs. The
mean, the standard deviation (std), the median, and the maximum (max) and minimum
(min) values of the samples are chosen as the statistical measure to indicate the algorithm
capacity to find suitable solutions through runs in the particular samples. The best CHT
between two CHTs, called A and B, included in the algorithms, is obtained by the following
comparison procedure:

• The CHT A can be compared to the CHT B if their CHTs are different, and the
algorithms that implement such CHTs are the same. On the contrary, they cannot
be compared.

• The statistical measure from the thirty executions of the CHT A is better than the CHT
B for the same algorithm if the former presents less value than the latter. When this
happens, the CHT A obtains the point (a win) in favor. Thus, the maximum number
of points for comparing each CHT is 150 (three CHT comparisons per five measures
per ten algorithms).

• The CHT with the highest number of points is the best constraint-handling technique.
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(a) Study case 1: Four-bar linkage mechanism.
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(b) Study case 2: Cam-linkage mechanism.
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(c) Study case 3: Eight-bar linkage mechanism.

Figure 5. Box plot of the sample distribution obtained by the overall performance of the CHTs in ten metaheuristics at each
study case of mechanism synthesis for lower limb rehabilitation.
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In the comparison method, the lower values of the statistical measures (the mean,
the standard deviation (std), the median, and the maximum (max) and minimum (min)
values of the samples) are preferable in each algorithm. All measures are considered in the
comparison procedure. The results obtained by the comparison process are presented in
Table 7. The best performances of metaheuristic algorithms include the FR for the solution
of the three study cases. For study case 1, it wins 115, for study case 2, it wins 104, and
for study case 3, it wins 105. The next CHT alternative is the PF because it obtains the
second-best performance in two study cases (study cases 1 and 2).

Table 7. Performance analysis of the CHTs using descriptive statistics.

Study Case 1 Study Case 2 Study Case 3
FR SR εC PF FR SR εC PF FR SR εC PF

DER1B 14 1 7 8 11 2 3 14 12 0 7 11
DER1E 10 0 7 13 14 7 2 7 11 0 6 13
DEB1B 11 2 5 12 14 2 7 7 15 3 2 10
DEB1E 15 0 8 7 13 0 5 12 15 0 7 8

CR 10 0 8 12 10 15 1 4 11 13 6 0
DECB 11 0 5 14 13 8 1 8 8 5 15 2

DECR1B 14 0 8 8 8 14 0 8 13 5 10 2
DECR1E 11 5 2 12 13 5 0 12 8 1 15 6

GA 11 0 14 5 3 8 6 13 11 13 6 0
PSO 8 0 13 9 5 2 8 15 1 4 14 11

Total 115 8 77 100 104 63 33 100 105 44 88 63

The inferential statistical analysis was performed to make general conclusions about
the performance of the CHTs incorporated in the metaheuristic algorithms for the solution
of the lower limb rehabilitation mechanism synthesis. Nonparametric statistical tests [61]
were used because the independence, normality, and homoscedasticity assumptions in the
samples were not fulfilled due to the stochastic nature of the algorithms.

The inferential statistical analysis consists of performing a multi-comparative post-hoc
analysis with Holm post-hoc error correction method [61] in all CHTs incorporated in the
algorithms. The first step is to guarantee that at least one comparison of the constraint-
handling technique in the metaheuristic algorithms is different. The 95%-confidence
Friedman test is applied for that purpose, and the results are presented in Table A10 of
Appendix D. The obtained p-value near to zero proves the existence of such differences
with confidence close to 100%.

Once the first step was done, the Friedman test for multiple comparisons with the
Holm post-hoc error correction method was performed to make the general conclusions of
comparisons and confirm the results’ confidence. The forty samples (four CHTs included
in ten algorithms), conformed to each one by the best thirty objective functions of the
executions, can be compared if both CHTs are incorporated in the same metaheuristic
algorithm.

In Table A11 of Appendix D, the results obtained by the multi-comparative analysis
are shown. The two-sided alternative hypothesis was selected, which means that, in the
case that the p-value of the test is less than the 5% statistical significance, the comparison
between the CHT A and the one in B for the same algorithm presents significant differences
(the alternative hypothesis is accepted). On the contrary, if the results are not convincing,
and significant differences are not observed in the comparative result then the null hypoth-
esis is accepted. Once the alternative hypothesis is accepted, the Friedman z-value sign
defines the winner between both CHTs in the algorithms. The negative sign of z indicates
that the CHT in the algorithm A was better than the one in B, and vice versa.

Three comparisons related to the four CHTs are made per each metaheuristic algorithm.
A total of thirty comparisons are carried out per each CHT at each study case (considering
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the ten algorithms), and the highest number of wins defines the most suitable constraint-
handling technique in the synthesis of lower limb rehabilitation mechanisms for each
study case. A total of ninety comparisons was carried out, considering the three CHT
comparisons with the ten metaheuristic algorithm for the three study cases.

The number of wins per CHT in algorithms from the comparisons is presented in
Table 8. The results indicate that the feasible rules improve the algorithm performance in
the comparisons at 66.66% for study case 1, 40% for study case 2, and 53.33% for study
case 3. The overall improvement for the ninety comparisons (in all study cases) with
the FR is around 53.3%. It is also observed in Table A11 of Appendix D that only eight
comparisons with other CHTs (DECB EC, DECR1B SR, DECR1E EC, GA SR, GA PF, PSO
SR, PSO εC, and PSO PF) outperformed the values obtained in FR (around 8.8% of the total
comparisons).

Nevertheless, the obtained solutions in such comparisons did not surpass the best
solutions provided by the FR as is observed visually in Figure 5 and numerically in
Tables A7–A9 of Appendix C. Then, the improvement in the eight algorithms using the
CHTs in such comparisons did not influence a better overall behavior. In addition, in
the remaining ninety comparisons (around 29.44%) with respect to the FR, there were no
conclusive results about improving an algorithm. The latter means that there are no other
CHTs in the algorithms that present a better behavior than the FR.

On the other hand, the penalty function outperformed at 43.33% in study case 1,
53.33% in study case 2, and 33.33% in study case 3 of the comparisons with respect to
the other CHTs. The ε-constraint method improved at 36.66%, 3.33%, and 46.66% in the
corresponding study cases. The stochastic ranking outperformed at 0%, 33.33%, and 13.33%
of the comparisons. Nevertheless, in the last three CHTs, several comparisons exist where
the CHTs in the algorithm to which it is compared outperformed such results as shown in
Table A11 of Appendix D .

Thus, it is confirmed, with 95% confidence, that the feasibility rules improved the
search capabilities of the algorithm with respect to the other CHTs. This implies that the
optimal synthesis of the lower limb rehabilitation mechanism can be benefited by using the
FR to solve such a constrained optimization problem because this can improve the quality
and the consistency of results in most of the algorithms reviewed in this work.

Table 8. The number of wins obtained by each algorithm through Friedman test for multiple
comparisons using the execution best values as the sample.

Study Case 1 Study Case 2 Study Case 3
FR SR εC PF FR SR εC PF FR SR εC PF

DER1B 3 0 1 1 2 1 0 2 2 0 1 2
DER1E 1 0 1 1 2 2 0 1 1 0 1 2
DEB1B 2 0 0 2 0 0 0 0 2 0 0 2
DEB1E 3 0 2 1 2 0 0 2 3 0 1 1
DECR 2 0 1 1 1 1 0 1 1 1 1 0
DECB 1 0 1 2 2 0 0 1 2 0 3 0

DECR1B 3 0 2 1 1 3 0 1 2 1 1 0
DECR1E 2 0 0 2 2 1 0 2 2 0 3 1

GA 2 0 2 1 0 2 1 3 1 1 1 0
PSO 1 0 1 1 0 0 0 3 0 1 2 2

Total 20 0 11 13 12 10 1 16 16 4 14 10

5.3. Statistical Analysis of the CHT Behavior through Metrics

This work is also interested in knowing the search capabilities of metaheuristic algo-
rithms with the constraint-handling techniques related to different performance metrics.
Then, six performance metrics [62] found in the specialized literature were used. Each of
these metrics is described below:
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• The feasibility probability (FP) is obtained by dividing the number of feasible execu-
tions by the total number of executions. FP is in the range of [0, 1], where 0 represents
that there are not feasible solutions, and 1 represents that all found solutions are
feasible.

• The convergence probability (P) is obtained by dividing the number of successful
executions by the total number of executions. The successful solutions are defined as
the solutions x close to the best solution x∗ in the objective function space. Therefore,
a satisfactory solution can be determined by | J̄(x) − J̄(x∗)| ≤ ē, where the best
executions per each study case is shown in Tables A7–A9 of Appendix C. The value of
ē is related to the bias region in the synthesis problem where the mechanism executes
a suitable rehabilitation routine.
For the four-bar mechanism, J̄(x∗) = 0.0021 and ē = 0.0018 are considered; for the
cam-linkage mechanism, J̄(x∗) = 0.6540 and ē = 0.5931 are chosen; and for the
eight-bar linkage mechanism, J̄(x∗) = 1.2054× 10−4 and ē = 0.0011 are selected. The
P metric value is in the interval [0, 1], where a higher value (the best P metric) implies
that all executions converge to the region. The metric is related to the reliability of an
algorithm to find successful solutions.

• AFES is the average number of function evaluations required for each successful
execution. Successful execution is considered when it finds the first solution in the
bias region ē. If successful executions are not found, Non-Successful Executions (NSE)
are accounted for. The best result in the AFES metric is first related to the minimum
value in NSE and then to the lower values of the AFES. This metric indicates a
convergence speed measure to the bias region ē.

• Successful performance (SP) divides the AFES by P. The best result in the SP metric is
first related to the minimum value in NSE and then to the lower values of the SP.

• EVALS counts the number of evaluations an algorithm needs to find the first feasible
solution in every execution. Lower evaluations mean a low computational cost to
reach a feasible solution; therefore, this is preferred. This metric is presented with the
use of statistics.

• The Progress Ratio (PR) measures the improvement capability of an algorithm inside
the feasible region in every execution. This metric is calculated by (86) where J̄min(G f f )
is the value of the objective function of the first feasible solution, and J̄min(MCN)
is the value of the objective function of the best feasible solution in the algorithm
execution. It is assumed in (86) that J̄min(MCN) > 0 is fulfilled. A higher value in this
metric is preferred and also presented by using statistics.

PR =

∣∣∣∣∣∣ln
√

J̄min(G f f )

J̄min(MCN)

∣∣∣∣∣∣ (86)

As commented previously, thirty executions of each constraint-handling technique
included in the metaheuristic algorithms were carried out for each study case. The values
of the metrics FP, P, AFES, and SP for the thirty executions for each algorithm at each
study case are presented in Tables A12–A15 of Appendix E. The summaries (averages
values) of those metrics are displayed in Table 9. We observed that, for the metric FP, the εC
provided the best results in the three study cases, followed by the FR and PF, in that order.
For the metric P, the FR obtained the best results in cases 1 and 3. In the second study case,
the result in FR was close to the best one provided by the PF. In the AFES metric, the FR,
εC, and PF won in only one study case. For the SP value, the FR provided the best result in
two study cases.

In the case of the metrics EVALS and PR, inferential statistics using the non-parametric
Friedman test for multiple comparisons are included to confirm the performance. The
distribution of the samples related to such metric values per each algorithm at each study
case is shown in the box plots of Figures 6 and 7, respectively, and the numerical results of
the EVALS and PR metrics are presented in Tables A16–A18 and A21–A23 of Appendix E,
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respectively. The multi comparative Friedman test is presented in Appendixes E.6 and E.8.
Summaries of the winning numbers of these comparisons are displayed in Tables 10 and 11.
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(c) Study case 3: Eight-bar linkage mechanism.

Figure 6. Box plot of the sample distribution obtained by EVALS in ten metaheuristics at each study case of mechanism
synthesis for lower limb rehabilitation.
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Figure 7. Box plot of the sample distribution obtained by PR in ten metaheuristics at each study case of mechanism synthesis
for lower limb rehabilitation.
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Table 9. Average metric values FP, P, AFES, and SP for each study case and for each constraint-handling technique
included in the metaheuristic algorithms.

CHT Metric FP Metric P

Study Case Study Case
1 2 3 1 2 3

FR 1 1 0.9 0.053 0.7 0.12
SR 0.78 0.99 0.52 0.01 0.48 0.023
εC 1 1 0.98 0.04 0.08 0.047
PF 1 1 0.7 0.043 0.71 0.09

CHT Metric AFES Metric SP

Study Case Study Case
1 2 3 1 2 3

FR / NSE 4.8× 106/5 2.2× 106/2 2.391× 107/5 6.1× 107/5 2.7× 106/2 1.3× 108/5
SR / NSE 5.9× 105/9 1.4× 106/2 1.8× 107/7 5.9× 106/9 3× 106/2 3.4× 108/7
εC / NSE 4.5× 106/7 1.9× 105/6 2.386× 107/5 6.7× 107/7 2.1× 106/6 3.4× 108/5
PF / NSE 4.9× 106/6 2.3× 106/1 2.381× 107/7 4.9× 107/6 3.5× 106/1 1.3× 108/7

Table 10. Number of winners in the EVALS metric by using the multi comparative test.

Study Case 1 Study Case 2 Study Case 3
FR SR εC PF FR SR εC PF FR SR εC PF

DER1B 0 0 0 0 2 0 0 0 2 1 0 2
DER1E 0 0 0 0 1 1 0 2 1 0 3 2
DEB1B 0 0 0 0 0 0 0 0 1 3 1 0
DEB1E 0 0 0 0 1 0 0 1 1 0 3 2
DECR 0 0 0 0 2 0 0 1 1 2 2 0
DECB 0 0 0 0 1 0 0 0 2 1 3 0

DECR1B 0 0 0 0 1 1 0 1 1 3 1 0
DECR1E 0 0 0 0 0 0 0 0 2 1 3 0

GA 0 0 0 0 1 1 0 0 1 3 1 0
PSO 0 0 0 0 0 0 0 0 1 3 1 0

Total 0 0 0 0 9 3 0 5 13 17 18 6

Table 11. Number of winners in the PR metric by using the multi comparative test.

Study Case 1 Study Case 2 Study Case 3
FR SR εC PF FR SR εC PF FR SR εC PF

DER1B 0 2 1 1 0 1 3 0 1 0 2 1
DER1E 0 3 0 0 0 1 3 1 1 0 1 1
DEB1B 0 1 1 0 0 0 1 0 0 2 2 0
DEB1E 0 2 1 1 0 2 2 0 1 0 1 1
DECR 0 0 0 0 0 2 3 0 0 0 0 3
DECB 0 3 1 0 0 2 2 0 2 1 3 0

DECR1B 0 3 0 2 0 0 3 0 0 1 1 1
DECR1E 0 2 2 0 0 2 2 0 3 1 2 0

GA 0 3 0 2 1 0 3 0 1 1 1 0
PSO 0 3 0 0 1 1 1 0 3 2 0 0

Total 0 22 6 6 2 11 23 1 12 8 13 7

The EVALS metric for study case 1 indicates that feasible solutions were found in the
initialization of the 200 individuals (particles) of the population (swarm). As a result, all
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executions required at least 200 evaluations to find a feasible solution (the feasible region).
For this reason, the samples were not significant to determine a winner in the CHT in such
a metric. In study case 2, the FR confirmed the superior performance in the EVALS metric.
In study case 3, the ε-constraint method improved the convergence to the feasible region
in fewer generations. Finally, in the PR metric, it was confirmed in two study cases that
the ε-constraint method can improve the solutions through the feasible region when the
generations occur, followed by the SR that won in only one study case.

According to the results obtained by the previous analysis in the performance metrics,
the following findings of the CHTs in the optimal synthesis of the lower limb rehabilitation
mechanism synthesis were observed:

• The FR had one of the best performance and the best one of the search for feasible
solutions and satisfactory regions for the three study cases, respectively, because this
constraint-handling technique has a high probability value in the FP and P metrics.
The relationship between the AFES and P gave by SP is the best among the CHTs.
Therefore, among the studied CHTs, the Feasibility Rules technique is the most reliable
one for the synthesis of mechanisms for rehabilitation.

• The PF can be considered the second option for solving mechanism synthesis for
rehabilitation problems because it showed a suitable performance to find satisfactory
solutions (P and SP metrics) compared to Stochastic-Ranking and ε-constraint. This
establishes acceptable reliability to find feasible solutions (FP metric).

• εC method presented the best performance in the search for feasible regions as shown
in FP. Inside the feasible region, this CHT produces improved solutions based on
the PR metric. Nevertheless, the probability of this CHT to search for satisfactory
solutions was low (P and SP metrics). This behavior is attributed to the gradient-based
mutation where fast convergence to feasible local regions is promoted.

• SR is the less reliable CHT because some algorithm executions can not find feasible
solutions (FP metric). This presents a low performance in the search for suitable
solutions (P metric).

According to the results in this section, the Feasibility Rules presented the best perfor-
mance for handling constraints in the mechanism synthesis for rehabilitation problems. The
Penalty Functions gave the second best performance. Those CHTs improved the quality
and the consistency in most of the algorithms reviewed in this work.

5.4. Evaluation of the Obtained Mechanisms

In this section, the best solutions obtained by the feasibility rules (according to the
overall performance presented in Table 8), and the worst constraint-handling technique
are presented.

In study case 1, the best constraint-handling technique was the feasibility rules, and
the worst was stochastic-ranking. The Computer-Aided Design (CAD) and the generated
trajectory of the best mechanisms obtained by both constraint-handling techniques are
presented in Figure 8, where the objective function values of the mechanisms obtained by
the feasibility rules (with the algorithm DECR) is J = 0.002098, and by stochastic-ranking
(with the algorithm DECR1E) is J = 0.003726. Those values are given in Table A7 of
Appendix C.

According to the design parameters obtained in both CHTs (see Table A26 of Appendix F),
the feasibility rules present a Pearson correlation coefficient of 0.9939 with respect to the
stochastic-ranking. This indicates a high degree of similarity (see Figure 8). On the other
hand, the performance of the design goals is presented in Figure 8c,d. Figure 8c shows the
trajectory of the mechanisms, the current, and the desired precision points. The average
error between the desired precision points and the current ones is J̄1 = 4.7095× 10−4 [m]
by Feasibility Rules (FR) and J̄1 = 4.6009× 10−4 [m] by Stochastic-Ranking (SR).

Figure 8d shows the angles obtained by the crank and the desired angles, where
the average angular error is J̄2 = 1.6270 [rad] by feasibility rules, and J̄2 = 3.2663 [rad]
by stochastic-ranking. We observed that the design goals in both mechanisms related
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to J̄1 and J2, present a trade-off, i.e., in one goal, it is better but in the other not. Then,
solutions obtained by the feasible rules and the stochastic-ranking are suitable for the
rehabilitation mechanism. Nevertheless, the feasible rules provide more reliable results
through different algorithm executions and with a better overall performance (related to
the objective function J).
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(a) Mechanism obtained by FR. (c) Rehabilitation trajectories.
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Figure 8. CAD representation and trajectory generated of the mechanisms (design goals) given by the best and the worst
constraint-handling technique for solving study case 1.

In study case 2, the feasibility rule was the best constraint-handling technique, and
the worst was the epsilon-constraint. The CAD and the generated trajectory of the best
mechanisms obtained by both constraint-handling techniques are presented in Figure 9.
The objective function values given by the mechanisms obtained by the feasibility rules
(DEB1B) is J = 0.6557 and by epsilon-constraint (DEB1E) is J = 0.7588. Those values are
given in Table A8 of Appendix C.

According to the design parameters obtained in both CHTs (see Table A27 of Appendix F),
the feasibility rules present a Pearson correlation coefficient of 0.9991 with respect to the
epsilon-constraint. This correlation is larger than the obtained mechanisms in the previous
study case 1, which implies a fairly strong relationship. In order to highlight the difference,
the performance of the design goals is presented in Figure 9c,d for the cam shapes and the
angles obtained by the crank, respectively.
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The normalized average error between the desired crank angles and the current ones
is J̄1 = 1.2217 by feasibility rules and J̄1 = 1.7122 by epsilon-constraint. The normalized
base radius of the cam is J̄2 = 0.4137 by FR, and J̄2 = 0.3502 by epsilon-constraint. It is
observed again that the design goals present a trade-off, such that both mechanisms are
suitable for the rehabilitation routine, and it depends on the application that one selects.
However, the feasible rules can search for solutions with a similar performance through
different executions and with better quality in the overall performance in the weighted
objective function J.

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

x [m]

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

y 
[m

]

Cam profile obtained by FR

Cam profile obtained by C

(a) Mechanism obtained by FR. (c) Cam shape.

0 10 20 30 40 50 60 70 80 90 100

Samples

0

1

2

3

4

5

6

C
ra

nk
 a

ng
le

 [r
ad

]

Desired angles

Angles obtained by FR

Angles obtained by C

(b) Mechanism obtained by εC. (d) Angular displacement
of the crank.

Figure 9. CAD representation and design goals of the mechanism (related to the terms J̄1 and J̄2) given by the best and the
worst constraint-handling technique for solving study case 2.

Finally, for study case 3, the best constraint-handling technique was the feasibility
rules, and the worst one was stochastic-ranking. The CAD and the generated trajectory are
presented in Figure 10, where the objective function values of the mechanisms obtained
by the feasibility rules (DECR) is J = 0.0001903, and by stochastic-ranking (DECR) is
J = 0.0001884. Those values are given in Table A9 of Appendix C.

According to the design parameters obtained in both CHTs (see Table A28 of Appendix F),
the feasibility rules present a Pearson correlation coefficient of 0.7231 with respect to the
stochastic-ranking. As the problem complexity in study case 3 is higher than in the other
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cases, the obtained solution presents differences, as is observed in Figure 10a,b. The
behavior of the design goals related to the generated trajectory in the mechanisms and the
torque applied in the crank link are displayed in Figure 10c,d, respectively.

In this case, the average error between the desired precision points and the current
ones is J̄1 = 8.1216× 10−5 [m] by feasibility rules and J̄1 = 5.9633× 10−5 [m] by stochastic-
ranking. The average torque is J̄2 = 5.4531 [Nm] by feasibility rules, and J̄2 = 6.4395 [Nm]
by stochastic-ranking. Neither mechanism can be considered the best because they present
a trade-off in the design goals. Thus, design solutions obtained by the feasible rules and the
stochastic-ranking are suitable for the rehabilitation mechanism. Nevertheless, the feasible
rule provides more reliable results through different executions and the second-best overall
performance (related to the objective function J).
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(a) Mechanism obtained by FR. (c) Rehabilitation trajectories.
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(b) Mechanism obtained by SR. (d) Torque behavior.

Figure 10. CAD representation and trajectory generated of the mechanism (related to the design goals) given by the best
and the worst constraint-handling technique for solving study case 3.
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6. Conclusions

In this work, the behavior of four constraint-handling techniques for the synthesis of
rehabilitation mechanisms is studied in ten metaheuristic algorithms.

According to the results, we present the following conclusions:

• Through the statistical analysis, we observed that the feasibility rules present the best
overall performance for the solution of the three mechanism synthesis cases under
study. This is because the feasibility rules show a high probability of convergence
towards feasible solutions and satisfactory regions based on the performance metrics
studied in this work.

• In the solution of mechanism synthesis problems for rehabilitation, there exists a high
probability that the search capability of an algorithm is improved by incorporating
the FR because, in most of the algorithms reviewed in this work, the FR enhanced the
quality and consistency of results.

• The penalty functions can be used as the second option for solving mechanism synthe-
sis for rehabilitation problems. These establish acceptable reliability to find feasible
solutions based on the performance metrics.

• The ε-constraint method and stochastic-ranking presented the worst overall perfor-
mance in the solution of the mechanism synthesis for lower limb rehabilitation. This
feature is due to the mechanism synthesis problem, which presents a complex search
space and wide, with highly nonlinear functions (multimodality), several design
variables, and feasible regions that are difficult to find. The ε-constraint presents a fast
convergence to feasible local regions because the gradient-based mutation increases
the speed in the search of feasible solutions.

• We confirmed that all study cases for the assessment of the obtained mechanisms,
by using the feasibility rules and the worst CHT, presented different trade-offs in
the design goals of the mechanism synthesis problem for lower limb rehabilitation.
Nevertheless, FR can endow the algorithm with a better search capability to find
reliable results through different executions with a high probability of finding the best
overall performance.
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Appendix A. Precision Points for Synthesis of Mechanisms

In this section, the precision points for the synthesis of mechanisms for lower limb
rehabilitation are presented for each study case.
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Appendix A.1. Precision Points for the Case 1: Four-Bar Linkage Mechanism

For the synthesis of the four-bar mechanism, the standard path of the ankle of a
12-year-old child is considered. In Table A1, those data are shown and are obtained by [16].

Table A1. Precision points for study case 1: Four-bar linkage mechanism.

i x̄i
P [m] ȳi

P [m]

1 0.7429 0.1880
2 0.6551 0.1573
3 0.6014 0.1388
4 0.5189 0.1149
5 0.4159 0.1012
6 0.3001 0.1074
7 0.1964 0.1375
8 0.1639 0.1662
9 0.1605 0.2003

10 0.1934 0.2256
11 0.2619 0.2251
12 0.4201 0.1808
13 0.6474 0.1607
14 0.7429 0.1880

Appendix A.2. Precision Points for Case 2: Cam-Linkage Mechanism

For the synthesis of the cam-linkage mechanism, the data in Table A2 are considered.
These data represent the ankle path in the standard gait for an adult with a thigh-length
Lthigh = 0.3984 [m] and a shank-length of Lshank = 0.3956 [m].

Table A2. Precision points for study case 2: Cam-linkage mechanism.

i x̄i
P [m] ȳi

P [m] i x̄i
P [m] ȳi

P [m] i x̄i
P [m] ȳi

P [m]

1 −0.3159 −0.7259 2 −0.3054 −0.7295 3 −0.2956 −0.7326 4 −0.2850 −0.7357
5 −0.2730 −0.7388 6 −0.2596 −0.7421 7 −0.2455 −0.7453 8 −0.2307 −0.7484
9 −0.2172 −0.7509 10 −0.2019 −0.7540 11 −0.1885 −0.7567 12 −0.1738 −0.7596

13 −0.1612 −0.7623 14 −0.1479 −0.7650 15 −0.1345 −0.7677 16 −0.1225 −0.7703
17 −0.1112 −0.7726 18 −0.0984 −0.7750 19 −0.0870 −0.7772 20 −0.0748 −0.7792
21 −0.0633 −0.7810 22 −0.0517 −0.7826 23 −0.0401 −0.7840 24 −0.0285 −0.7853
25 −0.0162 −0.7862 26 −0.0045 −0.7870 27 0.0079 −0.7875 28 0.0196 −0.7879
29 0.0306 −0.7881 30 0.0431 −0.7880 31 0.0548 −0.7876 32 0.0672 −0.7871
33 0.0789 −0.7863 34 0.0913 −0.7853 35 0.1023 −0.7842 36 0.1139 −0.7827
37 0.1262 −0.7810 38 0.1378 −0.7791 39 0.1500 −0.7768 40 0.1622 −0.7743
41 0.1757 −0.7713 42 0.1884 −0.7681 43 0.2017 −0.7644 44 0.2143 −0.7607
45 0.2280 −0.7562 46 0.2403 −0.7518 47 0.2538 −0.7466 48 0.2652 −0.7418
49 0.2777 −0.7360 50 0.2894 −0.7301 51 0.3008 −0.7238 52 0.3107 −0.7174
53 0.3203 −0.7106 54 0.3282 −0.7037 55 0.3352 −0.6964 56 0.3400 −0.6894
57 0.3436 −0.6819 58 0.3456 −0.6743 59 0.3465 −0.6662 60 0.3442 −0.6590
61 0.3408 −0.6514 62 0.3356 −0.6443 63 0.3279 −0.6379 64 0.3185 −0.6320
65 0.3075 −0.6279 66 0.2956 −0.6243 67 0.2810 −0.6230 68 0.2664 −0.6224
69 0.2499 −0.6241 70 0.2322 −0.6269 71 0.2145 −0.6312 72 0.1955 −0.6366
73 0.1756 −0.6431 74 0.1540 −0.6505 75 0.1330 −0.6582 76 0.1107 −0.6668
77 0.0880 −0.6752 78 0.0627 −0.6844 79 0.0380 −0.6931 80 0.0140 −0.7012
81 −0.0130 −0.7095 82 −0.0388 −0.7168 83 −0.0657 −0.7235 84 −0.0932 −0.7292
85 −0.1199 −0.7340 86 −0.1476 −0.7372 87 −0.1723 −0.7397 88 −0.1978 −0.7406
89 −0.2227 −0.7402 90 −0.2449 −0.7388 91 −0.2669 −0.7360 92 −0.2841 −0.7333
93 −0.2996 −0.7298 94 −0.3130 −0.7261 95 −0.3217 −0.7237 96 −0.3288 −0.7212
97 −0.3321 −0.7200 98 −0.3322 −0.7202 99 −0.3296 −0.7213 100 −0.3232 −0.7238

101 −0.3167 −0.7262

Appendix A.3. Precision Points for Case 3: Eight-Bar Linkage Mechanism

For the synthesis of the eight-bar mechanism, a semi-elliptical curve is considered.
This path is proposed for people with a height between 1.90 [m] and 1.63 [m]. The precision
points are presented in Table A3 for the synthesis of this mechanism.
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Table A3. Precision points for study case 3: Eight-bar linkage mechanism.

i x̄i
E [m] ȳi

E [m] i x̄i
E [m] ȳi

E [m]

1 0 0 11 0.25 0
2 0.025 0 12 0.275 0
3 0.05 0 13 0.3 0
4 0.075 0 14 0.291 0.0513
5 0.1 0 15 0.2591 0.1029
6 0.125 0 16 0.2094 0.1377
7 0.15 0 17 0.15 0.15
8 0.1750 0 18 0.0906 0.1377
9 0.2 0 19 0.0409 0.1029
10 0.225 0 20 0.009 0.0513

Appendix B. Parameter Tuning

This section shows the tuning of the parameters for the algorithms per each study
case. For this process, the irace program was used, where 5000 experiments are established,
and the default configuration is considered.

Appendix B.1. Parameter Tuning of the Case 1: Four-Bar Linkage Mechanism

The parameters obtained by the irace program for the four-bar mechanism are pre-
sented in Table A4.

Table A4. Tuned parameters by irace program for study case 1: Four-bar linkage mechanism.

Algorithm CHT Parameters

DER1B

DEB CR = 0.95, Fmin = 0.13, Fmax = 0.95
SR CR = 0.91, Fmin = 0.23, Fmax = 0.96, P f = 0.15
εC CR = 0.89, Fmin = 0.20, Fmax = 0.81, Pg = 0.07, Tc = 590, Rg = 5, cp = 6
PF CR = 0.95, Fmin = 0.17, Fmax = 0.91

DER1E

DEB CR = 0.99, Fmin = 0.23, Fmax = 0.86
SR CR = 0.96, Fmin = 0.47, Fmax = 0.90, P f = 0.05
εC CR = 0.88, Fmin = 0.14, Fmax = 0.87, Pg = 0.03, Tc = 430, Rg = 3, cp = 10
PF CR = 0.97, Fmin = 0.06, Fmax = 0.95

DEB1B

DEB CR = 0.76, Fmin = 0.50, Fmax = 0.66
SR CR = 0.97, Fmin = 0.23, Fmax = 0.97, P f = 0.18
εC CR = 0.83, Fmin = 0.50, Fmax = 0.50, Pg = 0.08, Tc = 490, Rg = 3, cp = 6
PF CR = 0.67, Fmin = 0.59, Fmax = 0.61

DEB1E

DEB CR = 0.89, Fmin = 0.48, Fmax = 0.77
SR CR = 0.91, Fmin = 0.57, Fmax = 0.74, P f = 0.30
εC CR = 0.95, Fmin = 0.32, Fmax = 0.85, Pg = 0.09, Tc = 400, Rg = 3, cp = 5
PF CR = 0.91, Fmin = 0.52, Fmax = 0.77

DECR

DEB Fmin = 0.26, Fmax = 0.98, Kmin = 0.91, Kmax = 0.99
SR Fmin = 0.48, Fmax = 0.79, Kmin = 0.13, Kmax = 0.87, P f = 0.42
εC Fmin = 0.15, Fmax = 0.89, Kmin = 0.82, Kmax = 0.96, Pg = 0.10, Tc = 550, Rg = 5, cp = 3
PF Fmin = 0.23, Fmax = 0.93, Kmin = 0.88, Kmax = 0.98

DECB

DEB Fmin = 0.44, Fmax = 0.97, Kmin = 0.48, Kmax = 1
SR Fmin = 0.29, Fmax = 0.91, Kmin = 0.29, Kmax = 0.69, P f = 0.40
εC Fmin = 0.36, Fmax = 0.75, Kmin = 0.20, Kmax = 0.85, Pg = 0.05, Tc = 430, Rg = 5, cp = 10
PF Fmin = 0.53, Fmax = 0.89, Kmin = 0.34, Kmax = 0.98

DECR1B

DEB CR = 0.92, Fmin = 0.41, Fmax = 0.76, Kmin = 0.95, Kmax = 0.95
SR CR = 0.96, Fmin = 0.46, Fmax = 0.89, Kmin = 0.46, Kmax = 0.72, P f = 0.12
εC CR = 0.97, Fmin = 0.11, Fmax = 0.99, Kmin = 0.56, Kmax = 0.56, Pg = 0.08, Tc = 700, Rg = 2, cp = 7
PF CR = 0.92, Fmin = 0.33, Fmax = 0.84, Kmin = 0.96, Kmax = 0.97

DECR1E

DEB CR = 0.92, Fmin = 0.32, Fmax = 0.72, Kmin = 0.29, Kmax = 0.77
SR CR = 0.95, Fmin = 0.06, Fmax = 0.99, Kmin = 0.08, Kmax = 0.26, P f = 0.01
εC CR = 0.96, Fmin = 0.08, Fmax = 0.94, Kmin = 0.42, Kmax = 0.87, Pg = 0.06, Tc = 740, Rg = 3, cp = 9
PF CR = 0.39, Fmin = 0.44, Fmax = 0.51, Kmin = 0.46, Kmax = 0.65

GA

DEB CR = 0.80, MR = 0.06
SR CR = 0.23, P f = 0.20, MR = 0.05
εC CR = 1, Pg = 0.05, Tc = 610, Rg = 4, cp = 8, MR = 0.08
PF CR = 0.83, MR = 0.11

PSO

DEB vmax = 0.01, C1 = 1.29, C2 = 2.04
SR P f = 0.69, vmax = 0.01, C1 = 2.22, C2 = 1.06
εC Pg = 0.05, Tc = 610, Rg = 4, cp = 8, vmax = 0.01, C1 = 1.10, C2 = 1.79
PF vmin = 0.05, vmax = 0.17, C1 = 2.04, C2 = 1.06
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Appendix B.2. Parameter Tuning of Case 2: Cam-Linkage Mechanism

The parameters obtained by the irace program for study case 2 related to the cam-
linkage mechanism are stated in Table A5.

Table A5. Tuned parameters by irace program for the study case 2: Cam-linkage mechanism.

Algorithm CHT Parameters

DER1B

DEB CR = 0.87, Fmin = 0.51, Fmax = 0.53
SR CR = 0.91, Fmin = 0.46, Fmax = 0.70, P f = 0.52
εC CR = 0.92, Fmin = 0.53, Fmax = 0.56, Pg = 0.04, Tc = 430, Rg = 5, cp = 9
PF CR = 0.93, Fmin = 0.52, Fmax = 0.63

DER1E

DEB CR = 0.94, Fmin = 0.47, Fmax = 0.58
SR CR = 0.98, Fmin = 0.56, Fmax = 0.75, P f = 0.50
εC CR = 0.99, Fmin = 0.51, Fmax = 0.66, Pg = 0.09, Tc = 230, Rg = 5, cp = 6
PF CR = 0.88, Fmin = 0.25, Fmax = 0.43

DEB1B

DEB CR = 0.88, Fmin = 0.80, Fmax = 0.87
SR CR = 0.99, Fmin = 0.62, Fmax = 0.75, P f = 0.49
εC CR = 0.92, Fmin = 0.59, Fmax = 0.61, Pg = 0.05, Tc = 380, Rg = 2, cp = 8
PF CR = 0.90, Fmin = 0.63, Fmax = 0.87

DEB1E

DEB CR = 0.83, Fmin = 0.11, Fmax = 0.98
SR CR = 0.95, Fmin = 0.65, Fmax = 0.70, P f = 0.50
εC CR = 0.92, Fmin = 0.55, Fmax = 0.61, Pg = 0.06, Tc = 370, Rg = 2, cp = 8
PF CR = 0.92, Fmin = 0.65, Fmax = 0.73

DECR

DEB Fmin = 0.68, Fmax = 0.79, Kmin = 0.85, Kmax = 0.92
SR Fmin = 0.61, Fmax = 0.68, Kmin = 0.31, Kmax = 0.35, P f = 0.50
εC Fmin = 0.52, Fmax = 0.62, Kmin = 0.27, Kmax = 0.38, Pg = 0.06, Tc = 520, Rg = 2, cp = 6
PF Fmin = 0.24, Fmax = 0.90, Kmin = 0.93, Kmax = 0.95

DECB

DEB Fmin = 0.74, Fmax = 0.78, Kmin = 0.55, Kmax = 0.78
SR Fmin = 0.49, Fmax = 0.66, Kmin = 0.24, Kmax = 0.58, P f = 0.51
εC Fmin = 0.51, Fmax = 0.63, Kmin = 0.05, Kmax = 0.45, Pg = 0.09, Tc = 340, Rg = 2, cp = 6
PF Fmin = 0.49, Fmax = 0.78, Kmin = 0.34, Kmax = 0.53

DECR1B

DEB CR = 0.97, Fmin = 0.37, Fmax = 0.73, Kmin = 0.77, Kmax = 0.98
SR CR = 0.98, Fmin = 0.51, Fmax = 0.82, Kmin = 0.10, Kmax = 0.13, P f = 0.45
εC CR = 0.97, Fmin = 0.55, Fmax = 0.64, Kmin = 0.05, Kmax = 0.67, Pg = 0.06, Tc = 420, Rg = 4, cp = 6
PF CR = 0.93, Fmin = 0.55, Fmax = 0.63, Kmin = 0.84, Kmax = 0.93

DECR1E

DEB CR = 0.99, Fmin = 0.47, Fmax = 0.75, Kmin = 0.84, Kmax = 0.86
SR CR = 0.92, Fmin = 0.58, Fmax = 0.68, Kmin = 0.25, Kmax = 0.65, P f = 0.49
εC CR = 0.94, Fmin = 0.54, Fmax = 0.67, Kmin = 0.08, Kmax = 0.61, Pg = 0.09, Tc = 720, Rg = 5, cp = 6
PF CR = 1.00, Fmin = 0.38, Fmax = 0.74, Kmin = 0.70, Kmax = 1.00

GA

DEB CR = 0.98, MR = 0.11
SR CR = 0.57, P f = 0.12, MR = 0.17
εC CR = 1, Pg = 0.08, Tc = 640, Rg = 4, cp = 6, MR = 0.14
PF CR = 0.38, MR = 0.29

PSO

DEB vmin = 0.05, vmax = 0.24, C1 = 0.29, C2 = 3.12
SR P f = 0.48, vmin = 0.04, vmax = 0.23, C1 = 1.60, C2 = 1.07
εC Pg = 0.06, Tc = 600, Rg = 2, cp = 2, vmin = 0.04, vmax = 0.26, C1 = 1.90, C2 = 0.86
PF vmin = 0.12, vmax = 0.34, C1 = 2.47, C2 = 0.34

Appendix B.3. Parameter Tuning of Study Case 3: Eight-Bar Linkage Mechanism

The parameters obtained by the irace program for the eight-bar mechanism are dis-
played in Table A6.

Table A6. Tuned parameters by irace program for study case 3: Eight-bar linkage mechanism.

Algorithm CHT Parameters

DER1B
DEB CR = 0.84, Fmin = 0.20, Fmax = 0.65
SR CR = 0.48, Fmin = 0.33, Fmax = 0.80, P f = 0.15
εC CR = 0.35, Fmin = 0.02, Fmax = 0.15, Pg = 0.02, Tc = 340, Rg = 3, cp = 3
PF CR = 0.02, Fmin = 0.53, Fmax = 0.76, Pg = 0.05, Rg = 2

DER1E
DEB CR = 0.88, Fmin = 0.08, Fmax = 0.23
SR CR = 0.40, Fmin = 0.36, Fmax = 0.86, P f = 0.15
εC CR = 0.51, Fmin = 0.04, Fmax = 0.24, Pg = 0.01, Tc = 510, Rg = 3, cp = 7
PF CR = 0.85, Fmin = 0.43, Fmax = 0.61, Pg = 0.06, Rg = 2
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Table A6. Cont.

Algorithm CHT Parameters

DEB1B
DEB CR = 0.51, Fmin = 0.09, Fmax = 0.95
SR CR = 0.45, Fmin = 0.16, Fmax = 0.93, P f = 0.15
εC CR = 0.33, Fmax = 0.21, Pg = 0.08, Tc = 370, Rg = 4, cp = 10
PF CR = 0.87, Fmin = 0.04, Fmax = 0.34, Pg = 0.07, Rg = 1

DEB1E
DEB CR = 0.98, Fmin = 0.09, Fmax = 1
SR CR = 0.43, Fmin = 0.45, Fmax = 0.75, P f = 0.30
εC CR = 0.29, Fmin = 0.03, Fmax = 0.20, Pg = 0.04, Tc = 490, Rg = 5, cp = 3
PF CR = 0.78, Fmin = 0.21, Fmax = 0.77, Pg = 0.04, Rg = 4

DECR
DEB Fmin = 0.21, Fmax = 0.98, Kmin = 0.71, Kmax = 0.98
SR Fmin = 0.12, Fmax = 0.85, Kmin = 0.23, Kmax = 0.32, P f = 0.19
εC Fmin = 0.07, Fmax = 0.41, Kmin = 0.53, Kmax = 0.64, Pg = 0.04, Tc = 310, Rg = 4, cp = 7
PF Fmin = 0.53, Fmax = 0.99, Kmin = 0.50, Kmax = 0.64, Pg = 0.05, Rg = 3

DECB
DEB Fmin = 0.20, Fmax = 0.93, Kmin = 0.01, Kmax = 0.91
SR Fmin = 0.10, Fmax = 0.84, Kmin = 0.33, Kmax = 0.71, P f = 0.16
εC Fmin = 0.11, Fmax = 0.35, Kmin = 0.11, Kmax = 0.98, Pg = 0.02, Tc = 500, Rg = 2, cp = 2
PF Fmin = 0.18, Fmax = 0.30, Kmin = 0.57, Kmax = 0.73, Pg = 0.06, Rg = 2

DECR1B
DEB CR = 0.06, Fmax = 0.71, Kmin = 0.81, Kmax = 0.99
SR CR = 0.41, Fmin = 0.23, Fmax = 0.94, Kmin = 0.30, Kmax = 0.82, P f = 0.19
εC CR = 0.35, Fmin = 0.05, Fmax = 0.15, Kmin = 0.17, Kmax = 0.17, Pg = 0.04, Tc = 290, Rg = 5, cp = 10
PF CR = 0.52, Fmin = 0.01, Fmax = 0.28, Kmin = 0.44, Kmax = 0.54, Pg = 0.04, Rg = 3

DECR1E
DEB CR = 0.75, Fmin = 0.12, Fmax = 0.13, Kmin = 0.84, Kmax = 1
SR CR = 0.55, Fmin = 0.20, Fmax = 0.78, Kmin = 0.53, Kmax = 0.84, P f = 0.17
εC CR = 0.34, Fmin = 0.07, Fmax = 0.11, Kmin = 0.36, Kmax = 0.42, Pg = 0.04, Tc = 720, Rg = 4, cp = 5
PF CR = 0.68, Fmin = 0.05, Fmax = 0.53, Kmin = 0.54, Kmax = 0.90, Pg = 0.09, Rg = 3

GA
DEB CR = 0.97, MR = 0.01
SR CR = 0.34, MR = 0.02
εC CR = 0.94, Pg = 0.08, Tc = 350, Rg = 2, cp = 4, MR = 0.01
PF CR = 0.27, MR = 0.03

PSO
DEB vmin = 0.00, vmax = 0.01, C1 = 0.80, C2 = 2.21
SR P f = 0.30, vmin = 0.00, vmax = 0.08, C1 = 1.40, C2 = 2.04
εC Pg = 0.08, Tc = 3773, Rg = 4, cp = 8, vmin = 0.00, vmax = 0.17, C1 = 2.20, C2 = 0.84
PF Pg = 0.01, Rg = 1, vmin = 0.20, vmax = 0.23, C1 = 1.66, C2 = 1.25

Appendix C. Descriptive Statistics of the Overall Performance

This section shows the statistical data collected from the thirty executions of the four
CHTs per each one of the ten metaheuristic algorithms. Each study case groups a total of
forty samples (four CHTs per ten metaheuristics). Each sample contains the best thirty
objective functions of an algorithm. The following measures are considered: the mean,
the standard deviation (std), the median, and the minimum and maximum values of
the sample.

Appendix C.1. Descriptive Statistics for the Case 1: Four-Bar Linkage Mechanism

The measures of the descriptive statistics for the four-bar mechanism are presented in
Table A7.

Table A7. Descriptive statistics of the overall performance for study case 1: Four-bar
linkage mechanism.

CHT Algorithm Mean std Median Minimum Maximum

FR DER1B 0.01296 0.005642 0.01244 0.003271 0.02423
FR DER1E 0.01298 0.006134 0.0123 0.003282 0.02401
FR DEB1B 0.03273 0.009165 0.03411 0.01517 0.05649
FR DEB1E 0.01037 0.005054 0.009278 0.003184 0.02038
FR CR 0.03024 0.03444 0.01922 0.002098 0.1306
FR DECB 0.02672 0.01009 0.03212 0.004001 0.04514
FR DECR1B 0.02253 0.006748 0.02359 0.0119 0.03175
FR DECR1E 0.0156 0.004565 0.01666 0.007841 0.02277
FR GA 0.03255 0.01192 0.03667 0.007953 0.05098
FR PSO 0.03674 0.01234 0.03682 0.006861 0.0626
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Table A7. Cont.

CHT Algorithm Mean std Median Minimum Maximum

SR DER1B 0.04564 0.01582 0.04094 0.0148 0.09932
SR DER1E 7.262 13.89 0.04702 0.02393 44.38
SR DEB1B 0.5216 1.512 0.04276 0.01174 7.343
SR DEB1E 0.7596 1.715 0.1027 0.02227 6.513
SR CR 87.61 91.56 60.56 0.03306 301.4
SR DECB 0.4961 0.1162 0.5248 0.235 0.6868
SR DECR1B 51.32 184.1 0.1216 0.03939 1004
SR DECR1E 0.02671 0.01325 0.02941 0.003726 0.04865
SR GA 0.2966 0.02964 0.2934 0.256 0.3475
SR PSO 0.1187 0.09226 0.07567 0.05316 0.4158
εC DER1B 0.02942 0.007475 0.03029 0.005715 0.03749
εC DER1E 0.01729 0.01095 0.01764 0.002085 0.03321
εC DEB1B 0.04082 0.01317 0.04182 0.01743 0.05896
εC DEB1E 0.0286 0.01351 0.02925 0.004001 0.05625
εC CR 0.03108 0.006818 0.03157 0.01884 0.0462
εC DECB 0.03389 0.01216 0.03374 0.01447 0.06199
εC DECR1B 0.03121 0.007929 0.03368 0.01265 0.04719
εC DECR1E 0.0315 0.006558 0.03454 0.01178 0.03626
εC GA 0.03387 0.01013 0.03524 0.00771 0.04701
εC PSO 0.03464 0.009985 0.03127 0.01969 0.05899
PF DER1B 0.02611 0.005129 0.02606 0.01551 0.03761
PF DER1E 0.01265 0.004983 0.01281 0.003099 0.02219
PF DEB1B 0.02822 0.0111 0.02901 0.008141 0.06079
PF DEB1E 0.03803 0.01028 0.03771 0.01184 0.05553
PF CR 0.02607 0.01001 0.0293 0.005715 0.03949
PF DECB 0.01989 0.01117 0.01766 0.004001 0.03941
PF DECR1B 0.03768 0.001529 0.03785 0.0353 0.04146
PF DECR1E 0.01371 0.00562 0.01297 0.005481 0.025
PF GA 0.2107 0.02938 0.2136 0.1417 0.2513
PF PSO 0.03619 0.01384 0.03593 0.01575 0.06243

Appendix C.2. Descriptive Statistics for Study Case 2: Cam-Linkage Mechanism

The measures of the descriptive statistics for the cam-linkage mechanism are shown
in Table A8.

Table A8. Descriptive statistics of the overall performance for study case 2: Cam-linkage mechanism.

CHT Algorithm Mean std Median Minimum Maximum

FR DER1B 0.7253 0.09932 0.673 0.6597 0.9351
FR DER1E 0.7259 0.08588 0.6727 0.6613 0.8963
FR DEB1B 2.45 2.111 1.006 0.6557 6.614
FR DEB1E 1.497 1.024 1.11 0.7351 5.727
FR CR 0.7242 0.0778 0.6811 0.6729 0.9079
FR DECB 1.552 1.611 0.8419 0.6701 5.734
FR DECR1B 0.8583 0.4566 0.6928 0.6648 3.206
FR DECR1E 0.8033 0.3489 0.6752 0.6634 2.594
FR GA 7.932 5.341 7.413 1.713 22.22
FR PSO 4.023 2.485 3.088 1.701 10.51
SR DER1B 3.98× 106 1.217× 107 0.7733 0.6758 4.334× 107

SR DER1E 0.9158 0.8067 0.678 0.6561 4.822
SR DEB1B 4.475 6.158 2.524 0.7182 29.66
SR DEB1E 4.578 3.676 3.113 0.9298 14.62
SR CR 0.7209 0.07337 0.6729 0.6592 0.8956
SR DECB 2.318 2.059 1.168 0.7212 8.189
SR DECR1B 0.6932 0.06188 0.6745 0.6676 0.9003
SR DECR1E 2.247 0.5756 2.305 1.286 3.097
SR GA 4.043 2.889 2.61 1.852 13.68
SR PSO 7.455 8.686 3.739 1.501 33.68
εC DER1B 1.783 0.5594 1.602 0.8771 3.155
εC DER1E 2.423 0.5487 2.443 1.396 4.675
εC DEB1B 2.914 1.678 2.723 0.887 6.619
εC DEB1E 3.084 2.389 2.545 0.7588 10.64
εC CR 2.559 0.266 2.558 1.692 3.106
εC DECB 3.911 2.732 2.965 2.253 13.26
εC DECR1B 5.566 1.927 4.807 3.266 9.281
εC DECR1E 5.051 1.1 5.002 2.951 7.233
εC GA 5.01 2.443 3.715 2.38 10.7
εC PSO 2.773 0.8773 2.532 1.825 6.639
PF DER1B 0.7117 0.07392 0.669 0.6656 0.8965
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Table A8. Cont.

CHT Algorithm Mean std Median Minimum Maximum

PF DER1E 0.9899 0.182 0.9877 0.7517 1.539
PF DEB1B 3.621 3.049 2.184 0.6752 10.26
PF DEB1E 1.636 1.477 0.926 0.6808 5.991
PF CR 0.7895 0.3857 0.6878 0.6799 2.788
PF DECB 2.472 2.941 0.8362 0.6606 10.12
PF DECR1B 0.7817 0.1013 0.8168 0.6697 0.9375
PF DECR1E 0.8034 0.1227 0.774 0.6809 1.072
PF GA 2.446 0.4424 2.301 2.088 3.758
PF PSO 1.799 0.6056 1.621 1.028 3

Appendix C.3. Descriptive Statistics for the Case 3: Eight-Bar Linkage Mechanism

The measures of the descriptive statistics for the eight-bar mechanism are displayed
in Table A9.

Table A9. Descriptive statistics of the overall performance for study case 3: Eight-bar
linkage mechanism.

CHT Algorithm Mean std Median Minimum Maximum

FR DER1B 0.001525 0.0004962 0.001405 0.0007166 0.002662
FR DER1E 0.002575 0.001006 0.002563 0.0007069 0.005309
FR DEB1B 0.00315 0.001883 0.002815 0.0005762 0.0107
FR DEB1E 0.002491 0.001148 0.002239 0.0009604 0.004837
FR CR 0.01321 0.009235 0.01462 0.0001903 0.02864
FR DECB 8.333× 1015 3.79× 1015 1× 1016 0.1895 1× 1016

FR DECR1B 0.00966 0.001957 0.009238 0.0066 0.01404
FR DECR1E 3.333× 1014 1.826× 1015 0.02744 0.01085 1× 1016

FR GA 0.01943 0.01749 0.01586 0.002204 0.0732
FR PSO 1.333× 1015 3.457× 1015 0.2493 0.09734 1× 1016

SR DER1B 6× 1015 4.983× 1015 1× 1016 0.5789 1× 1016

SR DER1E 1× 1016 2454 1× 1016 1× 1016 1× 1016

SR DEB1B 0.06065 0.04348 0.03995 0.01126 0.1604
SR DEB1E 1× 1016 2506 1× 1016 1× 1016 1× 1016

SR CR 0.0136 0.008586 0.01399 0.0001884 0.02977
SR DECB 1× 1016 833.3 1× 1016 1× 1016 1× 1016

SR DECR1B 0.02013 0.0101 0.02329 0.0006199 0.03406
SR DECR1E 1× 1016 1598 1× 1016 1× 1016 1× 1016

SR GA 0.01858 0.01994 0.01138 0.001002 0.07766
SR PSO 1× 1015 3.051× 1015 0.107 0.03381 1× 1016

εC DER1B 0.01442 0.009972 0.0153 0.0005622 0.03068
εC DER1E 0.003982 0.001845 0.003714 0.001142 0.009192
εC DEB1B 2.333× 1015 4.302× 1015 0.0382 0.00842 1× 1016

εC DEB1E 0.005852 0.00337 0.006034 0.001077 0.01249
εC CR 0.01856 0.009206 0.02236 0.0006742 0.03008
εC DECB 0.02113 0.006483 0.02121 0.006247 0.02996
εC DECR1B 0.0139 0.007828 0.01407 0.0004182 0.0269
εC DECR1E 0.008319 0.003387 0.008318 0.003046 0.01597
εC GA 0.03706 0.0432 0.02497 0.00161 0.2009
εC PSO 0.03373 0.009459 0.03339 0.01327 0.05506
PF DER1B 0.002417 0.002739 0.001362 0.0006484 0.01144
PF DER1E 0.002131 0.0008177 0.001843 0.001185 0.004332
PF DEB1B 0.005953 0.004698 0.003834 0.001046 0.01781
PF DEB1E 0.005379 0.002734 0.005059 0.001756 0.01551
PF CR 0.04953 0.02291 0.04997 0.0015 0.1098
PF DECB 1× 1016 1172 1× 1016 1× 1016 1× 1016

PF DECR1B 0.03493 0.004417 0.03614 0.02261 0.04204
PF DECR1E 1× 1016 451.7 1× 1016 1× 1016 1× 1016

PF GA 1× 1016 105.7 1× 1016 1× 1016 1× 1016

PF PSO 0.04157 0.01425 0.03784 0.01316 0.0727

Appendix D. Inferential Statistics of the Overall Performance

This section shows the inferential statistics of the data collected from the thirty execu-
tions of the four CHTs per each one of the ten metaheuristic algorithms. Each study case
groups a total of forty samples (four CHTs per ten metaheuristics). Each sample contains
the best thirty objective functions of an algorithm. For carrying out these statistics, the R
program and the library scmamp are used.
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Appendix D.1. Ranks Achieved by the Friedman Test

The ranks obtained by the Friedman test for the three study cases are shown in
Table A10.

Table A10. Ranks and p-value obtained by the Friedman test . A p-value less than 0.05 indicates that
the group of values of the objective function for each algorithm are different.

Ranks
Algorithm CHT Study Case 1 Study Case 2 Study Case 3

DER1B FR 1.1 1.7 1.6
DER1B SR 3.8 2.8 4
DER1B εC 2.8 3.8 2.7
DER1B PF 2.3 1.6 1.7

Statistic 67 59 66
p-value 2.24× 10−14 9.43× 10−13 2.83× 10−14

DER1E FR 1.9 1.5 1.9
DER1E SR 4 1.7 4
DER1E εC 2.3 3.9 2.6
DER1E PF 1.9 2.9 1.5

Statistic 53 71 64
p-value 1.51× 10−11 3.18× 10−15 6.87× 10−14

DEB1B FR 2.2 2 1.3
DEB1B SR 3.2 2.5 3.5
DEB1B εC 3 2.9 3.5
DEB1B PF 1.6 2.6 1.7
Statistic 29 6.5 73

p-value 2.67× 10−6 8.89× 10−2 7.82× 10−16

DEB1E FR 1.2 1.8 1.3
DEB1E SR 3.8 3.5 4
DEB1E εC 2.1 3 2.4
DEB1E PF 2.9 1.7 2.3

Statistic 71 39 69
p-value 2.93× 10−15 1.48× 10−8 8.18× 10−15

DECR FR 1.6 2 2
DECR SR 3.9 1.6 1.9
DECR εC 2.5 4 2.4
DECR PF 2 2.4 3.7

Statistic 56 57 35
p-value 5.01× 10−12 2.67× 10−12 1.24× 10−7

DECB FR 1.9 1.8 2.3
DECB SR 4 2.6 3.1
DECB εC 2.5 3.4 1
DECB PF 1.6 2.3 3.6

Statistic 61 24 69
p-value 3.81× 10−13 2.10× 10−5 5.52× 10−15

DER1B FR 1.2 2.5 1.5
DER1B SR 4 1.3 2.5
DER1B εC 2 4 2.1
DER1B PF 2.9 2.3 3.9

Statistic 80 69 58
p-value 3.01× 10−17 7.41× 10−15 1.67× 10−12

DER1E FR 2.1 1.3 2
DER1E SR 2.9 3 4
DER1E εC 3.5 4 1
DER1E PF 1.5 1.7 3

Statistic 42 80 88
p-value 4.34× 10−9 2.47× 10−17 7.04× 10−19

GA FR 1.6 3.3 1.8
GA SR 4 2.2 1.8
GA εC 1.4 3.1 2.4
GA PF 3 1.4 4

Statistic 81 42 58
p-value 1.73× 10−17 4.69× 10−09 1.88× 10−12

PSO FR 2.1 2.9 3.8
PSO SR 4 3.2 3
PSO εC 1.9 2.5 1.3
PSO PF 2 1.4 1.8

Statistic 52 33 68
p-value 2.82× 10−11 2.98× 10−7 1.12× 10−14
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Appendix D.2. Multiple Comparison Friedman Test

The collected data from the thirty executions of the four CHTs per each one of the ten
metaheuristic algorithms are used to make the multiple comparison Friedman test with the
post-hoc correction method. Holm correction is used in this analysis. This test is presented
in Table A11.

Table A11. Multiple comparison Friedman test with the post-hoc correction method for the overall
performance of the four CHTs included into the ten metaheuristic algorithms. “-” indicates that there
is no winning algorithm.

Hypotesis Study Case 1 Study Case 2 Study Case 3
Alg. A + CHT vs. Alg B + CHT p-Value z Win p-Value z Win p-Value z Win

DER1B FR vs. DER1B SR 7.99 × 10−15 −8 A 2.02× 10−03 −3.4 A 3.61× 10−12 −7.2 A
DER1B FR vs. DER1B EC 2.87× 10−06 −5 A 7.77× 10−10 −6.4 A 4.12× 10−03 −3.2 A
DER1B FR vs. DER1B PF 2.02× 10−03 −3.4 A 8.41× 10−01 0.2 - 6.89× 10−01 −0.4 -
DER1B SR vs. DER1B EC 5.40× 10−03 3 B 5.40× 10−03 −3 A 2.53× 10−04 4 B
DER1B SR vs. DER1B PF 1.69× 10−05 4.6 B 1.27× 10−03 3.6 B 5.23× 10−11 6.8 B
DER1B EC vs. DER1B PF 1.10× 10−01 1.6 - 2.47× 10−10 6.6 B 1.02× 10−02 2.8 B
DER1E FR vs. DER1E SR 2.82× 10−09 −6.2 A 4.84× 10−01 −0.7 - 2.82× 10−09 −6.2 A
DER1E FR vs. DER1E EC 6.90× 10−01 −1.1 - 8.17× 10−13 −7.4 A 1.15× 10−01 −1.9 -
DER1E FR vs. DER1E PF 9.20× 10−01 0.1 - 6.83× 10−05 −4.3 A 1.94× 10−01 1.3 -
DER1E SR vs. DER1E EC 1.36× 10−06 5.1 B 1.04× 10−10 −6.7 A 6.83× 10−05 4.3 B
DER1E SR vs. DER1E PF 1.79× 10−09 6.3 B 9.55× 10−04 −3.6 A 3.82× 10−13 7.5 B
DER1E EC vs. DER1E PF 6.90× 10−01 1.2 - 3.87× 10−03 3.1 B 4.12× 10−03 3.2 B
DEB1B FR vs. DEB1B SR 1.08× 10−02 −3 A 6.46× 10−01 −1.4 - 2.47× 10−10 −6.6 A
DEB1B FR vs. DEB1B EC 2.80× 10−02 −2.6 A 7.45× 10−02 −2.5 - 2.47× 10−10 −6.6 A
DEB1B FR vs. DEB1B PF 2.19× 10−01 1.6 - 4.46× 10−01 −1.7 - 4.60× 10−01 −1.2 -
DEB1B SR vs. DEB1B EC 6.89× 10−01 0.4 - 8.14× 10−01 −1.1 - 1 0 -
DEB1B SR vs. DEB1B PF 2.53× 10−05 4.6 B 8.47× 10−01 −0.3 - 2.67× 10−07 5.4 B
DEB1B EC vs. DEB1B PF 1.33× 10−04 4.2 B 8.47× 10−01 0.8 - 2.67× 10−07 5.4 B
DEB1E FR vs. DEB1E SR 7.99× 10−15 −8 A 4.79× 10−06 −4.9 A 1.33× 10−15 −8.2 A
DEB1E FR vs. DEB1E EC 2.08× 10−02 −2.7 A 2.02× 10−03 −3.4 A 1.40× 10−03 −3.5 A
DEB1E FR vs. DEB1E PF 5.79× 10−07 −5.3 A 7.64× 10−01 0.3 - 3.87× 10−03 −3.1 A
DEB1E SR vs. DEB1E EC 5.79× 10−07 5.3 B 2.67× 10−01 1.5 - 1.04× 10−05 4.7 B
DEB1E SR vs. DEB1E PF 2.08× 10−02 2.7 B 1.20× 10−06 5.2 B 1.70× 10−06 5.1 B
DEB1E EC vs. DEB1E PF 2.08× 10−02 −2.6 A 8.62× 10−04 3.7 B 6.89× 10−01 0.4 -
DECR FR vs. DECR SR 3.12× 10−11 −6.9 A 4.60× 10−01 1.1 - 8.41× 10−01 0.2 -
DECR FR vs. DECR EC 3.73× 10−02 −2.5 A 1.82× 10−08 −5.9 A 4.85× 10−01 −1.2 -
DECR FR vs. DECR PF 3.17× 10−01 −1 - 4.60× 10−01 −1.2 - 2.87× 10−06 −5 A
DECR SR vs. DECR EC 4.33× 10−05 4.4 B 1.54× 10−11 −7 A 4.85× 10−01 −1.4 -
DECR SR vs. DECR PF 1.82× 10−08 5.9 B 6.43× 10−02 −2.3 - 1.20× 10−06 −5.2 A
DECR EC vs. DECR PF 2.67× 10−01 1.5 - 1.04× 10−05 4.7 B 5.79× 10−04 −3.8 A
DECB FR vs. DECB SR 2.82× 10−09 −6.2 A 4.97× 10−02 −2.5 A 3.28× 10−02 −2.4 A
DECB FR vs. DECB EC 2.19× 10−01 −1.6 - 9.52× 10−06 −4.8 A 3.85× 10−04 3.9 B
DECB FR vs. DECB PF 3.17× 10−01 1 - 2.67× 10−01 −1.5 - 3.85× 10−04 −3.9 A
DECB SR vs. DECB EC 1.69× 10−05 4.6 B 6.43× 10−02 −2.3 - 1.49× 10−09 6.3 B
DECB SR vs. DECB PF 3.61× 10−12 7.2 B 3.17× 10−01 1 - 1.34× 10−01 −1.5 -
DECB EC vs. DECB PF 2.80× 10−02 2.6 B 4.83× 10−03 3.3 B 3.73× 10−14 −7.8 A

DECR1B FR vs. DECR1B SR 0 −8.5 A 9.55× 10−04 3.6 B 1.12× 10−02 −2.9 A
DECR1B FR vs. DECR1B EC 1.64× 10−02 −2.4 A 1.69× 10−05 −4.6 A 1.44× 10−01 −1.8 -
DECR1B FR vs. DECR1B PF 1.36× 10−06 −5.1 A 5.49× 10−01 0.6 - 1.73× 10−12 −7.3 A
DECR1B SR vs. DECR1B EC 5.30× 10−09 6.1 B 1.33× 10−15 −8.2 A 2.71× 10−01 1.1 -
DECR1B SR vs. DECR1B PF 2.02× 10−03 3.4 B 5.40× 10−03 −3 A 4.33× 10−05 −4.4 A
DECR1B EC vs. DECR1B PF 1.39× 10−02 −2.7 A 9.96× 10−07 5.2 B 1.90× 10−07 −5.5 A
DECR1E FR vs. DECR1E SR 4.92× 10−02 −2.4 A 3.83× 10−06 −4.9 A 9.87× 10−09 −6 A
DECR1E FR vs. DECR1E EC 5.41× 10−05 −4.4 A 7.99× 10−15 −8 A 7.46× 10−03 2.9 B
DECR1E FR vs. DECR1E PF 1.10× 10−01 1.6 - 2.71× 10−01 −1.1 - 7.46× 10−03 −2.9 A
DECR1E SR vs. DECR1E EC 9.10× 10−02 −2 - 3.87× 10−03 −3.1 A 0 8.9 B
DECR1E SR vs. DECR1E PF 2.53× 10−04 4 B 4.34× 10−04 3.8 B 5.81× 10−03 3.1 B
DECR1E EC vs. DECR1E PF 1.18× 10−08 6 B 2.60× 10−11 6.9 B 2.65× 10−08 −5.8 A

GA FR vs. GA SR 1.44× 10−12 −7.3 A 2.70× 10−03 3.4 B 9.20× 10−01 0.1 -
GA FR vs. GA EC 6.89× 10−01 0.4 - 4.24× 10−01 0.8 - 2.67× 10−01 −1.6 -
GA FR vs. GA PF 5.12× 10−05 −4.3 A 3.98× 10−08 5.8 B 4.02× 10−10 −6.5 A
GA SR vs. GA EC 8.13× 10−14 7.7 B 2.80× 10−02 −2.6 A 2.67× 10−01 −1.7 -
GA SR vs. GA PF 5.40× 10−03 3 B 3.28× 10−02 2.4 B 2.47× 10−10 −6.6 A
GA EC vs. GA PF 1.04× 10−05 −4.7 A 2.87× 10−06 5 B 3.83× 10−06 −4.9 A

PSO FR vs. PSO SR 1.52× 10−07 −5.5 A 4.84× 10−01 −0.7 - 4.29× 10−02 2.3 B
PSO FR vs. PSO EC 1 0.7 - 3.87× 10−01 1.3 - 8.17× 10−13 7.4 B
PSO FR vs. PSO PF 1 0.4 - 2.11× 10−05 4.6 B 1.82× 10−08 5.9 B
PSO SR vs. PSO EC 3.39× 10−09 6.2 B 1.37× 10−01 2 - 1.36× 10−06 5.1 B
PSO SR vs. PSO PF 1.82× 10−08 5.9 B 6.95× 10−07 5.3 B 9.55× 10−04 3.6 B
PSO EC vs. PSO PF 1 −0.3 - 3.87× 10−03 3.3 B 1.34× 10−01 −1.5 -
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Appendix E. Performance Metrics of the CHT Behavior

This section shows the statistical data collected from the thirty executions of the four
CHTs per each one of the ten metaheuristic algorithms. Each study case groups a total of
forty samples (four CHTs per ten metaheuristics). In each sample, six performance metrics,
FP, P, AFES, SP, EVALS, and PR, are computed. The results are shown below.

Appendix E.1. FP Metric

The average values for FP metric are shown in Table A12.

Table A12. FP metric values for each algorithm with the CHTs, and the related average values per
CHTs for the three study cases.

Study Case 1 Study Case 2 Study Case 3
FR SR εC PF FR SR εC PF FR SR εC PF

DER1B 1 1 1 1 1 0.87 1 1 1 0.33 1 1
DER1E 1 0.57 1 1 1 1 1 1 1 0 1 1
DEB1B 1 0.83 1 1 1 1 1 1 1 1 0.77 1
DEB1E 1 0.73 1 1 1 1 1 1 1 0 1 1
DECR 1 0.1 1 1 1 1 1 1 1 1 1 1
DECB 1 1 1 1 1 1 1 1 0.17 0 1 0

DECR1B 1 0.6 1 1 1 1 1 1 1 1 1 1
DECR1E 1 1 1 1 1 1 1 1 0.97 0 1 0

GA 1 1 1 1 1 1 1 1 1 1 1 0
PSO 1 1 1 1 1 1 1 1 0.87 0.9 1 1

Mean 1 0.78 1 1 1 0.99 1 1 0.9 0.52 0.98 0.7

Appendix E.2. P Metric

The average values for P metric are shown in Table A13.

Table A13. The P metric values for each algorithm with the CHTs and the related average values per
CHTs for the three study cases.

Study Case 1 Study Case 2 Study Case 3
FR SR εC PF FR SR εC PF FR SR εC PF

DER1B 0.067 0 0.033 0 1 0.87 0.33 1 0.57 0 0.17 0.6
DER1E 0.17 0 0.3 0.13 1 0.93 0.033 0.97 0.17 0 0.067 0.2
DEB1B 0 0 0 0 0.6 0.3 0.17 0.43 0.13 0 0 0.1
DEB1E 0.17 0 0.067 0 0.7 0.1 0.27 0.73 0.17 0 0.033 0
DECR 0.1 0 0 0.1 1 1 0 0.97 0.2 0.1 0.1 0
DECB 0.033 0 0 0.13 0.77 0.53 0 0.73 0 0 0 0

DECR1B 0 0 0 0 0.97 1 0 1 0 0.1 0.1 0
DECR1E 0 0.1 0 0.067 0.97 0.1 0 1 0 0 0 0

GA 0 0 0 0 0 0 0 0 0 0.033 0 0
PSO 0 0 0 0 0 0 0 0.27 0 0 0 0

Mean 0.053 0.01 0.04 0.043 0.7 0.48 0.08 0.71 0.12 0.023 0.047 0.09
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Appendix E.3. AFES Metric

Table A14. AFES metric values for each algorithm with the CHTs, and the related average values per CHTs for three study cases. Non-Successful Executions (NSE) is represented as ’-’.

Study Case 1 Study Case 2 Study Case 3
FR/NSE SR/NSE εC/NSE PF/NSE FR/NSE SR/NSE εC/NSE PF/NSE FR/NSE SR/NSE εC/NSE PF/NSE

DER1B 4.976× 106 - 3.885× 106 - 2.222× 106 1.551× 106 1.98× 105 2.29× 106 2.391× 107 - 2.395× 107 2.377× 107

DER1E 4.92× 106 - 4.974× 106 4.947× 106 2.325× 106 6.587× 105 1.998× 105 2.352× 106 2.396× 107 - 2.347× 107 2.389× 107

DEB1B - - - - 2.161× 106 1.397× 106 1.836× 105 2.103× 106 2.375× 107 - - 2.377× 107

DEB1E 4.973× 106 - 4.581× 106 - 2.337× 106 1.008× 105 1.963× 105 2.219× 106 2.396× 107 - 2.392× 107 -
DECR 4.809× 106 - - 5× 106 2.196× 106 2.181× 106 - 2.325× 106 2.399× 107 2.392× 107 2.396× 107 -
DECB 4.119× 106 - - 4.648× 106 2.276× 106 2.106× 106 - 2.247× 106 - - - -

DECR1B - - - - 2.253× 106 2.147× 106 - 2.147× 106 - 5.907× 106 2.4× 107 -
DECR1E - 5.91× 105 - 4.951× 106 2.221× 106 7.68× 105 - 2.301× 106 - - - -

GA - - - - - - - - - 2.372× 107 - -
PSO - - - - - - - 2.381× 106 - - - -

Mean 4.8 × 106/5 5.9× 105/9 4.5× 106/7 4.9× 106/6 2.2× 106/2 1.4× 106/2 1.9× 105/6 2.3× 106/1 2.391× 107/5 1.8× 107/7 2.386× 107/5 2.38× 107/7

Appendix E.4. SP Metric

Table A15. SP metric values for each algorithm with the CHTs, and the related average values per CHTs for the three study cases. Non-Successful Executions (NSE) is represented as ’-’.

Study Case 1 Study Case 2 Study Case 3
FR/NSE SR/NSE εC/NSE PF/NSE FR/NSE SR/NSE εC/NSE PF/NSE FR/NSE SR/NSE εC/NSE PF/NSE

DER1B 7.464× 107 - 1.165× 108 - 2.222× 106 1.79× 106 5.941× 105 2.29× 106 4.219× 107 - 1.437× 108 3.961× 107

DER1E 2.952× 107 - 1.658× 107 3.71× 107 2.325× 106 7.058× 105 5.993× 106 2.433× 106 1.437× 108 - 3.52× 108 1.194× 108

DEB1B - - - - 3.601× 106 4.656× 106 1.101× 106 4.854× 106 1.781× 108 - - 2.377× 108

DEB1E 2.984× 107 - 6.871× 107 - 3.339× 106 1.008× 106 7.362× 105 3.026× 106 1.438× 108 - 7.176× 108 -
DECR 4.809× 107 - - 5× 107 2.196× 106 2.181× 106 - 2.405× 106 1.2× 108 2.392× 108 2.396× 108 -
DECB 1.236× 108 - - 3.486× 107 2.969× 106 3.949× 106 - 3.064× 106 - - - -

DECR1B - - - - 2.331× 106 2.147× 106 - 2.147× 106 - 5.907× 107 2.4× 108 -
DECR1E - 5.91× 106 - 7.427× 107 2.298× 106 7.68× 106 - 2.301× 106 - - - -

GA - - - - - - - - - 7.117× 108 - -
PSO - - - - - - - 8.93× 106 - - - -

Mean 6.1 × 107/5 5.9× 106/9 6.7× 107/7 4.9× 107/6 2.7× 106/2 3× 106/2 2.1× 106/6 3.5× 106/1 1.25× 108/5 3.4× 108/7 3.4× 108/5 1.3× 108/7
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Appendix E.5. EVALS Metric: Descriptive Statistics

This section shows the statistical data used for the analysis of the EVALS metric for
each study case. The statistical data are the mean, standard deviation, median, and the
minimum and maximum values of the EVALS metric.

Appendix E.5.1. Descriptive Statistics for Study Case 1: Four-Bar Linkage Mechanism

The descriptive statistics for the four-bar linkage mechanism are presented in Table A16.

Table A16. EVALS descriptive statistics for study case 1: Four-bar linkage mechanism. IS means the
number of infeasible solutions through the executions.

CHT Algorithm Mean std Median Minimum Maximum IS

FR DER1B 200 0 200 200 200 0
FR DER1E 200 0 200 200 200 0
FR DEB1B 200 0 200 200 200 0
FR DEB1E 200 0 200 200 200 0
FR DECR 200 0 200 200 200 0
FR DECB 200 0 200 200 200 0
FR DECR1B 200 0 200 200 200 0
FR DECR1E 200 0 200 200 200 0
FR GA 200 0 200 200 200 0
FR PSO 200 0 200 200 200 0
SR DER1B 200 0 200 200 200 0
SR DER1E 200 0 200 200 200 0
SR DEB1B 200 0 200 200 200 0
SR DEB1E 200 0 200 200 200 0
SR DECR 200 0 200 200 200 0
SR DECB 200 0 200 200 200 0
SR DECR1B 200 0 200 200 200 0
SR DECR1E 200 0 200 200 200 0
SR GA 200 0 200 200 200 0
SR PSO 200 0 200 200 200 0
εC DER1B 200 0 200 200 200 0
εC DER1E 200 0 200 200 200 0
εC DEB1B 200 0 200 200 200 0
εC DEB1E 200 0 200 200 200 0
εC DECR 200 0 200 200 200 0
εC DECB 200 0 200 200 200 0
εC DECR1B 200 0 200 200 200 0
εC DECR1E 200 0 200 200 200 0
εC GA 200 0 200 200 200 0
εC PSO 200 0 200 200 200 0
PF DER1B 200 0 200 200 200 0
PF DER1E 200 0 200 200 200 0
PF DEB1B 200 0 200 200 200 0
PF DEB1E 200 0 200 200 200 0
PF DECR 200 0 200 200 200 0
PF DECB 200 0 200 200 200 0
PF DECR1B 200 0 200 200 200 0
PF DECR1E 200 0 200 200 200 0
PF GA 200 0 200 200 200 0
PF PSO 200 0 200 200 200 0



Appl. Sci. 2021, 11, 8739 45 of 57

Appendix E.5.2. Descriptive Statistics for Study Case 2: Cam-Linkage Mechanism

The measures of the descriptive statistics for the cam-linkage mechanism are presented
in Table A17.

Table A17. EVALS descriptive statistics for study case 2: Cam-linkage mechanism. IS means the
number of infeasible solutions through the executions.

CHT Algorithm Mean std Median Minimum Maximum IS

FR DER1B 1836 1915 960 240 6120 0
FR DER1E 1796 1088 1440 360 3600 0
FR DEB1B 1844 1711 1320 240 6720 0
FR DEB1E 1232 641.2 1140 240 2640 0
FR DECR 1432 1160 1140 240 5040 0
FR DECB 1144 798.3 840 240 3240 0
FR DECR1B 1676 1139 1440 240 4200 0
FR DECR1E 1752 1525 1140 240 6120 0
FR GA 1392 804.4 1320 240 3000 0
FR PSO 1604 1382 1200 240 5880 0
SR DER1B 4716 4616 2820 240 1.584× 104 0
SR DER1E 2740 2040 2280 480 9000 0
SR DEB1B 1952 2291 1200 240 1.032× 104 0
SR DEB1E 2016 1660 1740 240 6120 0
SR DECR 3036 2027 3240 240 7800 0
SR DECB 2448 2228 1800 360 1.092× 104 0
SR DECR1B 3240 2621 2520 240 9960 0
SR DECR1E 2260 1643 1680 240 6000 0
SR GA 2096 1663 1680 240 6600 0
SR PSO 2660 3709 1800 240 1.944× 104 0
εC DER1B 6415 5308 5596 245 1.759× 104 0
εC DER1E 7675 5490 7724 422 2.033× 104 0
εC DEB1B 2185 1848 1701 245 8232 0
εC DEB1E 2894 2330 2381 248 8761 0
εC DECR 6501 5848 3458 248 2.123× 104 0
εC DECB 4521 4713 3065 253 1.42× 104 0
εC DECR1B 9087 7118 6334 261 2.154× 104 0
εC DECR1E 9799 1.014× 104 6297 271 3.267× 104 0
εC GA 1.267× 104 1.53× 104 6227 260 6.385× 104 0
εC PSO 3250 3580 1729 248 1.363× 104 0
PF DER1B 2128 1259 1920 240 6000 0
PF DER1E 1324 952.5 1020 240 4080 0
PF DEB1B 1560 978.4 1620 240 3600 0
PF DEB1E 1380 924 1200 240 4080 0
PF DECR 1680 1106 1500 240 3960 0
PF DECB 1344 952.9 1200 240 3720 0
PF DECR1B 2228 1821 1860 240 8640 0
PF DECR1E 1572 1481 1020 240 5040 0
PF GA 2496 2216 1560 360 7200 0
PF PSO 1724 1075 1680 240 4080 0
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Appendix E.5.3. Descriptive Statistics for Study Case 3: Eight-Bar Linkage Mechanism

The measures of the descriptive statistics for the eight-bar mechanism are presented
in Table A18.

Table A18. EVALS descriptive statistics for the study case 3: Eight-bar linkage mechanism. IS means
the number of infeasible solutions through the executions. “-” indicates that it is not possible to
compute such a statistic.

CHT Algorithm Mean std Median Minimum Maximum IS

FR DER1B 1.436× 104 882.5 1.434× 104 1.2× 104 1.572× 104 0
FR DER1E 5.526× 104 6357 5.55× 104 4.152× 104 6.696× 104 0
FR DEB1B 1.256× 104 1194 1.296× 104 9960 1.428× 104 0
FR DEB1E 4.278× 104 4220 4.35× 104 3.54× 104 4.848× 104 0
FR DECR 2.015× 105 2.972× 104 1.981× 105 1.52× 105 2.674× 105 0
FR DECB 2.33× 105 2.882× 105 4.2× 104 2.484× 104 6.575× 105 25
FR DECR1B 3.39× 104 2550 3.432× 104 2.82× 104 3.804× 104 0
FR DECR1E 3.323× 105 8.968× 104 3.086× 105 2.116× 105 6.296× 105 1
FR GA 2.066× 104 3400 2.094× 104 1.5× 104 2.844× 104 0
FR PSO 1.156× 106 2.641× 106 8.31× 104 1.248× 104 1.184× 107 4
SR DER1B 8952 4006 7620 6960 2.016× 104 20
SR DER1E - - - - - 30
SR DEB1B 6524 983.2 6240 4920 9600 0
SR DEB1E - - - - - 30
SR DECR 1.27× 105 1.458× 104 1.255× 105 9.372× 104 1.782× 105 0
SR DECB - - - - - 30
SR DECR1B 9720 930.6 9600 7560 1.164× 104 0
SR DECR1E - - - - - 30
SR GA 1.686× 104 2972 1.662× 104 1.068× 104 2.256× 104 0
SR PSO 5276 1684 4920 3960 1.308× 104 3
εC DER1B 2.442× 105 7.438× 104 2.443× 105 1.279× 105 3.818× 105 0
εC DER1E 2.033× 104 5100 2.041× 104 1.247× 104 2.908× 104 0
εC DEB1B 1.147× 104 3487 1.196× 104 6783 1.959× 104 7
εC DEB1E 1.552× 104 2467 1.559× 104 1.077× 104 2.161× 104 0
εC DECR 1.019× 105 3.323× 104 1.049× 105 3.351× 104 1.699× 105 0
εC DECB 2.874× 104 1.847× 104 2.289× 104 8345 8.51× 104 0
εC DECR1B 4.015× 104 8020 3.933× 104 2.658× 104 5.523× 104 0
εC DECR1E 1.863× 104 3388 1.949× 104 8640 2.342× 104 0
εC GA 2.451× 104 5107 2.464× 104 1.258× 104 3.403× 104 0
εC PSO 1.872× 104 6898 1.745× 104 1.02× 104 4.117× 104 0
PF DER1B 1.386× 104 1404 1.404× 104 1.104× 104 1.716× 104 0
PF DER1E 3.556× 104 2830 3.594× 104 2.916× 104 4.008× 104 0
PF DEB1B 1.399× 104 1423 1.392× 104 1.14× 104 1.764× 104 0
PF DEB1E 2.794× 104 3584 2.766× 104 2.124× 104 3.828× 104 0
PF DECR 1.295× 106 2.591× 105 1.257× 106 7.696× 105 1.818× 106 0
PF DECB - - - - - 30
PF DECR1B 8.422× 104 1.001× 104 8.436× 104 6.624× 104 1.021× 105 0
PF DECR1E - - - - - 30
PF GA - - - - - 30
PF PSO 1.807× 107 7.56× 105 1.797× 107 1.678× 107 1.973× 107 0

Appendix E.6. EVALS Metric: Inferential Statistics

This section shows the inferential statistics of the EVALS data collected from the thirty
executions of the four CHTs per each one of the ten metaheuristic algorithms. Each study
case groups a total of forty samples (four CHTs per ten metaheuristics). For carrying out
these statistics, the R program and the library scmamp are used.

Appendix E.6.1. Ranks Achieved by the Friedman Test

The ranks obtained by the Friedman test for the three study cases are shown in
Table A19.
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Table A19. Ranks and p-value obtained by the Friedman test for the EVALS metric. A p-value less
than 0.05 indicates that at least two groups of values for each algorithm are different.

Ranks
Algorithms CHT Study Case 1 Study Case 2 Study Case 3

DER1B FR 2.5 1.8 2
DER1B SR 2.5 2.7 3.1
DER1B εC 2.5 3.1 3.3
DER1B PF 2.5 2.4 1.6

Statistic In f 15 24
p-value In f 1.63× 10−3 2.23× 10−5

DER1E FR 2.5 2.3 3
DER1E SR 2.5 2.6 4
DER1E εC 2.5 3.4 1
DER1E PF 2.5 1.7 2

Statistic In f 28 In f
p-value In f 3.56× 10−6 In f

DEB1B FR 2.5 2.7 2.6
DEB1B SR 2.5 1 2.3
DEB1B εC 2.5 2.9 2.7
DEB1B PF 2.5 3.4 2.4

Statistic In f 48 1.5
p-value In f 1.71× 10−10 6.82× 10−1

DEB1E FR 2.5 2.2 3
DEB1E SR 2.5 2.5 4
DEB1E εC 2.5 3.1 1
DEB1E PF 2.5 2.2 2

Statistic In f 11 In f
p-value In f 1.19× 10−2 In f

DECR FR 2.5 1.8 3
DECR SR 2.5 2.8 1.8
DECR εC 2.5 3.2 1.2
DECR PF 2.5 2.1 4

Statistic In f 23 84
p-value In f 4.94× 10−5 5.29× 10−18

DECB FR 2.5 2 2
DECB SR 2.5 2.8 3
DECB εC 2.5 3 1
DECB PF 2.5 2.3 4

Statistic In f 11 In f
p-value In f 1.38× 10−2 In f

DER1B FR 2.5 1.8 2.2
DER1B SR 2.5 2.4 1
DER1B εC 2.5 3.5 2.8
DER1B PF 2.5 2.2 4

Statistic In f 29 84
p-value In f 2.14× 10−6 5.29× 10−18

DER1E FR 2.5 2.2 2
DER1E SR 2.5 2.5 3
DER1E εC 2.5 3 1
DER1E PF 2.5 2.3 4

Statistic In f 7.8 In f
p-value In f 5.04× 10−2 In f

GA FR 2.5 2 2.1
GA SR 2.5 2.2 1.2
GA εC 2.5 3.2 2.7
GA PF 2.5 2.6 4

Statistic In f 16 In f
p-value In f 9.78× 10−4 In f

PSO FR 2.5 2.3 3
PSO SR 2.5 2.5 1.3
PSO εC 2.5 2.7 2
PSO PF 2.5 2.5 3.8

Statistic In f 1.6 70
p-value In f 6.60× 10−1 4.71× 10−15
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Appendix E.6.2. Multiple Comparison Friedman Test

The collected data from the thirty executions of the four CHTs per each one of the ten
metaheuristic algorithms are used to make the multiple comparison Friedman test with the
post-hoc correction method. Holm correction is used in this analysis. This test is presented
in Table A20.

Table A20. Multiple comparison Friedman test with the post-hoc correction method for the overall
performance of the four CHTs included into the ten metaheuristic algorithms for the EVALS metric.
“-” indicates that there is no winning algorithm.

Algorithms Study Case 1 Study Case 2 Study Case 3
Alg. A + CHT vs. Alg B + CHT p-Value z Win p-Value z Win p-Value z Win

DER1B FR vs. DER1B SR 1 0 - 4.02 × 10−2 −2.7 A 1.04× 10−5 −3.3 A
DER1B FR vs. DER1B εC 1 0 - 1.06× 10−3 −3.8 A 1.24× 10−4 −4.1 A
DER1B FR vs. DER1B PF 1 0 - 2.16× 10−1 −1.8 - 3.17× 10−1 1 -
DER1B SR vs. DER1B εC 1 0 - 5.43× 10−1 −1.1 - 0 −0.8 A
DER1B SR vs. DER1B PF 1 0 - 5.43× 10−1 0.85 - 4.31× 10−4 4.3 B
DER1B εC vs. DER1B PF 1 0 - 2.05× 10−1 2 - 1.70× 10−6 5.1 B
DER1E FR vs. DER1E SR 1 0 - 4.24× 10−1 −0.8 - 0 −3 A
DER1E FR vs. DER1E εC 1 0 - 6.87× 10−3 −3.2 A 9.87× 10−9 6 B
DER1E FR vs. DER1E PF 1 0 - 9.10× 10−2 2 - 8.10× 10−3 3 B
DER1E SR vs. DER1E εC 1 0 - 4.92× 10−2 −2.4 A 8.10× 10−3 9 B
DER1E SR vs. DER1E PF 1 0 - 2.04× 10−2 2.8 B 9.87× 10−9 6 B
DER1E εC vs. DER1E PF 1 0 - 1.20× 10−6 5.2 B 8.10× 10−3 −3 A
DEB1B FR vs. DEB1B SR 1 0 - 1 0.85 - 2.21× 10−6 5.1 B
DEB1B FR vs. DEB1B εC 1 0 - 1 −0.15 - 4.89× 10−2 −0.55 A
DEB1B FR vs. DEB1B PF 1 0 - 1 0.7 - 5.74× 10−2 −1.9 -
DEB1B SR vs. DEB1B εC 1 0 - 1 −1 - 1.53× 10−2 −5.6 A
DEB1B SR vs. DEB1B PF 1 0 - 1 −0.15 - 2.19× 10−11 −6.9 A
DEB1B εC vs. DEB1B PF 1 0 - 1 0.85 - 1.33× 10−4 −1.4 A
DEB1E FR vs. DEB1E SR 1 0 - 1 −0.95 - 0 −3 A
DEB1E FR vs. DEB1E εC 1 0 - 2.24× 10−2 −2.9 A 9.87× 10−9 6 B
DEB1E FR vs. DEB1E PF 1 0 - 1 −0.15 - 8.10× 10−3 3 B
DEB1E SR vs. DEB1E εC 1 0 - 2.05× 10−1 −1.9 - 8.10× 10−3 9 B
DEB1E SR vs. DEB1E PF 1 0 - 1 0.8 - 9.87× 10−9 6 B
DEB1E εC vs. DEB1E PF 1 0 - 2.98× 10−2 2.7 B 8.10× 10−3 −3 A
DECR FR vs. DECR SR 1 0 - 1.27× 10−2 −3 A 6.47× 10−4 3.7 B
DECR FR vs. DECR εC 1 0 - 1.60× 10−4 −4.2 A 4.63× 10−7 5.3 B
DECR FR vs. DECR PF 1 0 - 4.23× 10−1 −0.85 - 5.40× 10−3 −3 A
DECR SR vs. DECR εC 1 0 - 4.23× 10−1 −1.2 - 1.10× 10−1 1.6 -
DECR SR vs. DECR PF 1 0 - 1.07× 10−1 2.1 - 1.04× 10−10 −6.7 A
DECR εC vs. DECR PF 1 0 - 4.04× 10−3 3.4 B 0 −8.3 A
DECB FR vs. DECB SR 1 0 - 1.07× 10−1 −2.3 - 1.40× 10−3 −3 A
DECB FR vs. DECB εC 1 0 - 1.91× 10−2 −3 A 4.55× 10−2 3 B
DECB FR vs. DECB PF 1 0 - 6.84× 10−1 −0.95 - 4.02× 10−10 −6 A
DECB SR vs. DECB εC 1 0 - 6.84× 10−1 −0.65 - 1.52× 10−7 6 B
DECB SR vs. DECB PF 1 0 - 5.31× 10−1 1.4 - 5.40× 10−3 −3 A
DECB εC vs. DECB PF 1 0 - 1.82× 10−1 2 - 0 −9 A

DECR1B FR vs. DECR1B SR 1 0 - 2.40× 10−1 −1.7 - 6.47× 10−4 3.7 B
DECR1B FR vs. DECR1B εC 1 0 - 2.65× 10−6 −5 A 1.10× 10−1 −1.6 -
DECR1B FR vs. DECR1B PF 1 0 - 6.35× 10−1 −1 - 5.79× 10−7 −5.3 A
DECR1B SR vs. DECR1B εC 1 0 - 3.87× 10−3 −3.3 A 5.79× 10−7 −5.3 A
DECR1B SR vs. DECR1B PF 1 0 - 6.35× 10−1 0.75 - 0 −9 A
DECR1B εC vs. DECR1B PF 1 0 - 2.56× 10−4 4.1 B 6.47× 10−4 −3.7 A
DECR1E FR vs. DECR1E SR 1 0 - 1 −0.95 - 1.45× 10−8 −3 A
DECR1E FR vs. DECR1E εC 1 0 - 6.46× 10−2 −2.6 - 5.81× 10−3 3 B
DECR1E FR vs. DECR1E PF 1 0 - 1 −0.3 - 0 −6 A
DECR1E SR vs. DECR1E εC 1 0 - 4.38× 10−1 −1.6 - 5.81× 10−3 6 B
DECR1E SR vs. DECR1E PF 1 0 - 1 0.65 - 5.81× 10−3 −3 A
DECR1E εC vs. DECR1E PF 1 0 - 1.22× 10−1 2.2 - 5.30× 10−9 −9 A

GA FR vs. GA SR 1 0 - 5.16× 10−01 −0.65 - 1.39× 10−02 2.7 B
GA FR vs. GA EC 1 0 - 1.29× 10−03 −3.7 A 9.89× 10−02 −1.6 -
GA FR vs. GA PF 1 0 - 1.61× 10−01 −2. - 1.08× 10−09 −5.6 A
GA SR vs. GA EC 1 0 - 1.14× 10−02 −3.1 A 5.45× 10−05 −4.4 A
GA SR vs. GA PF 1 0 - 3.23× 10−01 −1.4 - 7.87× 10−04 −8.3 A
GA EC vs. GA PF 1 0 - 2.97× 10−01 1.7 - 7.99× 10−15 −4 A

PSO FR vs. PSO SR 1 0 - 1 −0.75 - 6.35× 10−6 5 B
PSO FR vs. PSO εC 1 0 - 1 −1.3 - 1.34× 10−1 3 -
PSO FR vs. PSO PF 1 0 - 1 −0.6 - 2.89× 10−4 −2.4 A
PSO SR vs. PSO εC 1 0 - 1 −0.5 - 1.93× 10−3 −2 A
PSO SR vs. PSO PF 1 0 - 1 0.15 - 0 −7.4 A
PSO εC vs. PSO PF 1 0 - 1 0.65 - 3.33× 10−7 −5.4 A
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Appendix E.7. PR Metric: Descriptive Statistics

This section shows the statistical data used to analyze the PR metric for each study
case, as statistical data are considered the mean, standard deviation, median, and the
minimum and maximum values of the PR metric.

Appendix E.7.1. Descriptive Statistics for the Case 1: Four-Bar Linkage Mechanism

The measures of the descriptive statistics for the four-bar linkage mechanism are
presented in Table A21.

Table A21. PR descriptive statistics for study case 1: Four-bar linkage mechanism. IS means the
number of infeasible solutions through the executions.

CHT Algorithm Mean std Median Minimum Maximum IS

FR DER1B 2.343 0.305 2.323 1.827 3.056 0
FR DER1E 2.362 0.3474 2.289 1.876 3.1 0
FR DEB1B 1.661 0.1637 1.643 1.286 1.98 0
FR DEB1E 2.451 0.294 2.45 1.994 3.115 0
FR DECR 1.991 0.4537 1.972 1.023 3.071 0
FR DECB 1.858 0.2585 1.813 1.475 2.596 0
FR DECR1B 2.001 0.2481 1.99 1.595 2.408 0
FR DECR1E 2.21 0.2437 2.176 1.809 2.769 0
FR GA 1.81 0.3036 1.715 1.474 2.426 0
FR PSO 1.578 0.2411 1.539 1.213 2.366 0
SR DER1B 1.65 0.2974 1.595 1.082 2.39 0
SR DER1E 1.733 0.2197 1.702 1.329 2.338 0
SR DEB1B 1.636 0.2242 1.602 1.165 2.169 0
SR DEB1E 1.311 0.4121 1.411 0.5058 2.004 0
SR DECR 1.835 0.1869 1.808 1.493 2.268 0
SR DECB 0.328 0.151 0.3138 0.1154 0.6471 0
SR DECR1B 1.387 0.2819 1.444 0.7509 2.017 0
SR DECR1E 1.936 0.393 1.871 1.416 2.886 0
SR GA 0.6153 0.1413 0.6101 0.3675 0.921 0
SR PSO 1.093 0.2951 1.112 0.4414 1.47 0
εC DER1B 1.824 0.2013 1.81 1.563 2.415 0
εC DER1E 2.271 0.4723 2.086 1.636 3.108 0
εC DEB1B 1.551 0.1851 1.487 1.254 1.87 0
εC DEB1E 1.797 0.3104 1.725 1.329 2.686 0
εC DECR 1.845 0.1725 1.851 1.481 2.182 0
εC DECB 1.702 0.2235 1.698 1.287 2.213 0
εC DECR1B 1.818 0.1846 1.775 1.453 2.223 0
εC DECR1E 1.82 0.2212 1.806 1.425 2.533 0
εC GA 1.78 0.2091 1.746 1.469 2.422 0
εC PSO 1.605 0.1731 1.611 1.087 1.873 0
PF DER1B 1.911 0.1727 1.987 1.495 2.107 0
PF DER1E 2.369 0.3318 2.262 1.91 3.221 0
PF DEB1B 1.803 0.236 1.803 1.352 2.395 0
PF DEB1E 1.651 0.2068 1.6 1.346 2.273 0
PF DECR 1.948 0.3075 1.877 1.487 2.626 0
PF DECB 2.037 0.3585 1.976 1.492 3.014 0
PF DECR1B 1.659 0.103 1.664 1.417 1.827 0
PF DECR1E 2.282 0.3045 2.311 1.661 2.849 0
PF GA 0.88 0.1657 0.847 0.5811 1.284 0
PF PSO 1.615 0.2095 1.595 1.257 2.013 0

Appendix E.7.2. Descriptive Statistics for the Case 2: Cam-Linkage Mechanism

The measures of the descriptive statistics for the cam-linkage mechanism are presented
in Table A22.
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Table A22. PR descriptive statistics for study case 2: Cam-linkage mechanism. IS means the number
of infeasible solutions through the executions.

CHT Algorithm Mean std Median Minimum Maximum IS

FR DER1B 2.821 0.1725 2.865 2.166 3.055 0
FR DER1E 2.823 0.2206 2.852 2.145 3.291 0
FR DEB1B 2.319 0.4964 2.433 1.338 2.942 0
FR DEB1E 2.471 0.3817 2.561 1.593 3.492 0
FR DECR 2.804 0.1412 2.841 2.406 2.975 0
FR DECB 2.5 0.3762 2.682 1.793 2.928 0
FR DECR1B 2.8 0.1728 2.83 2.003 2.978 0
FR DECR1E 2.781 0.3617 2.85 1.429 3.521 0
FR GA 1.648 0.3707 1.622 0.802 2.241 0
FR PSO 2.104 0.3752 2.111 1.39 3.063 0
SR DER1B 2.5 0.4391 2.424 1.485 3.369 0
SR DER1E 2.53 0.339 2.626 1.576 2.92 0
SR DEB1B 2.004 0.567 2.134 0.5951 2.891 0
SR DEB1E 1.807 0.4763 1.854 1.039 2.73 0
SR DECR 2.528 0.2971 2.497 1.798 2.936 0
SR DECB 1.975 0.6068 2.139 0.8074 2.821 0
SR DECR1B 2.75 0.2052 2.837 2.277 2.93 0
SR DECR1E 1.938 0.3965 1.991 0.8443 2.47 0
SR GA 1.974 0.3019 2.03 1.186 2.399 0
SR PSO 1.785 0.5304 1.982 0.8629 2.418 0
εC DER1B 2.027 0.3893 2.066 0.9057 2.594 0
εC DER1E 2.087 0.3835 2.165 0.8388 2.658 0
εC DEB1B 1.737 0.5203 1.631 0.7463 2.778 0
εC DEB1E 1.81 0.6189 1.915 0.6554 2.814 0
εC DECR 1.61 0.5057 1.621 0.7147 2.279 0
εC DECB 1.766 0.4752 2.047 0.7747 2.329 0
εC DECR1B 1.568 0.6516 1.605 0.47 4.272 0
εC DECR1E 1.526 0.3882 1.62 0.6908 2.318 0
εC GA 0.8531 0.6234 0.8273 0.04024 2.145 0
εC PSO 1.685 0.7225 2.119 0.3205 2.459 0
PF DER1B 2.81 0.1439 2.849 2.227 3.058 0
PF DER1E 2.631 0.2048 2.664 2.243 2.951 0
PF DEB1B 2.165 0.6356 2.303 0.8512 2.904 0
PF DEB1E 2.547 0.2927 2.687 1.784 2.895 0
PF DECR 2.8 0.2499 2.87 1.75 3.224 0
PF DECB 2.413 0.6335 2.766 0.7075 2.953 0
PF DECR1B 2.759 0.2927 2.794 1.67 3.462 0
PF DECR1E 2.761 0.1714 2.778 2.156 3.006 0
PF GA 2.131 0.2312 2.176 1.639 2.466 0
PF PSO 2.388 0.2156 2.443 1.826 2.736 0

Appendix E.7.3. Descriptive Statistics for the Case 3: Eight-Bar Linkage Mechanism

The measures of the descriptive statistics for the eight-bar mechanism are presented
in Table A23.
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Table A23. PR descriptive statistics for study case 3: Eight-bar linkage mechanism. IS means the
number of infeasible solutions through the executions. “-” indicates that it is not possible to compute
such a statistic.

CHT Algorithm Mean std Median Minimum Maximum IS

FR DER1B 5.065 0.4121 5.13 4.072 5.77 0
FR DER1E 5.009 0.3983 4.965 4.233 6.009 0
FR DEB1B 4.827 0.5003 4.772 3.77 6.143 0
FR DEB1E 4.947 0.6105 4.931 2.783 5.856 0
FR DECR 4.256 0.8211 4.184 3.001 6.582 0
FR DECB 1.237 1.018 1.17 0.3081 2.902 25
FR DECR1B 4.291 0.3392 4.347 3.305 4.778 0
FR DECR1E 3.225 0.3983 3.225 2.315 4.062 1
FR GA 4.014 0.6513 4.082 2.559 5.077 0
FR PSO 2.051 0.7157 2.266 0.2881 3.22 4
SR DER1B 0.5306 0.6814 0.2318 0 1.738 20
SR DER1E - - - - - 30
SR DEB1B 3.282 0.7398 3.344 1.453 4.461 0
SR DEB1E - - - - - 30
SR DECR 4.122 0.8024 4.146 2.806 6.331 0
SR DECB - - - - - 30
SR DECR1B 3.75 0.7648 3.588 2.553 5.61 0
SR DECR1E - - - - - 30
SR GA 4.187 0.6384 4.164 2.81 5.189 0
SR PSO 2.689 0.6778 2.803 0.4357 3.575 3
εC DER1B 4.233 0.8858 4.038 2.417 6.165 0
εC DER1E 4.735 0.5677 4.815 2.518 5.677 0
εC DEB1B 2.987 0.9605 3.144 0.8578 4.356 7
εC DEB1E 4.529 0.6106 4.474 3.322 5.822 0
εC DECR 3.836 0.8199 3.701 2.516 6.012 0
εC DECB 3.652 0.4151 3.669 2.607 4.544 0
εC DECR1B 3.942 0.5436 3.809 3.128 5.358 0
εC DECR1E 4.197 0.4834 4.2 3.363 5.294 0
εC GA 3.655 0.8609 3.695 1.586 5.627 0
εC PSO 3.427 0.3658 3.482 2.791 4.042 0
PF DER1B 4.8 0.7626 4.949 2.625 6.114 0
PF DER1E 4.817 0.4816 4.866 3.325 5.563 0
PF DEB1B 4.479 0.5353 4.47 3.153 5.252 0
PF DEB1E 4.606 0.492 4.651 3.622 5.631 0
PF DECR 3.365 0.5522 3.313 2.161 5.028 0
PF DECB - - - - - 30
PF DECR1B 3.414 0.6086 3.608 1.769 4.278 0
PF DECR1E - - - - - 30
PF GA - - - - - 30
PF PSO 3.273 0.507 3.354 2.279 4.189 0

Appendix E.8. PR Metric: Inferential Statistics

This section shows the inferential statistics of the PR data collected from the thirty
executions of the four CHTs per each one of the ten metaheuristic algorithms. Each study
case groups a total of forty samples (four CHTs per ten metaheuristics). For carrying out
these statistics, the R program and the library scmamp are used.

Appendix E.8.1. Ranks Achieved by the Friedman Test

The ranks obtained by the Friedman test for the three study cases are shown in
Table A24.
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Table A24. Ranks and p-value obtained by the Friedman test for the PR metric. A p-value less than
0.05 indicates that at least two groups of values for each algorithm are different.

Ranks
Algorithms CHT Study Case 1 Study Case 2 Study Case 3

DER1B FR 3.8 3.3 2.7
DER1B SR 1.5 2.4 3
DER1B εC 2.2 1.2 1.8
DER1B PF 2.5 3.1 2.5

Statistic 49 50 27
p-value 1.16× 10−10 8.47× 10−11 5.56× 10−6

DER1E FR 3.1 3.7 2.2
DER1E SR 1.2 2.4 4
DER1E εC 2.7 1.2 1.8
DER1E PF 3.1 2.7 1.9

Statistic 45 56 Inf
p-value 1.04× 10−9 4.04× 10−12 In f

DEB1B FR 2.5 3 3.4
DEB1B SR 2.4 2.5 1.5
DEB1B εC 1.8 1.8 2.2
DEB1B PF 3.3 2.7 2.9

Statistic 20 12 42
p-value 1.83× 10−4 6.02× 10−3 4.86× 10−9

DEB1E FR 3.9 3.2 2.4
DEB1E SR 1.5 1.6 4
DEB1E εC 2.6 1.8 1.7
DEB1E PF 2.1 3.4 1.9

Statistic 58 47 Inf
p-value 1.60× 10−12 3.34× 10−10 In f

DECR FR 3.1 3.2 3.1
DECR SR 2.3 2.3 2.7
DECR εC 2.2 1.1 2.5
DECR PF 2.4 3.3 1.7

Statistic 8.2 55 20
p-value 4.21× 10−2 5.87× 10−12 1.73× 10−4

DECB FR 2.9 3.1 1.8
DECB SR 1 2.1 3
DECB εC 2.6 1.7 1.2
DECB PF 3.5 3.1 4

Statistic 62 29 Inf
p-value 2.73× 10−13 2.15× 10−6 In f

DER1B FR 3.5 3.2 3.5
DER1B SR 1.2 3 2.2
DER1B εC 3.1 1.1 2.5
DER1B PF 2.2 2.7 1.8

Statistic 55 49 28
p-value 5.75× 10−12 1.47× 10−10 2.94× 10−6

DER1E FR 3 3.5 1.1
DER1E SR 2 1.8 3
DER1E εC 1.7 1.3 1.9
DER1E PF 3.3 3.4 4

Statistic 34 65 Inf
p-value 1.98× 10−7 4.28× 10−14 In f

GA FR 3.4 2.2 2.1
GA SR 1 3 2.2
GA εC 3.6 1.3 1.7
GA PF 2 3.5 4

Statistic 80 49 Inf
p-value 2.78× 10−17 1.23× 10−10 In f

PSO FR 2.6 2.5 1.5
PSO SR 1.2 2 2.4
PSO εC 3 2 3
PSO PF 3.2 3.6 3.1

Statistic 45 30 40
p-value 7.46× 10−10 1.30× 10−6 1.04× 10−8

Appendix E.8.2. Multiple Comparison Friedman Test

The collected data from the thirty executions of the four CHTs per each one of the ten
metaheuristic algorithms are used to make the multiple comparison Friedman test with the
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post-hoc correction method. Holm correction is used in this analysis. This test is presented
in Table A25.

Table A25. Multiple comparison Friedman test with the post-hoc correction method for the overall
performance of the four CHTs included into the ten metaheuristic algorithms for the PR metric. “-”
indicates that there is no winning algorithm.

Algorithms Study Case 1 Study Case 2 Study Case 3
Alg. A + CHT vs. Alg B + CHT p-Value z Win p-Value z Win p-Value z Win

DER1B FR vs. DER1B SR 6.28 × 10−11 6.8 B 3.73× 10−2 2.5 B 1.54× 10−11 −1 A
DER1B FR vs. DER1B εC 4.79× 10−6 4.9 B 1.79× 10−9 6.3 B 3.73× 10−2 2.5 B
DER1B FR vs. DER1B PF 3.85× 10−4 3.9 B 6.89× 10−1 0.4 - 6.17× 10−1 0.5 -
DER1B SR vs. DER1B εC 1.15× 10−1 −1.9 - 5.79× 10−4 3.8 B 2.72× 10−5 3.5 B
DER1B SR vs. DER1B PF 1.12× 10−2 −2.9 A 7.15× 10−2 −2.1 - 4.02× 10−10 1.5 B
DER1B εC vs. DER1B PF 3.17× 10−1 −1 - 1.82× 10−8 −5.9 A 9.10× 10−2 −2 -
DER1E FR vs. DER1E SR 5.99× 10−8 5.7 B 5.79× 10−4 3.8 B 1.25× 10−10 −5.3 A
DER1E FR vs. DER1E εC 5.81× 10−1 1.2 - 8.17× 10−13 7.4 B 6.90× 10−1 1.2 -
DER1E FR vs. DER1E PF 9.20× 10−1 −0.1 - 1.02× 10−2 2.8 B 7.36× 10−1 0.9 -
DER1E SR vs. DER1E εC 2.72× 10−5 −4.5 A 9.55× 10−4 3.6 B 1.52× 10−7 6.5 B
DER1E SR vs. DER1E PF 3.98× 10−8 −5.8 A 3.17× 10−1 −1 - 3.32× 10−8 6.2 B
DER1E εC vs. DER1E PF 5.81× 10−1 −1.3 - 2.11× 10−5 −4.6 A 7.64× 10−1 −0.3 -
DEB1B FR vs. DEB1B SR 6.89× 10−1 0.4 - 5.81× 10−1 1.3 - 5.99× 10−8 5.7 B
DEB1B FR vs. DEB1B εC 1.37× 10−1 2 - 4.04× 10−3 3.4 B 1.79× 10−9 3.5 B
DEB1B FR vs. DEB1B PF 6.56× 10−2 −2.4 - 7.36× 10−1 0.9 - 2.19× 10−1 1.6 -
DEB1B SR vs. DEB1B εC 2.19× 10−1 1.6 - 1.43× 10−1 2.1 - 5.49× 10−1 −2.2 -
DEB1B SR vs. DEB1B PF 2.56× 10−2 −2.8 A 7.36× 10−1 −0.4 - 1.24× 10−4 −4.1 A
DEB1B εC vs. DEB1B PF 6.50× 10−5 −4.4 A 6.21× 10−2 −2.5 - 1.04× 10−5 −1.9 A
DEB1E FR vs. DEB1E SR 1.73× 10−12 7.3 B 4.79× 10−6 4.9 B 1.73× 10−12 −4.7 A
DEB1E FR vs. DEB1E εC 2.53× 10−4 4 B 1.24× 10−4 4.1 B 8.34× 10−2 2.2 -
DEB1E FR vs. DEB1E PF 1.90× 10−7 5.5 B 8.47× 10−1 −0.6 - 1.78× 10−1 1.7 -
DEB1E SR vs. DEB1E εC 2.90× 10−3 −3.3 A 8.47× 10−1 −0.8 - 1.36× 10−6 6.9 B
DEB1E SR vs. DEB1E PF 1.44× 10−1 −1.8 - 2.28× 10−7 −5.5 A 1.07× 10−7 6.4 B
DEB1E εC vs. DEB1E PF 1.44× 10−1 1.5 - 1.04× 10−5 −4.7 A 6.17× 10−1 −0.5 -
DECR FR vs. DECR SR 1.07× 10−1 2.3 - 1.39× 10−2 2.7 B 5.43× 10−1 1.1 -
DECR FR vs. DECR εC 5.59× 10−2 2.6 - 1.49× 10−9 6.3 B 2.16× 10−1 1.8 -
DECR FR vs. DECR PF 2.30× 10−1 1.9 - 8.41× 10−1 −0.2 - 1.02× 10−4 4.3 B
DECR SR vs. DECR εC 1 0.3 - 1.27× 10−3 3.6 B 5.43× 10−1 0.7 -
DECR SR vs. DECR PF 1 −0.4 - 1.12× 10−2 −2.9 A 6.87× 10−3 3.2 B
DECR εC vs. DECR PF 1 −0.7 - 4.82× 10−10 −6.5 A 4.97× 10−2 2.5 B
DECB FR vs. DECB SR 5.99× 10−8 5.7 B 8.10× 10−3 3 B 8.10× 10−3 −3.5 A
DECB FR vs. DECB εC 3.68× 10−1 0.9 - 8.54× 10−5 4.3 B 8.10× 10−3 2 B
DECB FR vs. DECB PF 1.44× 10−1 −1.8 - 9.20× 10−1 −0.1 - 9.87× 10−9 −6.5 A
DECB SR vs. DECB εC 6.35× 10−6 −4.8 A 3.87× 10−1 1.3 - 9.87× 10−9 5.5 B
DECB SR vs. DECB PF 3.82× 10−13 −7.5 A 7.74× 10−3 −3.1 A 8.10× 10−3 −3 A
DECB εC vs. DECB PF 2.08× 10−2 −2.7 A 6.50× 10−5 −4.4 A 0 −8.5 A

DECR1B FR vs. DECR1B SR 6.28× 10−11 6.8 B 8.47× 10−1 0.5 - 4.81× 10−4 3.9 B
DECR1B FR vs. DECR1B εC 2.30× 10−1 1.2 - 3.39× 10−9 6.2 B 1.08× 10−2 3 B
DECR1B FR vs. DECR1B PF 2.53× 10−4 4 B 5.81× 10−1 1.3 - 2.04× 10−6 5.1 B
DECR1B SR vs. DECR1B εC 1.07× 10−7 −5.6 A 5.99× 10−8 5.7 B 4.60× 10−1 −0.9 -
DECR1B SR vs. DECR1B PF 1.53× 10−2 −2.8 A 8.47× 10−1 0.8 - 4.60× 10−1 1.2 -
DECR1B εC vs. DECR1B PF 1.53× 10−2 2.8 B 3.83× 10−6 −4.9 A 1.07× 10−1 2.1 -
DECR1E FR vs. DECR1E SR 8.10× 10−3 3 B 3.83× 10−6 4.9 B 4.12× 10−3 −5.7 A
DECR1E FR vs. DECR1E εC 3.17× 10−4 4 B 4.82× 10−10 6.5 B 9.32× 10−3 −2.4 A
DECR1E FR vs. DECR1E PF 6.35× 10−1 −1 - 8.41× 10−1 0.2 - 2.82× 10−9 −8.7 A
DECR1E SR vs. DECR1E εC 6.35× 10−1 1 - 2.19× 10−1 1.6 - 2.65× 10−8 3.3 B
DECR1E SR vs. DECR1E PF 3.17× 10−4 −4 A 7.80× 10−6 −4.7 A 5.40× 10−3 −3 A
DECR1E εC vs. DECR1E PF 3.44× 10−6 −5 A 1.49× 10−9 −6.3 A 0 −6.3 A

GA FR vs. GA SR 6.24× 10−12 7.1 B 5.56× 10−02 −2.2 - 8.41× 10−01 −0.2 -
GA FR vs. GA EC 5.49× 10−01 −0.6 - 1.53× 10−02 2.8 B 3.29× 10−01 1.4 -
GA FR vs. GA PF 5.12× 10−05 4.3 B 5.79× 10−04 −3.8 A 7.77× 10−10 −5.6 A
GA SR vs. GA EC 8.13× 10−14 −7.7 A 2.87× 10−06 5 B 3.29× 10−01 1.6 -
GA SR vs. GA PF 1.02× 10−02 −2.8 A 1.10× 10−01 −1.6 - 2.47× 10−10 −5.4 A
GA EC vs. GA PF 3.83× 10−06 4.9 B 2.47× 10−10 −6.6 A 2.29× 10−06 −7 A

PSO FR vs. PSO SR 4.33× 10−5 4.4 B 4.01× 10−1 1.5 - 1.12× 10−2 −2.7 A
PSO FR vs. PSO εC 4.60× 10−1 −1.2 - 4.01× 10−1 1.4 - 3.32× 10−8 −4.3 A
PSO FR vs. PSO PF 3.29× 10−1 −1.6 - 3.87× 10−3 −3.3 A 6.36× 10−9 −4.6 A
PSO SR vs. PSO εC 1.07× 10−7 −5.6 A 9.20× 10−1 −0.1 - 1.12× 10−2 −1.6 A
PSO SR vs. PSO PF 1.18× 10−8 −6 A 9.52× 10−6 −4.8 A 5.50× 10−3 −1.9 A
PSO εC vs. PSO PF 6.89× 10−1 −0.4 - 1.30× 10−5 −4.7 A 7.64× 10−1 −0.3 -

Appendix F. Optimum Design Variables per Each Study Case

This section presents the design variable vector x of the optimum solutions (the best
solutions) of the best and the worst CHTs obtained from the thirty executions.
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Appendix F.1. Optimum Solutions for the Case 1: Four-Bar Linkage Mechanism

The optimum solutions of the best and the worst CHTs are presented in Table A26.

Table A26. Optimum design variables obtained by the best and the worst CHTs for study case 1:
Four-bar linkage mechanism.

FR

x1[m ] x2[m] x3[m] x4[m] x5[rad] x6[m] x7[m] x8[m] x9[m]
0.60 0.29 0.49 0.45 0.63 −0.07 0.34 0.55 −0.14

SR

x1[m] x2[m] x3[m] x4[m] x5[rad] x6[m] x7[m] x8[m] x9[m]
0.60 0.33 0.53 0.45 0.58 −0.07 0.36 0.60 −0.13

Appendix F.2. Optimum Solutions for Study Case 2: Cam-Linkage Mechanism

The optimum solutions of the best and the worst CHTs are presented in Table A27.

Table A27. Optimum design variables obtained by the best and the worst CHTs for study case 2:
Cam-linkage mechanism.

FR

x1[mm ] x2[mm] x3[mm] x4[mm] x5[mm] x6[mm] x7[mm] x8[mm]
240.08 599.17 895.94 699.72 400.19 546.36 540.37 706.87

x9[mm] x10[rad] x11[rad] x12[rad] x13[mm] x14[mm] x15[mm]
0.38 −1.03 −0.18 −0.47 −296.88 31.29 39.56

εC Method

x1[mm] x2[mm] x3[mm] x4[mm] x5[mm] x6[mm] x7[mm] x8[mm]
225.01 566.67 899.90 627.37 402.71 532.57 461.71 760.82

x9[mm] x10[rad] x11[rad] x12[rad] x13[mm] x14[mm] x15[mm]
0.31 −1.03 −0.15 −0.44 −294.02 19.47 30.02

Appendix F.3. Optimum Solutions for Study Case 3: Eight-Bar Linkage Mechanism

The optimum solutions of the best and the worst CHTs are presented in Table A28.

Table A28. Optimum design variables obtained by the best and the worst CHTs for study case 3:
Eight-bar linkage mechanism.

FR

x1[m] x2[m] x3[m] x4[m] x5[m] x6[m] x7[m] x8[m] x9[m]
0.52 0.14 0.48 0.26 0.64 0.61 0.69 0.31 0.21

x10[m] x11[m] x12[rad] x13[rad] x14[rad] x15[rad] x16[m] x17[m] x18[m]
0.75 0.31 4.73 2.67 0.00 4.11 0.30 0.04 0.30

x19[m] x20[m] x21[m] x22[m] x23[m] x24[m] x25[m] x26[m] x27[m]
0.04 0.04 0.04 0.04 0.10 0.08 0.08 0.08 0.08

x28[m] x29[m] x30[m] x31[m] x32[m] x33[m] x34[m] x35[m] x36[m]
0.08 0.08 0.04 0.04 0.04 0.04 0.04 0.14 0.04

x37[m] x38[m] x39[m] x40[m] x41[m] x42[m] x43[m] x44[m] x45[m]
0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.07 0.00

x46[m] x47[m] x48[m] x49[m] x50[m] x51[m] x52[m] x53[m] x54[m]
0.00 0.00 0.00 0.00 0.20 0.10 0.00 0.10 0.00

x55[m] x56[m] x57[m] x58[m] x59[m] x60[m] x61[m] x62[m] x63[m]
0.00 0.10 0.00 0.00 0.53 0.79 0.23 0.24 0.04

x64[m] x65[m] x66[m] x67[m] x68[m] x69[m] x70[m] x71[m] x72[m]
0.12 0.47 0.02 0.17 0.20 0.10 0.26 0.02 0.00

x73[m] x74[m] x75[m] x76[m] x77[m] x78[m] x79[m] x80[m] x81[m]
0.20 0.00 0.12 0.07 0.10 0.06 0.02 0.34 0.54

x82[m] x83[m] x84[m] x85[m] x86[m] x87[m]
0.30 0.27 0.00 0.34 −0.83 −0.64
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Table A28. Cont.

SR

x1[m] x2[m] x3[m] x4[m] x5[m] x6[m] x7[m] x8[m] x9[m]
0.48 0.14 0.45 0.20 0.55 0.51 0.56 0.27 0.22

x10[m] x11[m] x12[rad] x13[rad] x14[rad] x15[rad] x16[m] x17[m] x18[m]
0.62 0.26 4.66 2.70 6.19 4.30 0.30 0.04 0.30

x19[m] x20[m] x21[m] x22[m] x23[m] x24[m] x25[m] x26[m] x27[m]
0.04 0.05 0.04 0.04 0.10 0.08 0.08 0.08 0.08

x28[m] x29[m] x30[m] x31[m] x32[m] x33[m] x34[m] x35[m] x36[m]
0.08 0.08 0.04 0.04 0.04 0.04 0.04 0.15 0.20

x37[m] x38[m] x39[m] x40[m] x41[m] x42[m] x43[m] x44[m] x45[m]
0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.00 0.00

x46[m] x47[m] x48[m] x49[m] x50[m] x51[m] x52[m] x53[m] x54[m]
0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.10 0.00

x55[m] x56[m] x57[m] x58[m] x59[m] x60[m] x61[m] x62[m] x63[m]
0.06 0.10 0.00 0.06 0.11 0.45 0.17 0.14 0.12

x64[m] x65[m] x66[m] x67[m] x68[m] x69[m] x70[m] x71[m] x72[m]
0.49 0.28 0.13 0.18 0.14 0.14 0.26 0.11 0.00

x73[m] x74[m] x75[m] x76[m] x77[m] x78[m] x79[m] x80[m] x81[m]
0.07 0.00 0.24 0.03 0.07 0.18 0.00 0.34 0.27

x82[m] x83[m] x84[m] x85[m] x86[m] x87[m]
0.08 0.26 0.00 0.42 −0.73 −0.53
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