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Abstract: The aim of this research was to evaluate the potential of magnesium lignosulfonate as
adhesive in particleboard manufacturing. Diphenylmethane diisocyanate (PMDI) between 1% and
3% and glucose (1% of the lignosulfonate content) were added as potential cross-linkers in the
adhesive formulations. Mixed beech and spruce wood, 30% beech wood and 70% spruce wood,
were employed for the configuration of the panel structure. The density, mechanical properties
and formaldehyde emission of single-layer particleboard were investigated. Spectroscopic analysis
(FTIR) revealed structural changes brought by oxidation that may indicate depolymerization by the
splitting of C-O-C bonds and formation of carbonyl groups. Mechanical properties were improved,
and the highest average values were recorded for panels having as adhesives oxidized lignin with
cross-linkers as follow: 15 N/mm2 (MOR), 3320 N/mm2 (MOE) and 0.48 N/mm2 (IB). The density
profile presented higher values for faces in case of oxidized lignin panels. Changes were observed
for oxidized lignin with cross-linker panels wherein the core had higher values. The results showed
that the panels manufactured with adhesives composed of oxidized lignosulfonate (20% of the dried
wood particles weight) and the addition of PMDI and glucose in various percentages have a positive
influence on their formaldehyde release and mechanical properties requested by EN 312 (2004)
standard.

Keywords: wood particleboard; magnesium lignosulfonate; mechanical properties; formaldehyde
emission; FTIR; bio-based adhesives; wood-based composites

1. Introduction

Formaldehyde emission represents a key issue for the wood-based composite industry.
Formaldehyde issues are related to urea-formaldehyde resin (UF) as a dominating bonding
adhesive used in the production of wood-based panels [1,2]. Melamine-formaldehyde
(MF), melamine-urea-formaldehyde (MUF) and phenol-formaldehyde (PF) adhesives are
less dangerous in terms of their subsequent formaldehyde emission, but they have not
convinced industrial producers, due to their higher price or lower reactivity [3,4].

Researchers use various methods to modify the traditional urea-formaldehyde (UF),
formulations [5,6] in order to meet regulations concerning formaldehyde release. Exposure
to formaldehyde is possible during the adhesive-mixing, mat-forming and hot-pressing
operations. Formaldehyde exposure can be harmful to human health. At low levels,
formaldehyde can cause eye, nose and throat irritation, and skin rashes, shortness of
breath, wheezing and changes in lung function at higher levels of exposure [7]. The
International Agency for Research on Cancer (IARC) has reclassified formaldehyde into
Group 1-“carcinogenic to humans” [8].

In Europe, the European Chemicals Agency (ECHA) reclassified formaldehyde in
category 1B “presumed human carcinogen” and “germ cell mutagen category 2 (acute
toxicity)” [9]. With growing interest in indoor air quality, efforts have been made to reduce

Appl. Sci. 2021, 11, 8720. https://doi.org/10.3390/app11188720 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6118-5139
https://orcid.org/0000-0002-7601-2679
https://orcid.org/0000-0002-5805-8315
https://doi.org/10.3390/app11188720
https://doi.org/10.3390/app11188720
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11188720
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11188720?type=check_update&version=1


Appl. Sci. 2021, 11, 8720 2 of 16

exposure limits to formaldehyde both in workplaces and in living spaces. There is legisla-
tion in the European Union, USA, China, and Japan limiting the levels of formaldehyde
emission (FE) from wood and wood-based products.

The limits of formaldehyde emissions set by CARB (California Air Resources Board)
are the following: 0.05 ppm for hardwood plywood, 0.09 ppm for particleboard, 0.11 ppm
for MDF (medium-density fibreboard) and 0.13 ppm for thin MDF (up to 8 mm thick) [10].
Such regulations established the allowable limits of formaldehyde emissions at a level 10 to
20 times lower than that that existed 30 years ago [2], and, in a few years, the limits could be
lowered, forcing producers to adopt alternative methods. Among these, several methods
can be mentioned: binderless particleboard manufacturing [11], the use of formaldehyde
scavengers [4,12–15], the surface treatment of wood composites [16,17] and the use of
bio-adhesives prepared from natural raw materials, such as lignin [18–20], starch [21,22],
soy or tannin [23]. The studies were especially focused on three biopolymers: lignin, starch
and plant proteins, but lignin seems to be the most used one in the experimental research
and industrial trials to manufacture particleboards.

Lignin-based adhesives can be classified into two groups: formaldehyde-free lignin-
based adhesives and lignin phenol formaldehyde adhesives, when lignin is used as a partial
replacement of phenol [24,25]. For the first group of adhesives, mixtures between kraft
lignin and polyethylenimine [26], lignin with added glyoxal [27], or oxygen-plasma-treated
enzymatic hydrolyzed lignin [28] were investigated. A study [29] referred to lignin-based
copolymer adhesives for the production of wood based composites and found that up to
50%wt. of the phenol can be replaced by kraft lignin. Other study [30] found that up to
50% of phenol in phenol formaldehyde adhesive could be substituted by bark lignin with
improved adhesive properties.

Lots of research has been done to improve the reactivity of lignin as the substitute
of phenol in phenol-formaldehyde (PF) adhesive synthesis by modifying the chemical
structure of lignin to increase its reactivity and reduce the long pressing time and high
pressing temperature [31]. The most-used methods to fulfill this objective are [32,33]
methylolation (hydroxymethylation), phenolation, demethylation, reduction, hydrolysis
and oxidation [31,34–36]. The oxidation of lignin has been described as a way to weaken the
lignin structure, making it more susceptible to depolymerization [36] and a good procedure
to improve the properties of lignin [31]. An approach using mild reaction conditions is
the base-catalyzed depolymerization of lignin and the addition of the hydrogen peroxide,
considered to be an environmentally friendly oxidant [37].

The contribution of lignosulfonates to the performance of the engineered wood pan-
els is presented in several papers. Calcium lignosulfonate [38] magnesium and sodium
lignosulfonates [39], ammonium lignosulfonate [40–42] or modified ammonium lignosul-
fonate [43] were used as adhesives for lowering formaldehyde emission and improve the
mechanical properties of the panels. A mixture of phenol formaldehyde adhesives and
lignosulfonate (up to 20% of lignosulfonate in the adhesives) was shown to improve the
shear strength of wood glued joints gradually [44]. The incorporation of lignosulfonates
may replace between 40% and 70% of PF adhesive [33]. Research on phenol replacement
by different quantities and types of lignin up to a maximum of 40wt.% resulted in the
best performance for pine kraft lignin with a phenol substitution degree of 20% [45]. The
wider industrial application of lignosulfonates in the composition of wood adhesives
is limited by the increased hydrophilicity of finished wood-based panels, longer press
times and the availability of crosslinkers [46,47]. Other results indicated that organosolv
lignin was a feasible replacement for up to 30% of the phenol in particleboard-type PF
adhesives [48]. Recent research works [47,49] have shown that magnesium lignosulfonate
(15%wt. reported to wood) is a suitable adhesive for obtaining eco-friendly fiberboards
with satisfactory mechanical and physical properties. Their remarkably low formaldehyde
content (1.1 mg/100 g, super E0 grade) made these panels suitable for interior design. Pres-
sure from environmental and health regulators led to formaldehyde emission requirements
becoming more stringent. Thus, super-E0 (≤1.5 mg/100 g acc. to Perforator method EN
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ISO 12460-5. or ≤0.3 mg/L acc. to Desiccator method JIS A 1460) and E0 (≤2.5 mg/100 g,
or ≤0.5 mg/L) classes of panels are promoted [50].

Other investigations were conducted with the aim to study lignosulfonates with the
addition of cross-linkers. Studies showed improvement of particleboards performance by
using ammonium lignosulfonate with polymeric diphenylmethane diisocyanate (PMDI)
and furfuryl alcohol as cross-linkers. PMDI is a promising cross-linker that works for most
bio-based adhesives [39,51,52], due to the reactive isocyanate’s groups. Sugars, as cross-
linkers, bear both primary and secondary alcohol groups, which theoretically could be used
for crosslinking reactions. Other crosslinkers are mentioned in the literature: alternative
aldehydes (glyoxal, glutaraldehyde), polyacids (citric acid, maleic anhydride) [52].

The present paper aims to evaluate the mechanical properties and formaldehyde
emission of particleboards made with magnesium lignosulfonate-based adhesives. The
influence of cross-linkers such as PMDI and glucose on the formaldehyde release and
mechanical performance of the panels has been also investigated.

2. Materials and Methods
2.1. Materials
2.1.1. Wood Particles

Raw materials were supplied by Kastamonu particleboard manufacturer (Romania),
and contained mixed beech (30%) and spruce (70%) wood particles at a moisture content
of around 10%, with a bark percentage of 5% of the total amount [53]. The granulometric
analysis of the particles was carried out using the horizontal vibrating sieves (VEB Metall-
weberei Neustadt Orla, Germany). The particles remained in the 4 mm × 4 mm, 3.15 mm
× 3.15 mm, and 2 mm × 2 mm sieves were classified as coarse particles, in a representation
rate of 13.8%, 5.7%, and 80.5% respectively. The fine particles were retained in the 1.25 mm
× 1.25 mm, 1 mm × 1 mm and 0.8 mm × 0.8 mm sieves in the following percentages:
57.9%, 22.9% and 19.2% for the smallest mesh sieve. The sizes of the particles are presented
in Table 1.

Table 1. Sizes (Range of Values) of Wood Particles.

Sieve Size
mm × mm

Particles Sizes (Range of Values), in mm

Length Width Thickness

4.00 × 4.00 7.6–25.8 4.1–10.6 0.2–4.1
3.15 × 3.15 6.1–18.0 4.1–5.7 0.4–3.1
2.00 × 2.00 4.2–34.1 1.1–5.2 0.2–1.8
1.25 × 1.25 3.7–25.6 0.9–3.4 0.1–1.6
1.00 × 1.00 2.4–19.5 0.5–1.7 0.2–0.9

0.8 × 0.8 2.0–5.0 0.2–0.7 0.2–0.5

The slenderness ratio, fatness ratio and width factor were calculated to obtain the
particle geometric characteristics [54]. The slenderness (length to thickness ratio) was of
15.3 for the fines and of 8.9 for the coarse particles. Fatness (width-to-thickness ratio) was
2.11 for the fines and 2.72 for the coarse particles, and the width factor (length to width
ratio) varied from 7.7 to 3.27 for the fines and coarse particles.

2.1.2. Adhesives

A bio-adhesive based on magnesium lignosulfonate, a yellow–brown colored powder
was used in the present research. This powder, coded LIGNEX MG F, was supplied by
SAPPI BIOTECH GmbH (Düsseldorf, Germany). The characteristics of the magnesium
lignosulfonate LIGNEX MG F are presented in Table 2.

In order to increase the lignin reactivity, the magnesium lignosulfonate was oxidized
with 30% hydrogen peroxide (H2O2) in an aqueous alkaline solution. The H2O2 content was
7.5% of the lignosulfonate weight, and sodium hydroxide (NaOH) was used to increase the
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pH to 9. The characteristics of the oxidized magnesium lignosulfonate (OML) are presented
in Table 3.

Table 2. Characteristics of the Magnesium Lignosulfonate LIGNEX MG F.

Characteristic Description/Value

pH Value 5.5 ± 1%
Dry matter mass 93 ± 2%

Insolubility in water 1% max
Magnesium 6 ± 1% min
Bulk density 400 kg/m3

Moisture content 7% max

Table 3. Characteristics of the oxidized magnesium lignosulfonate (OML).

Material Values

Solid content 58.4%
pH 9

Viscosity (flow time through the viscosmetric STAS cup, Φ 6 mm, 20 ◦C) 16 s
Adhesive reactivity at 160 ◦C 3 min 15 s

The reactivity of magnesium lignosulfonate, representing the curing time at 160 ◦C
determined similarly as for the PF adhesives, was reduced from 5 min 20 s to 3 min 15 s, by
40%, through the oxidation process.

Two types of cross-linkers, namely PMDI (100% solid, provided by Kastamonu S.A.
Romania) (from 1% to 3% of the weight of the dried wood particles) and glucose (1% of
the magnesium lignosulfonate content) were also added to the recipes in order to improve
the mechanical properties of particleboard and to keep formaldehyde emission at lower
level. First, the adhesive recipes were modified by adding PMDI amounts in the range
of 1%, 2% and 3% as wt. reported to the weight of the dried wood particles. The second
modification of the adhesive was done by adding glucose as a cross-linker (1%wt. reported
to the lignosulfonate content) to the recipes with PMDI amounts of wt.1% and wt.2%,
respectively (reported to the weight of the dried wood particles).

The magnesium lignosulfonate (LIGNEX MG F) content in all particleboards’ recipes
was 20% of the weight of the dried wood particles.

2.2. Particleboard Manufacturing

The particles (65% coarse and 35% fine particles) were mixed together to obtain a
single-layered structure. The established target density was 650 kg/m3, comparable to that
of the urea-formaldehyde particleboards manufactured at Kastamonu SA Romania.

The adhesive and the wood particles were mixed mechanically (with a mixer with
pallets made by self-endowment) for 10 min. The mixture was then placed in the forming
frame and prepressed manually with a metal plate, then the frame was removed and the
mat was hot-pressed in the laboratory press (Metrom, Brasov, Romania) at 180 ◦C for
16 min under a pressure of 2.5 N/mm2. After being removed from the press, the panels
with nominal dimensions of 400 mm × 400 mm × 16 mm (thickness) were conditioned at a
temperature of 20 ◦C and a relative humidity of 65%, for 7 days. The experimental panels
were cut into samples for mechanical and formaldehyde emission testing. Three replicates
for each type of panels were manufactured.

The oxidized magnesium lignosulfonate adhesive (solid content of 58.4%) was used
in the proportion of 20% of the wood particles’ dry mass. The other adhesives, as shown
in Table 4, were obtained from oxidized magnesium lignosulfonate and the gradually
addition of PMDI in proportion of 1%, 2% and 3%, respectively (based on the particles’ dry
mass). Glucose was added at wt.1% of the magnesium lignosulfonate weight to the recipes
with PMDI proportions of 1% and 2%, respectively.
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Table 4. Composition of the adhesives and the panels’ identification codes.

Adhesive Composition for the Manufactured Panels Panels’ Codes

Magnesium lignosulfonate powder L20
Oxidized magnesium lignosulfonate LO 20

Oxidized magnesium lignosulfonate + 1% PMDI LO 20 P1
Oxidized magnesium lignosulfonate + 2% PMDI LO 20 P2
Oxidized magnesium lignosulfonate + 3% PMDI LO 20 P3

Oxidized magnesium lignosulfonate + 1% PMDI + glucose LO 20 P1G
Oxidized magnesium lignosulfonate + 2% PMDI + glucose LO 20 P2G

2.3. FTIR

Fourier transform infrared spectroscopy (FTIR) was performed for the magnesium
lignosulfonate powder (LIGNEX MG F), and the adhesives were prepared according to
the compositions presented in Table 4. For all the adhesive recipes, cross-linked (cured)
adhesive samples were investigated by FTIR. Crosslinking (curing) of the adhesives was
performed at 160 ◦C for 15 min. This process was achieved in a laboratory oven (Binder
ED 115, Tuttlingen, Germany), for the unmodified lignosulfonate, while cured adhesive
samples were extracted under microscope from the particleboards glued with modified
magnesium lignosulfonate. For magnesium lignosulfonate, sample preparation was per-
formed by mixing the powder (10 parts) with water (1 part): the mixture was applied as a
film on microscope slides and allowed to dry at room temperature or cured at 160 ◦C/15
min in an oven.

FTIR spectra were recorded employing an ALPHA Bruker spectrometer (produced
by Bruker Optik GmbH, Germany) equipped with an ATR (attenuated total reflection),
module in the range 4000–400 cm−1 at a resolution of 4 cm−1 and 24 scans/spectrum. Three
spectra were recorded for each type of samples; these were further processed for baseline
correction and smoothing, and average spectra were computed. The average spectra were
further normalized (Max-Min normalization) and compared in order to highlight any
chemical changes due to curing at 160 ◦C temperature of magnesium lignosulfonate or its
modification by oxidation and addition of the two tested cross-linkers. The assignment of
characteristic absorption bands was based on references in the literature.

2.4. Mechanical Testing of the Particleboard

The number and sizes of the specimens used for mechanical tests were according
to the European standards: EN 310:1993 for bending strength (MOR) and modulus of
elasticity (MOE) [55] and EN 319:1993 for internal bond (IB) perpendicular to the plane of
the panel [56]. The results were compared to the limits imposed by the European standard
for particleboard specifications EN 312 [57].

2.5. Microscopic Investigation and Density Profile along the Thickness

The microscopic investigation was conducted with the stereo-microscope NIKON
SMZ 18-LOT2 (Nikon Corporation, Tokyo, Japan), with 30× and 180× magnification. The
microscopic investigation was performed on the edges of the samples prepared for IB
testing in order to analyze the interface between wood particles and adhesive, observing
in the same time, the structure defects that could affect the mechanical properties of the
panels. Complementary to the microscopic analysis, the density profile along the thickness
will give information about the behavior of the particleboard panel to IB, MOE and MOR
testing.

The density profiles along the thickness were analyzed using the X-ray density profile
analyzer DPX300 (IMAL, San Damaso, Italy). The vertical density profiles were measured on
five specimens for each panel type. The specimens had sizes of 50 mm × 50 mm × 16 mm,
and the density profile was measured on a thickness of 16 mm.



Appl. Sci. 2021, 11, 8720 6 of 16

2.6. Free Formaldehyde Emission

Formaldehyde emission was determined using the gas analysis method [58] and
Timber Test equipment (New Plymouth, New Zealand). The evaluation of formaldehyde
emission was performed after the panels conditioning to constant mass. Moisture content
and densities of the panels were determined according to the requirements of the European
standards [59,60]. The gas analysis is a derived test that determines formaldehyde emission
under accelerated conditions at a temperature of 60 ◦C and within a period of 4 h. The test
samples with dimensions of 400 mm × 50 mm × 16 mm and edges sealed with aluminum
tape were placed in a closed chamber where the conditions (temperature, relative humidity
less than 3% and air flow of (60 ± 3) L/h and pressure between 1000 Pa and 1200 Pa) were
controlled during the test. After 4 h of testing, the concentration of formaldehyde in water
was photometrical determined. The formaldehyde emission (in mg/m2·h) was calculated
based on this concentration, the sampling time and the exposed area of the sample. The
tests were performed on two replicates, using two different samples for each type of panel,
and the average value obtained should be less than 3.5 mg/m2 to be classified into the E1
emission class, according to the European standard [61].

2.7. Statistical Methods

Minitab 18 statistical software (Coventry, UK) was used for the interpretation of the
differences between the tested lignin-based adhesives, related to mechanical properties.
A confidence interval of 95% was used for the statistical analysis, with the acceptance
of an alpha type error of 0.05. The Anderson–Darling and p-value parameters analyzed
the normality of the distribution of the results and whether it has statistically significant
differences.

3. Results and Discussions
3.1. FTIR

The spectroscopic analysis for magnesium lignosulfonate (LIGNEX MG F) is presented
in Figure 1. This analysis was done for three variants of the lignosulfonate, as follows:
non-modified—as a powder in the initial state, mixed with water in the ratio 10:1 and
air-dried, and as a crosslinked adhesive at 160◦ for 15 min resulting from the mixture of
magnesium lignosulfonate with water in the ratio 10:1.
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The recorded FTIR spectra in Figure 1 present the characteristic absorption bands
of the OH vibration at 3334 cm−1 and the C-H vibration in the methyl and methylene
groups at 2945 cm−1 (small or shoulder). The most numerous absorption bands were
observed in the fingerprint region between 1600 cm−1 and 600 cm−1. A pronounced band
at 1595 cm−1 may be assigned to aromatic skeletal vibration (originating from the aromatic
C=C stretching). The band at 1512 cm−1 was assigned to skeletal vibration of lignin, while
the band at 1453 cm−1 may be assigned to C-H deformation in aliphatic CH3 and CH2
groups, as observed by other researchers at 1465 cm−1 [62]. A weak band at 1421 cm−1

can be assigned to the C-H deformation in lignin and a band at 1332 cm−1, which appears
small as a shoulder, was found to belong to syringyl ring breathing [63], aliphatic O-H
bending [64] or C-H in plane deformation of cellulose rings [65]. The band at 1160 cm−1

can be assigned to asymmetric –SO2- vibration, with reference to 1169 cm−1 corresponding
to asymmetric (at 1169 cm−1) and symmetric (at 1142 cm−1) -SO2- vibrations [66], whereas
a double band at 1143 cm−1 and 1169 cm−1 was assigned to binding vibrations in the
aliphatic C-OH [63]. The 1114 cm−1 band is assigned to C-O-C vibration and 1034 cm−1 is
assigned to C-O vibration of the phenolic OH [67] and/or -SO3H group [62], or Ar-O-C [35].
The peak at 646 cm−1 is assigned to S-O vibration in lignosulfonates.

The comparative spectra of magnesium lignosulfonate powder, the air-dried adhesive
prepared from magnesium lignosulfonate powder and water (10 to 1) and the crosslinked
adhesive at 160 ◦C for 15 min (Figure 1), are similar in terms of absorption bands, indicating
a similar chemical structure. There are some differences in the relative intensities of
the absorption bands in the range 1600–1000 cm−1 compared to the –OH absorption
at 3400 cm−1 (with quasi-constant intensity due to the min-max normalization of the
spectra). As any water present in the analyzed samples contributes to the absorption at
3400 cm−1, these differences might be related to different water content in the three types
of samples. For the adhesive prepared and crosslinked, the absorption at 1332 cm−1 is
better highlighted. The similar spectra indicate a physical mechanism of bonding, based
mainly on the thermoplastic character of lignin.

Structural changes (Figure 2) brought by oxidation (LO 20 compared to L20) are, as
follows: the appearance of a shoulder at 1728 cm−1 assignable to unconjugated carbonyl
groups; the shift of the aromatic skeletal vibration from 1590 cm−1 to 1601 cm−1; a shoulder
at 1368 cm−1 specific to C-H deformation; a small shoulder at 1212 cm−1, indicating C-O
vibration in guaiacyl ring; a shift of absorption from 1160 cm−1 (assigned to –SO2- and C-
OH) to 1150 cm−1, and its significant decrease; a shift of C-O-C vibration from 1114 cm−1 to
1106 cm−1, and its significant decrease. These may indicate depolymerization through the
splitting of C-O-C bonds and oxidation leading to carbonyl groups, which is in accordance
with the expected effects of mild oxidation [37].

Structural changes due to the addition of PMDI to oxidized magnesium lignosulfonate
(LO 20 P1, LO 20 P3), as seen in Figure 2, have shown increased shoulder at 1730 cm−1,
indicating carbonyl CO groups in urethane structure; an increase of absorption at 1216 cm−1

(LO 20 P1), which is characteristic for transformation of –NCO groups into urethane
structures; an increase of 1105 cm−1, indicating C-O-C groups, (more visible for LO 20 P3).

Structural changes due to the addition of glucose as a cross-linker to oxidized lignin
(LO 20 P1G, LO 20 P2G) were noticed (Figure 2), such as: an increase of the 1422 cm−1

absorption band and an increase of the 1152 cm−1 band, which cumulates also the ab-
sorption at 1220 cm−1. For LO 20 P1G, a shoulder at the 1760 cm−1 absorption band, a
small absorption peak at 1700 cm−1 (carbonyl group in urethane structure), a decrease of
lignin skeletal vibration at 1515 cm−1, and increased absorption at 1216 cm−1, which is
characteristic to urethane structures, were noticed. All these might implicate glucose and
lignin’s roles in crosslinking with PMDI.
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3.2. Mechanical Properties

The results of the mechanical testing of the experimental panels are presented in
Table 5, where the values in the parentheses represent the standard deviations. As a
general remark, the mechanical properties of the particleboard panels are improved for the
modified magnesium lignosulfonate thought oxidation and further, by adding cross-linkers,
such as PMDI and glucose.

Table 5. Experimental results on the mechanical properties of the tested panels.

Panel Type MOE 1 (N/mm2) MOR 1 (N/mm2) IB 1 (N/mm2)

L 20 1847 (133) 8.1 (0.94) 0.10 (0.03)
LO 20 2783 (319) 10.6 (0.76) 0.12 (0.03)

LO 20 P1 2526 (185) 11.0 (0.34) 0.22 (0.03)
LO 20 P2 2778 (239) 13.0 (0.47) 0.31 (0.05)
LO 20 P3 2931(89) 15.3 (0.73) 0.41 (0.04)

LO 20 P1G 3123 (152) 13.3 (0.74) 0.38 (0.06)
LO 20 P2G 3320 (112) 14.3 (0.58) 0.48 (0.07)

1 Values in the parenthesis are standard deviations.

The values of MOR and MOE are comparable with results obtained for composite
panels produced from waste fibers bonded with magnesium lignosulfonate [47]. The
comparison between the mechanical performances of the experimental panels and the
results of the modulus of elasticity (MOE), bending strength (MOR) and internal bond, (IB)
in relation with the limits imposed by EN 312: 2004 [57] for the panel P2 type (designed for
the indoor application, including furniture), is presented in Figure 3.
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(a) modulus of elasticity (MOE); (b) modulus of rupture (MOR) and internal bond (IB).

As seen in Figure 3a, MOE increased 1.8 times for the particleboard made with
oxidized lignosulfonate, 2% PMDI and glucose wt.1% of the lignosulfonate weight (LO
20 P2G), compared to the particleboard made with magnesium lignosulfonate powder as
adhesive (L 20). All panels have MOE values above the limit of 1600 N/mm2 imposed by
the standard EN 323 [60] for the P2 type panels.

The statistical analysis of the data using Minitab 18 software has shown the normal
distribution of the MOR, MOE and IB values. All p-values resulted in the analysis were
much less than 0.05, indicating that the influence of the tested lignin-based adhesives was
statistically significant for all the investigated mechanical properties.

The results of bending strength (MOR) presented in Figure 3b show increased values
when modified lignosulfonate by oxidation is used as adhesive, and the values increased
more with the increase of cross-linkers (PMDI and glucose) content. The MOR limit
imposed by standard [57] for the P2 type panels (13 N/mm2) was met by panels made
with adhesives composed of oxidized lignosulfonate and PMDI (2% and 3%, respectively)
(panels LO 20 P2 and LO 20 P3, respectively), and also by panels with the addition of
glucose and PMDI (1% and 2%) cross-linkers to oxidized lignosulfonate adhesive (panels
LO 20 P1G and LO 20 P2G, respectively).

The same increased trend of MOR values was observed also for the internal bond
strength (IB), as seen in Figure 3b. The limit of 0.35 N/mm2 imposed by standard [57] was
met for this property only for panels LO 20 P3, LO 20 P1G and LO 20 P2G. The values of
the internal bond strength are for these panels 3.8 to 4.8 times higher than the value for the
panel made with magnesium lignosulfonate powder as adhesive.

The results of the mechanical properties show that only the particleboards with
oxidized magnesium lignosulfonate and the addition of cross-linkers, namely PMDI (3%),
or PMDI (1% and 2%) and glucose (1% of the magnesium lignosulfonate content) met the
requirements of the panels designed for indoor application, furniture included.

3.3. Microscopic Investigation and Density Profile along the Thickness

A microscopic investigation of the representative samples of the manufactured parti-
cleboards with lignin-based adhesives resulted in the images presented in Figures 4 and 5.
The images in Figure 4 were obtained by magnifying 30× the central area of the sam-
ple edges. More numerous gaps between the wood particles were noticed in the case of
oxidized magnesium lignosulfonate samples (panel LO 20) compared to the others. A
representative example is shown in Figure 4a, where the largest gaps were measured for
the structure LO20—oxidized (LIGNEX MG F) without PMDI, followed by the one with
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2% PMDI, 3% PMDI and that with glucose and 2% PMDI. These gaps reflect a weaker
adhesion between the particles and the adhesive.
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Figure 4. Microscopic investigation of the panels’ structures, 30× magnification: (a) LO20; (b) LO 20 P2; (c) LO 20 P3; (d) LO
20 P2G. The circled areas represent the gaps between the wood particles in the structure.

Small and rare gaps were observed for the panel structure with oxidized lignosulfonate
and 3% PMDI (LO 20 P3) and for the panel with oxidized lignosulfonate, 2% PMDI and
glucose (LO 20 P2G), wherein crosslinked adhesive with glucose was used.

The good adhesion between the wood particles can be observed for the structures
with glucose in Figure 5c,d, where 180× magnification has been used. The marked areas
in Figure 5a,b highlight the adhesive agglomeration and, in consequence, the weaker
interaction between particles. The more porous structures of PO 20, PO 20 P1 and PO 20 P2
panels resulted in lower values of MOR, MOE and IB.
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Another indicator of the mechanical performance is the density, especially the density
profile along the thickness. Usually, the density of the particleboard surfaces is higher
than the density of the core of the particleboard. The same conclusion was found by other
authors [67]. The higher surface density and lower core density (Figure 6a) resulted in
better bending strength (MOR), in general observed for oxidized magnesium lignosulfonate
panels. The profile with lower surface densities and higher core densities has been obtained
for the panels wherein both PMDI and glucose were used as cross-linkers (PO 20 P1G and
P2G), which led to the improvement of the internal bond strength (IB) [67] (Figure 6b).
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3.4. Free Formaldehyde Emission

The experimental values of the formaldehyde emission are presented in Table 6.

Table 6. Formaldehyde emission, in mg/ m2·h.

Type of the Receipt Values

LP 20 (LIGNEX MG F powder) 0.789
LO 20 (oxidized LIGNEX MG F) 0.616

LO 20 P1 (oxidized LIGNEX MG F + 1% PMDI) 0.553
LO 20 P2 (oxidized LIGNEX MG F + 2% PMDI) 0.477
LO 20 P3 (oxidized LIGNEX MG F + 3% PMDI) 0.401

LO 20 P1G (oxidized LIGNEX MG F + 1% PMDI + glucose) 0.386
LO 20 P2G (oxidized LIGNEX MG F + 2% PMDI + glucose) 0.347

It was observed that the panels with PMDI and glucose cross-linkers (LO 20 P1G and
P2G) had the lowest formaldehyde emission compared to those with pure lignin (L 20),
with about 40%. Increasing the amount of PMDI with 2%, led to a decrease of formaldehyde
emission with about 28% (LO 20P1 and LO 20 P3 compared to LO 20P1). Because of the
PMDI’s superior moisture tolerance, it was not necessary to dry the wood particles to levels
lower than 4%; the moisture content of wood particles ranged in the limits of 10% to 15%
which is ideal for bonding [68]. High moisture content facilitates the hydrolysis speed of
wood components and the transport of the formaldehyde out of the particleboard panel [69].
As shown in Figure 7, the high degree of correlation (R2 = 0.97) between the quantity of
formaldehyde released and the PMDI ratio was obtained. The decrease of formaldehyde
emission with increase in PMDI level could be explained by the faster curing of the adhesive
film formed by PMDI on the particle surfaces, which may have prevented VOCs and the
release of formaldehyde from the particle surfaces [69]. These could be also deduced
from the microscopic images (Figure 5c,d), which showed the good interface of particles.
Several researchers [70–72] have reported that bio-based formaldehyde scavengers with
hydroxyl groups contribute both to the high internal cohesion of boards and the low
formaldehyde emission of particleboards. Based on this theory, the D-glucose, which has
hydroxyl groups in its composition, may act as formaldehyde scavenger [73], thus lowering
the formaldehyde emission, as can be seen for LO 20 P1G and LO 20 P2G panels (Table 5
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and Figure 7). Formaldehyde emission values are much lower than the standardized
limit specified for E1 class (3.5 mg/m2·h) [61]. It can be noticed that the formaldehyde
values obtained are close to those of some natural wood species (Douglas fir and oak:
0.397 mg/m2·h and 0.43 mg/m2·h, respectively) [74].
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4. Conclusions

The research presented in this paper shows that magnesium lignosulfonate has a great
potential to be used as an adhesive in particleboard manufacturing when cross-linkers such
as PMDI and glucose are added in the adhesive recipes. The process of mild oxidation of
lignosulfonate with hydrogen peroxide caused only minor changes in its chemical structure
and its bonding properties. Particleboards glued only with oxidized lignosulfonate (20%
reported in oven-dried wood) without cross-linkers did not meet the required standard
performance. An addition of cross-linkers, such as PMDI, of 3% (reported in the weight of
dried wood particles), or mixed PMDI (1% and 2%, respectively, of the weight of the dried
wood particles) and glucose (1% of the lignosulfonate content), improved the bonding
properties enough to meet the requirements of the panels P2 designed for indoor use
(furniture included), according to EN 312: 2004. FTIR analysis confirmed cross-linking
reactions involving PMDI, the oxidized magnesium lignosulfonate and glucose.

Formaldehyde emission released from the experimental panels ranged between
0.347 mg/m2·h and 0.789 mg/m2·h, the lower limits corresponding to values of formalde-
hyde generated by several natural wood species, as other researchers also stated in their
study [74]. The experimental results proved that cross-linkers, such as PMDI and glu-
cose contribute not only to a higher internal cohesion of boards, but they may act as
formaldehyde scavengers.

The paper promotes a solution for the use of lignin in eco-adhesives for wood-based
panels, currently limited to indoor applications. Further tests must be done in order to
extend their uses for outdoor applications. This study aligns with the new regulations
concerning formaldehyde emission, which requires reaching E0 class in the future.
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