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Abstract: The behaviour of dry-joint masonry arch structures is highly nonlinear and discontinuous
since they are composed of individual discrete blocks. These structures are vulnerable to seismic
excitations. It is difficult for traditional methods like the standard finite element method (FEM) to
simulate masonry failure due to their intrinsic limitations. An advanced computational approach, i.e.,
the combined finite-discrete element method (FDEM), was employed in this study to examine the
first-order seismic capacity of masonry arches and buttressed arches with different shapes subjected
to gravity and constant horizontal acceleration. Within the framework of the FDEM, masonry
blocks are discretised into discrete elements. A finite element formulation is implemented into
each discrete element, providing accurate predictions of the deformation of each block and contact
interactions between blocks. Numerical examples are presented and validated with results from
the existing literature, demonstrating that the FDEM is capable of capturing the seismic capacities
and hinge locations of masonry arch structures. Further simulations on geometric parameters and
friction coefficient of masonry buttressed arches were conducted, and their influences on the seismic
capacities are revealed.

Keywords: seismic capacity; masonry arch; constant ground acceleration; dry-joint; combined
finite-discrete element method

1. Introduction

Masonry arches have been the traditional forms of architectural heritages and histor-
ical constructions for a long time. They are assemblages of voussoirs made of stones or
bricks, which are either bonded with low-strength mortar or completely mortarless. In this
regard, a dry-joint assumption can be reasonably held. Moreover, masonry arch structures
are vulnerable to seismic excitations. Due to the intrinsic discontinuities, their responses
under seismic excitations are highly nonlinear. Thus, research into the seismic capacity of
dry-joint masonry arch structures is required.

If fracture and sliding are not considered, the dynamic failure of masonry arches
can be determined by the hinge failure mechanism following Heyman’s hypothesis [1]
that masonry voussoirs have zero tensile strength and infinite compressive strength, as
well as large enough friction between them. Some pioneering work has been proposed
based on analytical limit analysis. Oppenheim [2] investigated the dynamic response of
an unreinforced masonry arch by a four-link mechanism, in which the arch was modelled
as three rigid bars with predefined hinges. Subsequently, the same approach was em-
ployed to study the performance of circular stone arches subjected to base excitations [3,4].
Baratta et al. [5] examined the seismic responses of a simple masonry arch portal subjected
to horizontal seismic forces, and, moreover, the vertical overload due to volcanic ash fall
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following an eruption event was considered. De Lorenzis et al. [6] proposed a simplified
analytical formulation and evaluated the behaviour of arches under impulse base motions.

Shaking table testing is the most direct approach to evaluate the seismic behaviour
of masonry arch structures, and considerable work has been conducted (Silva et al. [7],
Gaetani et al. [8], etc.). However, almost all of them utilised small-scale models since
full-scale testing [9] was too expensive, or the tested models were too large (or heavy) and
far beyond the capacity of testing facilities. Therefore, numerical simulation has become
more popular. The finite element method (FEM) and the discrete element method (DEM)
are two commonly used approaches. De Luca et al. [10] proposed an algorithm by coupling
linear FEM and limit analysis, and, based on it, they investigated the seismic capacity of
three triumphal arches of Neapolitan churches. De Santis and de Felice [11] presented a
fibre beam-based FEM approach, and with it, they studied the seismic capacity of masonry
arches of different shapes and materials. In addition, the FEM software ABAQUS has also
been employed to reproduce the global bond behaviour in SRG-strengthened masonry
prisms [12].

Since masonry arches are highly discontinuous, it is very difficult for the FEM to
capture their potential failure processes under seismic excitations due to the intrinsic lim-
itations. The DEM, which is naturally suitable for modelling discontinuous structures
and heterogeneous materials, has great advantages in predicting the seismic capacity of
masonry arches. Giordano et al. [13] reviewed the applicability of different numerical tech-
niques, including the DEM code UDEC, in analysing masonry structures and compared the
results with test data. Bićanić et al. [14] presented the discontinuous analysis of a masonry
arch bridge under vertical loading up to failure, with the inclusion of DEM modelling.
More work on the DEM in simulating the seismic failure of masonry arch structures can be
found in [6,15–17]. Some other DEM-based applications on masonry structures are also
available in a variety of literature. For small-scale modelling, Foti et al. [18] predicted
the failure of dry-joint masonry cross vaults subjected to support settlements. For large-
scale simulations, endeavours have been made on masonry arches [19], arch bridges [20],
aqueducts [21,22] etc.

Besides the limit analysis, the FEM and the DEM mentioned above, other methods like
the two-step procedure [23] have also been employed in analyses of the seismic capacity of
masonry structures in general.

Though traditional DEM uses rigid blocks, new computational approaches also in-
clude deformation in the blocks, e.g., UDEC, 3DEC, ABAQUS etc. The combined finite-
discrete element method (FDEM) developed by Munjiza [24–27] is an extension of the FEM
and the DEM. With it, structures are discretised into numbers of discrete elements. Within
each discrete element, a finite element mesh is incorporated. Consequently, more accurate
predictions on the contact forces between elements and the deformation of structures can
be achieved. Further details on the FDEM can be referred to the monographs of Munjiza
and his co-workers [28–30]. The FDEM has been employed to simulate the failure of brittle
or quasi-brittle materials, such as glass impact fracture [31,32], shell fracture [33], slope
instability [34], rock compression fracture [35] etc. Applications of the FDEM on structural
engineering were comprehensively summarised by Munjiza et al. [36]. Regarding the
FDEM applications on masonry, Smoljanović et al. [37–40] analysed the static and dynamic
behaviour of both dry-stone and mortared masonry structures subjected to different loads.
Balic et al. [41] examined the collapse mechanism of stone arches due to seismic excitations.
Recently, the FDEM has been employed to study the collapse of masonry arch structures
subjected to base impulses [42] and support spreading [43], as well as the failure of masonry
walls under uneven support settlements [44].

The seismic capacity of masonry arches is worthy of investigating with the FDEM, and
a good attempt has been made in this paper to enrich the FDEM applications in structural
engineering. Herein, the terminology ‘seismic capacity’ corresponds to the first-order
seismic capacity of masonry arch structures under the combination of gravity and constant
horizontal acceleration. Under such loading, the failure of masonry arch structures is a
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dynamic process. Therefore, the FDEM is an appropriate simulation tool, and the 2D FDEM
program ‘Y’ [45] is employed in this study. The layout for the rest of the paper is as follows.
Fundamentals on the FDEM modelling are addressed in Section 2. Numerical examples,
including a variety of arch structures subjected to both gravitational and constant horizontal
accelerations, are presented in Section 3. A parametric investigation regarding geometric
parameters and friction coefficient are conducted in Section 4. Finally, the conclusions are
reached in Section 5.

2. FDEM Modelling
2.1. Voussoir Discretisation

Dry-joint masonry arches are composed of voussoirs. Within the framework of the
FDEM, each voussoir is an individual discrete block and is meshed with numbers of three-
node constant strain triangular (CST) elements. The discretisation of two adjacent voussoirs,
A and B, are illustrated in Figure 1. In this study, the fracture behaviour of voussoir is not
included. Hence, no element interface (i.e., joint element) needs to be defined between
adjacent elements within a single block, implying voussoirs A and B cannot be further
divided. Furthermore, the dry-joint assumption suggests that only contact and friction
need to be considered between voussoirs A and B.
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Figure 1. Discretisation of arch voussoirs.

In this study, a No Binary Search (NBS) contact detection algorithm, called Munjiza-
NBS contact detection algorithm [28], was implemented in the FDEM program ‘Y’. One
of the advantages of using this algorithm is that the total computational time to detect all
the contact couples is proportional to the number of discrete elements, and further details
can be found in Munjiza and Andrews [25]. Another important aspect of the FDEM is the
contact interaction law defining the contact force, and it will be introduced in Section 2.3.

2.2. Element Motions

Referring to Munjiza [28], the translational and the rotational motions of an arbitrary
discrete element i are formulated according to Newton’s second law of motion, as

mi (a + g) = Fi (1)

Ji
.

ωi = Ti (2)

where mi is the mass of discrete element i; a is the acceleration acts on element i with
the exclusion of the gravitational acceleration; g is the gravitational acceleration; Ji is the
moment of inertia about the centre of element i; ωi is the angular velocity about the element
centre; and Fi and Ti are the resultant force and moment act on and about the centre of
element i, respectively. According to Equations (1) and (2), the velocity and position of
discrete element i can be explicitly obtained at each time step. An explicit central difference
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time integration scheme is used [28], and the nodal velocity of the next time step is given
by Equation (3), as

vnext = vcurrent + acurrent∆t (3)

where a is the acceleration of the node, ∆t is the time step, v is the velocity, and the
subscripts ‘next’ and ‘current’ correspond to the next and the current time step.

2.3. Contact Forces

In the FDEM, the contact force f was evaluated and integrated through the overlapping
area A. As shown in Figure 2, the infinitesimal contact force df due to the penetration of
elemental area dA is defined in Equation (4), as

df = −dft + fc (4)

in which dft and dfc are the force components of df from the target and the contactor,
respectively, as

dft = −Epgradϕc(Pc)dA (5)

dfc = −Epgradϕt(Pt)dA (6)

where Pc and Pt are the points on the contactor and the target, respectively, and they share
the same coordinate within A; ϕc and ϕt are predefined potentials; grad is the gradient; and
Ep is the contact penalty and is usually 100 times of the Lame’s first constant. Thus, the
contact force f can be obtained by integrating dA over A, as

f = Ep

∫
A
[gradϕc(Pc)− gradϕt(Pt)]dA (7)
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Figure 2. Contact forces in the 2D FDEM.

Further details on the contact forces can be referred to Munjiza [28].

3. Numerical Examples

In this section, masonry arch structures subjected to the gravitational acceleration
g and a constant horizontal acceleration λg were considered. λ is a scale factor, and the
maximum λ that masonry arch structures can withstand is denoted as λ*, which indicates
their first-order seismic capacity. The 2D analysis was conducted since it is acceptable,
accurate enough and time-saving [46].

3.1. Arches without Buttresses

Dimitri and Tornabene [17] proposed an analytical model to evaluate the seismic
capacity of masonry arches and buttressed arches based on the static theory of limit
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analysis, and their predictions of the model were also compared and verified with results
from the DEM program UDEC [17]. In this section, two types of arches, i.e., the circular
arch and the basket-handle arch, were investigated. Their geometric configurations are
shown in Figure 3. The circular arch (Figure 3a) is simply characterised by the embrace
angle β, the thickness t and the centreline radius Rc. Figure 3b shows the geometry of
a basket-handle arch, which is composed of three circular arches: a larger arch with the
centre O1, two smaller arches with the centres O2 and O3 and the radius r. d is the distance
between O1 and O, where O is the centre of the reference circle (red dash line).
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The seismic capacities of two circular arches and two basket-handle arches with the
embrace angles β = 150◦ and β = 180◦ were investigated. Each arch is composed of 11
voussoirs. The geometric parameters are: (i) circular arches, Rc = 1.0 m and t/Rc = 0.2;
(ii) basket-handle arches, Rc = 1.0 m, t/Rc = 0.2, d/Rc = 0.5 and r/Rc = 0.5. The geometric
parameters were chosen such that direct comparison could be made with results in the
literature [17]. The material properties are shown in Table 1. Mesh configurations of the
arches used in the FDEM simulations are illustrated in Figure 4, in which the arches are
yellow, the bases are blue and N is the total number of elements. The time step of the
simulation was set to 1.0 × 10−6 s, and a friction coefficient of 0.6 was defined.

Table 1. Material properties of arches.

Young’s Modulus (GPa) Poisson’s Ratio Density (kg/m3)

40.0 0.2 2000.0
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The λ* was tested using every single value. For each λ, the simulation was performed
for a period of time that was long enough so that the arch would collapse if the assigned λg
was larger than its seismic capacity. Should the arch be still standing with little noticeable
deformation at the end of the simulation, the structure was considered stable. Otherwise, it
was unstable with the corresponding λg. Besides the current approach, a criterion based
on the unbalanced force ratio/max velocity could have been a better way and shall be
considered in future research. The explicit time integration in the FDEM was automatically
terminated once the computed steps reached the predefined maximum step, or it could
be terminated manually as long as the arch had collapsed under certain λg. According
to Munjiza [28], viscous damping with a value of 2∆h

√
Eρ was considered, where ∆h

is the characteristic size of the smallest element, E is the Young’s modulus and ρ is the
material density.

For λ > λ*, all of the four arches failed following the hinge mechanism. Take the
instance of the circular arch with β = 180◦; the entire failure process with λ = 0.3 was
simulated by the FDEM and is presented in Figure 5. Initially, there were five hinges (see
Figure 5a). Subsequently, one hinge closed, and the motion of the arch was dominated by
the remaining four hinges until collapse, as shown in Figure 5b–d. Finally, the arch lost
its stability and collapsed due to significant deformation. The dominant four hinges are
denoted as hinge I, II, III and IV in Figure 5d.
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The seismic capacity factor λ* of the investigated arches are presented in Table 2,
in which e is the relative difference between the simulation results and the results based
on limit analysis. Clearly, the results from the FDEM simulation agree very well with
the results in Dimitri and Tornabene [17], especially with the analytical results based
on limit analysis. However, additional results on the circular and basket-handle arches
with β = 120◦ show that the relative errors are higher, suggesting the limitation of the
proposed model. The failure modes of circular and basket-handle arches are shown in
Figures 6 and 7, respectively. It is observed that the failure modes predicted from the
FDEM simulations are in excellent agreement with the results predicted by the UDEC [17],
especially for the hinges and their locations.
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Table 2. λ * of circular and basket-handle arches without buttresses.

Embrace Angle β (◦)
λ *

FDEM/e (%) Limit Analysis [17] UDEC [17]/e (%)

Circular
120 1.14/10.2 1.27 1.28/0.79
150 0.618/0.32 0.62 0.64/3.23
180 0.294/1.38 0.29 0.31/6.90

Basket-
handle

120 2.10/10.6 2.35 2.38/1.28
150 1.067/0.66 1.06 1.10/3.77
180 0.539/0.19 0.54 0.56/3.70
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3.2. Buttressed Arches

In this section, two types of buttressed arches are investigated, as shown in Figure 8.
The figure is drawn based on Dimitri and Tornabene [17]. The width of the buttress is B,
the height from O to the base is H1, the height of the buttress is H, the height from the top
of the buttress to the arch crown is h and other parameters are similar to the arches shown
in Figure 3.
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Similar to that in Section 3.1, each arch is composed of 11 voussoirs. Geometric
parameters of the investigated buttressed arches are: (i) circular buttressed arch, Rc = 1.0 m,
H1/Rc = 3, B/Rc = 0.8 and t/Rc = 0.2; (ii) basket-handle buttressed arch, Rc = 1.0 m, H1/Rc
= 3, B/Rc = 0.8, d/Rc = 0.5, r/Rc = 0.5 and t/Rc = 0.2. The mesh configurations of the
buttressed arches are shown in Figure 9, and the total element numbers are: (i) circular
buttressed arches, N = 50 for β = 120◦ and 150◦, N = 61 for β = 180◦; (ii) basket-handle
buttressed arches, N = 50 for β = 120◦, N = 58 for β = 150◦ and N = 63 for β = 180◦.
The material properties are as same as in Table 1. The time step of the simulation was
set to 1.0 × 10−6 s, and a large friction coefficient of 0.9 was adopted to avoid potential
sliding. Similarly, failure of all buttressed arches followed the four-hinge mechanism,
too. Herein, the buttressed basket-handle arch with β = 180◦ was chosen and presented
representatively, and the failure process with λ = 0.18 is shown in Figure 10. At the first
instance (Figure 10a), four hinges initiated quickly. Three upper hinges (one extrados hinge
and two intrados hinges) appeared within the arch, and a lower hinge formed at the bottom
of the right buttress; therefore, the entire structure behaved as a linked mechanism. The
hinges continued to develop till the collapse of the structure.

The seismic capacity factors λ* of the buttressed basket-handle arches are presented in
Table 3, including the results from Dimitri and Tornabene [17]. Apparently, the FDEM sim-
ulation results agree well with the results based on the limit analysis and the UDEC simula-
tion. The failure modes of buttressed basket-handle arches are illustrated in Figures 11 and 12.
All the structures failed due to the instability of the four-hinge mechanism, and the simula-
tion results by the FDEM are in excellent agreement with those by UDEC, especially the
hinges and their locations. It is worth mentioning that the locations of hinges are not as
same as the corresponding single arches in Section 3.1, i.e., one hinge formed at the bottom
of the right buttress. With the ground acceleration at the base, the overturning moments of
the right buttress induced by the reaction of the right arch springer and the inertial force of
itself are all clockwise. When they surpassed the anticlockwise moment of self-weight, the
lower hinge appeared at the exterior corner of the bottom of the buttress.
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Table 3. λ * of buttressed circular and basket-handle masonry arches.

Embrace Angle β (◦) λ *

FDEM/e (%) Limit Analysis [17] UDEC [17]/e (%)

Circular
120 0.166/3.75 0.16 0.17/6.25
150 0.178/1.11 0.18 0.18/0.00
180 0.188/1.05 0.19 0.21/10.53

Basket-handle
120 0.150/7.14 0.14 0.15/7.14
150 0.160/6.67 0.15 0.16/6.67
180 0.174/8.75 0.16 0.17/6.25
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A sensitivity analysis regarding the influences of Young’s modulus E on the seismic
capacity factor λ* was performed, and the results are given in Figure 13. Buttressed and
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unbuttressed circular arches with different embrace angles were considered. It is shown
that when E is small, i.e., E < 5 GPa, the corresponding λ* is also slightly small. Once
E ≥ 10 GPa, λ* reaches a plateau and is kept constant afterwards. According to Figure 13,
the conclusion can be reached that the influence of block stiffness on the seismic capacity is
limited unless Young’s modulus E is quite small, e.g., E < 0.1 GPa. Since Young’s modulus
of most ordinary masonry blocks is around 40 GPa (a lot far from the ‘soft’ region), a rigid
block assumption is an entirely relevant and justified assumption.
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3.3. A Multi-Span Pointed Arch Church

Nodargi and Bisegna [47] investigated the seismic capacity of a multi-span pointed arch
church, as shown in Figure 14a, using the approach of limit analysis. It is a three-span but-
tressed pointed masonry arch structure. Similar to the arch structures in Sections 3.1 and 3.2,
it was subjected to the gravitational acceleration g and a constant horizontal acceleration
λg. Various potential failure sections were studied by Nodargi and Bisegna [47], e.g.,
‘horizontal’ stereotomy in the buttresses and ‘polar’ stereotomy in the arches, as shown in
Figure 14a. Accordingly, the FDEM discretisation is illustrated in Figure 14b, denoted by
Scheme A. The buttresses were discretised by horizontal blocks with a height of 0.26 m.
The pointed arches were discretised by polar voussoirs with an embrace angle of β = 2◦,
and a special block was defined at the crown of each arch because of its pointed shape.
As a comparison, another discretisation scheme with monolithic buttresses and the same
polar voussoirs was also modelled, as shown in Figure 14c, denoted by Scheme B. Similar
to the arch structures in Sections 3.1 and 3.2, only the dry-joint contact and friction between
adjacent blocks or voussoirs were considered in the FDEM simulations. The total number
of elements is 786 for Scheme A, and 342 for Scheme B. Material properties are as same
as in Table 1. In Nodargi and Bisegna [47], ‘a sufficiently large friction angle is assumed
to be available’, and the friction coefficient was set to 0.6 in the FDEM simulation, as it is
large enough to avoid sliding. The time steps for Scheme A and B were 1.0 × 10−7 s and
1.0 × 10−6 s, respectively.
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Figure 14. The multi-span pointed arch church: (a) geometry (unit: m); (b) FDEM discretisation of Scheme A; (c) FDEM
discretisation of Scheme B.

Figure 15 shows the failure modes of the multi-span pointed arch church under
gravity and a constant horizontal acceleration from both the FDEM simulations and the
limit analysis [46]. It can be observed that they are in excellent agreement. Seven hinges
were predicted by both the FDEM simulations and the limit analysis [47], and the locations
of these hinges are the same. As shown in Figure 15, the right part of the church inclined to
the right, while the left part still stood vertically without noticeable deformation. Three
hinges appeared within the arch at the middle span, i.e., one extrados hinge and two
intrados hinges; therefore, the arch turned into a three-hinge mechanism. Another two
hinges formed in the arch at the right span, i.e., one extrados hinge and one intrados hinge,
due to the deformation of the structure. The other two hinges formed at the bottom of two
right buttresses due to their rotations under the horizontal acceleration λg.
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(c) FDEM result of Scheme B.

Table 4 presents the seismic capacity factor λ* of the multi-span pointed arch church
from the FDEM simulations and the limit analysis [47]. Apparently, the λ* predicted by the
FDEM (both Scheme A and B) is as same as that from the limit analysis, and the difference
is only 0.1%. To further examine the differences between Scheme A and B, an extrados
hinge, denoted as hinge II in Figure 15b,c, was selected. The time histories of hinge II in
the two schemes with λ = 0.0884 are shown in Figure 16. Each curve terminates at the
instant when hinge II disappears since the two adjacent voussoirs at the hinge separated
completely in the final and fell down.

Table 4. Seismic capacity of the multi-span pointed arch structure.

FDEM
Limit Analysis [47]

Scheme A Scheme B

λ*/e (%) 0.0883/0.1 0.0883/0.1 0.0882
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The computations were run on a Desktop with a 3.70GHz Intel i7-8700K CPU. It was
found that the computational time for Scheme A is 2.19 times that for Scheme B. The time-
history curves of Scheme A and B are almost coincident with each other before t = 4 s, as
the angles of hinge II are very small at the beginning. Subsequently, both angles increased
dramatically. The development of hinge II from Scheme B is always slower than that from
Scheme A. The surviving time of hinge II from Scheme B is slightly longer (about 3%) than
that from Scheme A. Since the difference is very small, and to reduce the computational
time, monolithic buttresses can be assumed in the behaviour of this type of arches.

4. Parametric Investigation

Further simulations were conducted to investigate the effects of geometric characteris-
tics (i.e., H/h and B/Rc) and the friction coefficient µ on the seismic capacity of buttressed
masonry arches. Buttressed circular and basket-handle arches were selected as base cases,
as shown in Figure 8. Basic geometric parameters of the buttressed arches are: (i) Rc = 1.0 m
and t/Rc = 0.2 for both buttressed circular and basket-handle arches; (ii) d/Rc = 0.5 and
r/Rc = 0.5 for buttressed basket-handle arches; and (iii) embrace angle β = 120◦, 150◦ and
180◦ for both buttressed arches. The material properties are as same as in Table 1, and the
time step is 1.0 × 10−6 s.

4.1. H/h

Herein, the ratio of H/h (i.e., the buttress height over the arch height) was investigated.
No sliding between voussoirs was considered. For both buttressed arches, the ratio of
B/Rc was set to 0.8. The height of buttress H varied from 0.25 m to 3.0 m. The variations
of λ* against H/h for both circular and basket-handle buttressed arches were plotted in
Figure 17. Overall, the seismic capacity factor λ* declines along with the increasing H/h.
A smaller H/h suggests shorter buttresses, corresponding to a lower centre of gravity
from the ground; therefore, they are more stable under seismic motions. On the contrary,
a larger H/h indicates higher buttresses, which are more apt to overturn under seismic
motions. For the buttressed circular arch with β = 120◦, a sudden drop of the slope was
found between H/h = 1.0 and 1.3, giving rise to the discontinuity on the slope curvature. It
is also observed from Figure 17 that the seismic capacity factor λ* deceases significantly
along with an increase in embrace angle β. It is reasonable, because for a given H/h and
since Rc is constant, a larger β leads to a larger h and, hence, a larger H, which will cause
the structure to be more vulnerable to seismic motions, and thus a smaller seismic capacity
factor λ* is obtained, and vice versa. It is also suggested that in order to obtain a relatively
large λ*, H/h ≤ 1.0 is preferred.



Appl. Sci. 2021, 11, 8725 15 of 19
Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 19 
 

   
(a) (b) 

Figure 17. Variation of λ* against H/h: (a) circular arch; (b) basket-handle arch. 

4.2. B/Rc 

The influence of the ratio B/Rc (i.e., the buttress width over the radius of the reference 
circle) on the seismic capacity factor λ* was studied. For both circular and basket-handle 
buttressed arches, the ratio of H/h was set to 3.0. The width of buttress B up to 1.0m with 
a constant step of 0.2 m was studied. Like in Section 4.1, a large friction coefficient μ was 
set to avoid sliding. The variations of λ* against B/Rc are shown in Figure 18. Pre-exami-
nations on the minimum B/Rc to guarantee the arches are statically stable (i.e., they can 
stand under gravity) were conducted, and the values are tabulated in Table 5. Any but-
tress with a smaller B will lead to the collapse of the structure due to the horizontal thrust 
of the arch induced by gravity. Thus, all the curves in Figure 18 start from the minimum 
B/Rc that the arch structures are statically stable under gravity. 

  
(a) (b) 

Figure 18. Variation of λ* against B/Rc: (a) circular arch; (b) basket-handle arch. 

Table 5. Minimum statically stable B/Rc. 

 Embrace Angle β B/Rc 

Circular 
120° 0.38 
150° 0.37 
180° 0.37 

Basket-handle 120° 0.43 

Figure 17. Variation of λ* against H/h: (a) circular arch; (b) basket-handle arch.

4.2. B/Rc

The influence of the ratio B/Rc (i.e., the buttress width over the radius of the reference
circle) on the seismic capacity factor λ* was studied. For both circular and basket-handle
buttressed arches, the ratio of H/h was set to 3.0. The width of buttress B up to 1.0 m
with a constant step of 0.2 m was studied. Like in Section 4.1, a large friction coefficient
µ was set to avoid sliding. The variations of λ* against B/Rc are shown in Figure 18.
Pre-examinations on the minimum B/Rc to guarantee the arches are statically stable (i.e.,
they can stand under gravity) were conducted, and the values are tabulated in Table 5. Any
buttress with a smaller B will lead to the collapse of the structure due to the horizontal
thrust of the arch induced by gravity. Thus, all the curves in Figure 18 start from the
minimum B/Rc that the arch structures are statically stable under gravity.

For both circular and basket-handle buttressed arches, λ* increases monotonically
with an increase in B/Rc. Since Rc is constant, the wider the width B, the larger the λ*. For
buttressed circular arches, the angle of embrace β has nearly no influence on λ*, as the
three curves are quite close to each other. For buttressed basket-handle arches, the same
applies except the λ* with β = 180◦ and B/Rc = 1.0, as a much higher seismic capacity is
obtained. The reason is that with the combination of β = 180◦ and B/Rc = 1.0, the horizontal
thrust of the arch is too small to push the buttress down, and the failure of the structure is
dominated by hinge rotations of arch voussoirs only, resulting in a much higher λ*.
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Table 5. Minimum statically stable B/Rc.

Embrace Angle β B/Rc

Circular
120◦ 0.38
150◦ 0.37
180◦ 0.37

Basket-handle
120◦ 0.43
150◦ 0.43
180◦ 0.43

4.3. Friction Coefficient

The influence of friction coefficient µ on the seismic capacity factor λ* was also
examined. For both circular and basket-handle buttressed arches, B/Rc was set to 0.8 and
H was set to 3.0 m. The friction coefficient µ varied in a range from 0.1 to 1.0, covering most
practical engineering materials. The variations of λ* against the friction coefficient µ are
illustrated in Figure 19.
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As it is shown, for small friction, i.e., µ ≤ 0.5, λ* increases significantly with the
increase of µ. However, after µ reaches some thresholds, λ* becomes constant, i.e., it is
barely affected by the friction coefficient. This can be attributed to the change of failure
modes. If µ is below the threshold, the sliding failure will occur, as shown in Figure 20.
Once µ is beyond the threshold, no sliding occurs, and the hinge failure mode dominates.
Therefore, careful choice of the material regarding the friction angle needs to be conducted
with respect to the choice of the geometry of the arch.
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5. Concluding Remarks

In this paper, the combined finite-discrete element method (FDEM) was employed to
study the first-order seismic capacity of masonry arch structures subjected to both gravity
and a constant horizontal acceleration. The simulation results are validated with data from
the existing literature.

In Sections 3.1 and 3.2, the seismic capacity factors for circular and basket-handle arch
structures were predicted by the FDEM, and the results were compared with those from
the limit analysis and the UDEC. The FDEM results show that the failures are dominated
by a four-hinge failure mechanism should sliding be avoided. Both the seismic capacity
factor λ* and the hinge locations were well verified. Supporting the high buttresses, the
buttressed arches are much more vulnerable to seismic motions than the corresponding
unbuttressed arches. In Section 3.3, the seismic capacity of a multi-span buttressed pointed
masonry arch structure was studied with the FDEM, and the obtained results were almost
identical to that from the limit analysis, illustrating the reliability and robustness of the
FDEM in analysing arch structures with sophisticated shapes.

A parametric investigation on H/h, B/Rc and the friction coefficient µ was conducted
in Section 4 to evaluate their effects on λ*. It was assumed that sliding was avoided when
H/h and B/Rc varied, and thus the failure was dominated by pure hinging. It was found
that λ* decreases with the increase of H/h, while it increases along with an increase in
B/Rc. Moreover, a small µ can result in pure sliding or combined sliding-hinging failure,
leading to a lower λ*. If sliding occurs, λ* increases along with an increase in µ. When µ
reaches some threshold, pure hinging failure dominates and λ* becomes almost constant,
indicating that sliding is unlikely to happen any longer. In reality, the load multiplier λ
is usually no higher than one. Though only simple investigations have been performed
over limited parameters, a more comprehensive parametric study and general conclusions
regarding the friction, shape of the arches etc., can be expected in future work.

In general, the FDEM has been proven as a useful and reliable tool in predicting the
first-order seismic capacity of masonry arch structures subjected to both gravity and con-
stant horizontal acceleration. Thus, this method can be applied to evaluate the mechanical
behaviour of masonry arch structures subjected to more sophisticated loads [48], or with
steel-ties between buttresses [49], in future.
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