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Abstract: Defects on rotor blade leading edges of wind turbines can lead to premature laminar–
turbulent transitions, whereby the turbulent boundary layer flow forms turbulence wedges. The
increased area of turbulent flow around the blade is of interest here, as it can have a negative effect
on the energy production of the wind turbine. Infrared thermography is an established method
to visualize the transition from laminar to turbulent flow, but the contrast-to-noise ratio (CNR) of
the turbulence wedges is often too low to allow a reliable wedge detection with the existing image
processing techniques. To facilitate a reliable detection, a model-based algorithm is presented that
uses prior knowledge about the wedge-like shape of the premature flow transition. A verification
of the algorithm with simulated thermograms and a validation with measured thermograms of a
rotor blade from an operating wind turbine are performed. As a result, the proposed algorithm is
able to detect turbulence wedges and to determine their area down to a CNR of 2. For turbulence
wedges in a recorded thermogram on a wind turbine with CNR as low as 0.2, at least 80% of the
area of the turbulence wedges is detected. Thus, the model-based algorithm is proven to be a
powerful tool for the detection of turbulence wedges in thermograms of rotor blades of in-service
wind turbines and for determining the resulting areas of the additional turbulent flow regions with a
low measurement error.

Keywords: image processing; pattern recognition; wind energy turbines; turbulence wedges

1. Introduction
1.1. Motivation

Electrical energy created by wind turbines has become an increasingly important part
in providing clean power. However, wind turbines are exposed to many environmental
influences (e.g., hail [1], rain or insects [2]) that contribute to defects such as erosion and
contamination of the rotor blade, especially at the leading edge. Defects influence the
geometry and surface quality of the rotor blade and may lead to premature transitions from
laminar to turbulent flow in the boundary layer. Premature transitions create distinctly
wedge-shaped areas of turbulent flow in otherwise laminar flow regions, the so-called tur-
bulence wedges [3]. The increase in the overall surface area with turbulent flow due to the
existence of turbulence wedges can amplify acoustic emissions [4] as well as aerodynamic
imbalances [5]. Furthermore, an increase in area with turbulent flow negatively affects the
aerodynamic properties (i.e., decrease in lift, increase in drag), and thus reduces the annual
energy production [6]. Therefore, it is necessary to monitor the condition of the blade’s
surface that influences the flow to quantify the amount of additional turbulent flow area.
Infrared thermography is an established contactless, in-process measurement technique to
visualize laminar and turbulent flow regions on operating wind turbines without blade
modifications [7–9]. A temperature difference exists between different boundary layer flow
regimes due to varying local heat transfer coefficients. Using this technique, areas with
turbulent flow such as the turbulence wedges can be visualized. A heating of the rotor
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surface is desirable to increase the temperature difference between the blade surface and
fluid, which increases the contrast between laminar and turbulent flows. However, often,
no active heating is available when operating wind turbines and the blade is only heated
passively by sunlight. For this reason, an image processing algorithm is required which
is capable of reliably detecting turbulence wedges under low contrast conditions. This
would enable extensive field studies of the boundary layer flow state around the blade
of operating turbines. In addition, the required algorithm has to determine the wedges’
features such as position and size with a low uncertainty to finally quantify the resulting
total area with turbulent flow.

1.2. State of the Art

Various methods exist for detecting laminar–turbulent flow transitions in thermo-
grams, yet most approaches explicitly ignore turbulence wedges. One such approach
called ‘local infrared thermography’ is presented by Mertens et al. [10] to detect unsteady
transitions in periodic pitching processes. A pitching airfoil was investigated in a wind
tunnel and thermograms were captured over multiple pitching periods. The airfoil was
externally heated with a spotlight to increase the temperature difference between the airfoil
and boundary layer flow. To detect the flow transition, the intensities of each pixel were
detected over time and assigned to the corresponding phase of the pitch angle. Extrema in
the intensity signal mean that the transition is passing through the current location. While
the method successfully detects the flow transition, the analysis is not applicable to single
thermograms, which is often the only type of data available from field measurements of
in-service wind turbines. As mentioned before, the external active heating is also not often
realized in field measurements.

Crawford et al. [11] located the flow transition in a crossflow-dominated environment
on a heated swept wing model. The wing model was tested in wind tunnel and flight
experiments, where the model was mounted on an airplane. The crossflow-dominated
environment produces a jagged transition front, also called a sawtooth transition pattern.
This sawtooth pattern is similar to turbulence wedges, albeit on a smaller scale. Thus, the
measurement task is similar to detecting turbulence wedges. Furthermore, one transition
front did in fact include one turbulence wedge. The heating of the model was realized with
internal electrical heating wires. A special coating which reduced reflections, combined
with the heating, improved the contrast-to-noise ratio (CNR) between laminar and turbu-
lent flow regions in the thermograms. The saw-toothed transitions were detected through
local maxima in the intensity gradient profiles after a series of image filters. Afterwards,
a statistical analysis was performed to determine a prominent transition position of the
sawtooth transition pattern. As the focus was put on estimating a transition position from
the sawtooth pattern, turbulence wedges were intentionally rejected by the analysis. This
analysis works with single thermograms but utilizes many filters and processing steps to
reach its results, which have to be adjusted and optimized. Furthermore, the heating of
the blade and the coating of the blade cannot be realized in field measurements of wind
turbines in motion.

To detect the natural flow transition onset and end on helicopter rotor blades, Richter
and Schülein [12] analyzed thermograms of rotating blades. They investigated a model
blade on a whirl tower as well as full-scale rotor blades on helicopters during ground run
and hovering. To increase the temperature differences between the blade surface and fluid,
the blade was either spun fast to cool it, cooled with ice or passively heated in sunlight.
In the thermograms, intensity profiles in the direction of the chord of the blade were
examined, omitting all chord-wise positions of premature transitions. The intensity profiles
consist of linear sections with different slopes. The three distinct slopes can be attributed
to the laminar, transitional and turbulent regions of the boundary layer flow. Each slope
was estimated with a linear function. The intersection point of the linear estimate of
two adjacent regions was then classified as the transition onset and transition endpoint,
respectively. The natural transition was successfully detected even for low signal-to-noise
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ratios, which resulted from short exposure times. However, as turbulence wedges were
excluded from the analysis, premature flow transitions were not detected.

Dollinger et al. [13] investigated thermograms of wind turbines in operation to
determine the flow transition. To determine the transition position with subpixel accuracy,
each chord-wise intensity profile in the thermographic image was approximated with the
Gaussian error function. However, turbulence wedges were not detected reliably due to
the low CNR between laminar and turbulent flow regions. Similarly, Gleichauf et al. [14]
used intensity gradients to also detect flow transitions in thermograms of a wind turbine in
operation. Since chord-wise intensity gradients are not sufficient for the reliable detection
of turbulence wedges, the thermogram was at first rotated to such a degree that the
subsequently evaluated intensity gradient was perpendicular to the premature transition
lines. As a result, the rotation increased the sensitivity for the flow transition detection
with regard to premature flow transitions. However, turbulence wedges with low CNR to
the surrounding laminar flow still remain a challenge.

The current algorithms for detecting premature transitions only make use of image
information such as intensities, which are often evaluated in single pixel lines without
context or comparison to neighboring image parts. Therefore, when premature transitions
are detected, they account for single points in the transition front. However, neighboring
premature transition points are not grouped together. Not recognizing turbulence wedges
as a whole complicates the quantification of the wedges’ features, such as their sizes. Only
Gleichauf et al. [14] and Dollinger et al. [13] quantify figure of merits related to additional
turbulent area due to premature transitions, by calculating the differences between the
positions of the natural and premature transition lines instead of adding up the turbulent
area of turbulence wedges. Furthermore, pattern recognition has not been utilized for
turbulence wedge detection by any of the discussed approaches. Pattern recognition would
allow for the detection of each turbulence wedge as a whole, based on certain features such
as their shape. An algorithm which specifically uses pattern recognition to reliably detect
turbulence wedges even under low CNR conditions has not been reported yet, although
such an algorithm seems promising for extracting and quantifying the wedges’ features
such as the additional turbulent area with low uncertainty.

1.3. Aim and Outline

An automated, model-based image processing algorithm is introduced, which reliably
detects premature laminar–turbulent flow transitions in thermographic flow visualization
images even in low-contrast scenarios. The fact that premature transitions lead to wedge-
shaped areas of turbulent flow is incorporated in the algorithm with the use of wedge-
shaped templates. These templates are then used to detect turbulence wedges and also to
determine the positions and sizes of the turbulence wedges in thermograms. As a result,
the additional amount of area with turbulent flow originating from premature transitions
can be quantified. In order to characterize the capabilities of this approach, simulations as
well as validation experiments on thermograms of in-process wind turbines are performed.

Section 2 contains the description of the novel image processing algorithm as well
as a definition of the area with turbulent flow resulting from premature transitions. In
Section 3, the implementation of the algorithm and the simulation and measurement setup
are explained. The results of the verification of the algorithm for the simulation and the
validation of real thermograms from in-process wind turbine measurements are presented
and discussed in Section 4. Section 5 provides concluding remarks and an outlook.

2. Measurement Approach
2.1. Thermogram Characteristics and Measurands

The measurement quantities from a thermogram of a rotor blade with a premature flow
transition are the position xi of the turbulence wedge and its size, consisting of the height
hi and the width wi, where i is the running index of the wedge number. In Figure 1 (left), a
real thermogram is shown with the marked position and size of one turbulence wedge as an
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example. Note that the actual temperatures of the different flow regimes are irrelevant for the
wedge detection algorithm, which is why all values in the thermograms are interpreted as
intensities between 0 and 1 by normalizing with the maximum intensity Imax.

Figure 1. A real thermogram of a rotor blade of a wind turbine in operation with two turbulence
wedges (left) and a simulated thermogram with one turbulence wedge (right). In this case, the
rotor blade is warmer than the surrounding fluid, which means that the rotor blade is cooled by
the boundary layer flow. The cooler the temperature, the lower the pixel intensity. Important
characteristics of the thermograms are indicated.

According to Figure 1, the thermogram shows the leading edge and the trailing edge
of the rotor blade, as well as the natural transition line that indicates the position of the
non-premature flow transition from laminar to turbulent. The region of interest for the
detection of turbulence wedges lies between the leading edge and the natural transition
line, i.e., their distance equals the maximal height hmax of a turbulence wedge. In general,
N ∈ N turbulence wedges are visible in one thermographic image. The height hi of a
turbulence wedge is defined as the orthogonal distance of the wedge’s tip to the natural
transition line, i.e., the wedge’s base. The width wi is defined as the width of the base.
The position of the turbulence wedge is defined as (xi, yi), i ∈ {1, . . . , N}, where xi is the
center of the wedge’s base. The y-position of the wedge’s base is set to yi = yNT(xi),
where yNT(xi) denotes the y-position of the natural transition line at xi. The position xi
together with the height hi and the width wi of each turbulence wedge are the measurement
quantities returned by the wedge detection algorithm. Furthermore, the height and the
width are used to calculate the area Ai of the turbulence wedge, with which the additional
turbulent area due to premature transitions is quantified.

One further characteristic feature of the turbulence wedge is its symmetry or the lateral
tip position. The tips of turbulence wedges in real thermograms are often not centered
below the middle of their base. An example is shown in Figure 1 (left), where the wedges
are skewed to the right. The wedges can appear skewed due to the camera perspective
or due to the rotational movement of the rotor blade, which implies crossflow. The tip’s
position can be described using the angle αi between the left edge of the turbulence wedge
and the wedge’s base. While the tip’s position does not influence the size of the area of the
turbulence wedge, it still needs to be taken into account for the detection of the turbulence
wedge with the model-based algorithm.

A detailed analysis of real thermograms revealed an intensity gradient in the region
between the leading edge and natural transition line, which is characterized by decreasing
pixel intensities towards the leading edge. Due to the curvature of the blade at the leading
edge and the dependency of the emission on the observation direction [15], lower pixel
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intensities were captured in the thermogram at the leading edge. Furthermore, the heat
transfer coefficient in the laminar flow regime was higher near the leading edge, where
the laminar boundary layer was not yet fully developed, which also led to lower pixel
intensities. The resulting intensity gradient in the thermogram begins at the leading edge
and extends over a height hgrad. The remaining flow region to the natural transition line,
with the height hlam has an almost constant intensity in the thermographic image. Since
the intensity gradient near the leading edge reduces the image contrast of the turbulence
wedge’s tip, the accurate detection of the wedge’s tip is challenging.

In order to verify and characterize the functionality of a wedge-detection algorithm,
a ground truth needs to be known. Therefore, simulated thermograms are necessary,
which emulate the characteristic features of real thermograms for given values of the
measurement quantities. A simulated thermogram is shown in Figure 1 (right), which
is not an exact replication of the real thermogram to its left but models all important
characteristics. It shows only a single wedge with a different angle αi compared to the
real thermogram to illustrate the relation between the angle and the tip position of the
wedge. Furthermore, the intensity gradient in the simulated thermogram is exaggerated
compared to the real thermogram for the sake of visibility. A detailed description of the
simulation of thermograms follows in Section 3. Simulated thermograms are already
utilized in the subsequent description of the functionality of the algorithm principle for the
wedge detection.

2.2. Determination of the Positions of the Blade Edges and the Natural Transition Line

Turbulence wedges are located in the region between the leading edge and the natural
transition line. In order to focus the turbulence wedge detection on this region, the
natural transition line and the leading edge need to be located in the thermogram first.
To detect the y-positions of the blade edges and the natural transition line, a chord-wise
gradient approach is chosen: for each image column, which corresponds to the chord-wise
y-direction, the spatial derivative dI/dy of the pixel intensities I is calculated and then
normalized with its maximum value:(

dI
dy

)
norm

=

∣∣∣∣dI
dy

∣∣∣∣ ·(max
(∣∣∣∣dI

dy

∣∣∣∣))−1
. (1)

After the normalization, all local maxima above a threshold value of 0.1 pixel−1 are
located. This threshold value is heuristically based as it suppresses noise but allows
the local maxima due to the natural transition to be detected. A lower threshold value
would lead to more false detections due to noise; a higher value would miss more actual
transition points. To illustrate how the local maxima correspond to the y-positions of the
blade edges and the natural transition, a simulated thermogram with a single turbulence
wedge is shown in Figure 2a, for which the gradient is calculated for two different image
columns. The studied image columns are chosen so that one (marked with a blue dotted
line) intersects the turbulence wedge and therefore contains a premature transition. The
other (marked with a dashed orange line) does not intersect a turbulence wedge and thus
contains a natural flow transition.

According to Figure 2a, the pixel intensities of the background and the blade differ
significantly, which leads to large local maxima in the gradient at the positions of the
leading and the trailing edge, respectively. The natural transition also leads to a local
maximum of the intensity gradient due to a large difference in pixel intensities between the
laminar and the turbulent flow regions. Therefore, three local maxima can be present in the
intensity gradient, corresponding to the trailing edge, the natural transition and the leading
edge, see Figure 2b, at the top. The y-positions of the maxima are set as the y-positions of
the blade edges and the natural transition line. In cases where only two maxima exist, see
Figure 2b, at the bottom, the maxima are assigned to the trailing and leading edges. This
case occurs when the chord-wise intensity profile contains a premature transition, which
leads to intensity gradients that are below the threshold. Hence, the natural transition is not
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detectable in image columns where a premature transition exists. Therefore, the detected
points of the natural transition are fitted with a linear regression so that the y-position yNT
of the natural transition is defined for each x-position of the thermogram and also for the
region of the premature flow transition.

With the extracted y-positions of the natural transition line and the leading edge, the
wedge detection algorithm can now be applied to the thermogram.

LE

LE

TE

TE

Natural
transition

(a) (b)

Figure 2. Simulated thermogram (a) and normalized gradient (b) for two chord-wise positions. The
blue line intersects a turbulence wedge, which results in less pronounced maxima of the gradient
below the threshold of 0.1 pixel−1, marked with a dashed gray line. (a) Simulated thermogram with
one turbulence wedge. The trailing edge is labeled with a green dashed line, the leading edge with a
blue dash-dotted line. The natural transition is marked with a red dashed line, excluding premature
transitions. The two vertical lines mark the positions for the intensity gradients, see (b). (b) Intensity
gradients normalized by their respective maximums for the two lines at xorange = 20 pixel (top) and
xblue = 38 pixel (bottom). Local maxima are marked with dots and correspond to the trailing edge
(TE), the natural transition and the leading edge (LE).

2.3. Wedge Detection Algorithm

In order to detect turbulence wedges in thermograms, a model-based algorithm is
proposed, which uses a technique called template matching. Template matching finds
image parts that match the used template, which means that the proper choice of the
template on the basis of a priori knowledge is crucial for the functionality of the algorithm.
As a preface, the wedge-shaped templates are described in Section 2.3.1. Then, the two
parts of the wedge detection algorithm are explained: the detection of the turbulence
wedge’s position in Section 2.3.2 and the determination of the wedge’s size in Section 2.3.3.

2.3.1. Wedge Template

Template matching uses a template whose shape is similar to the desired feature that
is to be found in the image. Therefore, the template has a triangular shape with the three
parameters height h′, width w′ and angle α′—see Figure 3. The angle α′ is used to set the
position of the template’s tip (xtip, ytip).
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Figure 3. Example of a turbulence wedge template with height h′, width w′ and angle α′, which
determines the position of the tip.

In the coordinate system of the template, the tip’s x-position can be calculated by
using the equation

xtip = h′ · cos(90− α′), (2)

where the y-position of the tip equals the wedge height, i.e.,

ytip = h′. (3)

Note that the width of the wedge at the base is not changed when the position of the
tip is adjusted to tailor the template to the turbulence wedge in the thermogram. Currently,
the adjustment of the angle α′ is carried out manually, because α′ can be kept constant for
all turbulence wedges in the studied thermographic image.

Each template pixel value v inside the wedge was set to vwedge = 1, while the sur-
rounding parts were set to −1—see Figure 3. The objective of doing so is to penalize all
image pixels that do not fit the wedge shape. Note that the height and the width values
of the template are positive integer values, because a subpixel interpolation has not been
considered yet. The described template is subsequently utilized in the wedge detection
algorithm to determine the positions of the turbulence wedges as well as the areas of the
turbulence wedges.

2.3.2. Detection of the Wedge Position

In order to detect the positions of the turbulence wedges, a cross-correlation of the
thermogram with the wedge template is used:

C[x] = ∑
p

∑
q

ιp,q · τp−yNT(x), q−x, (4)

where τ denotes the template and ι denotes the thermogram section with the same size of
the template. The variable p is the row index of each image matrix, while q is the column
index. In accordance with the natural occurrence of turbulence wedges on a rotor blade,
the template’s y-position equals the y-position yNT(x) of the natural transition line, leading
to a single cross-correlation result C[x] for each x-position. The process of the detection of
the wedges’ positions is exemplified in Figure 4 using a simulated thermogram with three
wedges, shown in Figure 4a.
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(a) (b) (c)

Figure 4. Illustrative analysis of a simulated thermogram (a) to detect the turbulence wedges’ positions. The position
detection is implemented using cross-correlations with randomized templates (b). Maxima in the relative frequency of
minima in the cross-correlation results (c) determine the position of the turbulence wedges. (a) Simulated thermogram with
three differently sized wedges. The wedge on the right has a lower contrast. The rectangle on the left side represents a
template in its starting position, with an arrow below indicating the direction in which it is moved pixel-wise during the
cross-correlation. (b) Cross-correlation C[x], see Equation (4), of the simulated thermogram in (a) and J = 100 templates of
varying sizes. Each color corresponds to a template of a different size. In this example, the smallest template has a size
(h′, w′) of (27, 8)pixel; the largest (41, 16)pixel. Local minima are marked with a dot. (c) Relative frequency of minima in
the results of the cross-correlations. Each position xi of a maximum (orange dot) is marked. The cut-off percentage of 35% is
marked with a dashed gray line.

A local minimum in the results of the cross-correlation indicates a good agreement
between the thermogram and the template. To enable the detection of turbulence wedges
with different, yet unknown sizes, the cross-correlation calculation is repeated for J ∈ N
templates with different wedge heights and widths. Each template size corresponds to a
different curve in the cross-correlation results shown in Figure 4b. For each x-position, the
number of local minima (marked as dots) in the cross-correlation results is counted and
normalized by the total number of studied templates, which results in a relative frequency
of minima for each x-position, see Figure 4c. If the relative frequency is larger than 35%
at a certain x-position, which is an empirically based value, it is considered to be a likely
position for a wedge. The so determined x-positions xi, i ∈ {1, . . . , N}, correspond to the
middle of the wedges’ bases and thus to the wanted x-position of each turbulence wedge.

In addition, at each of the found position xi, the minimum of all cross-correlation
values is determined. The associated template τ0 with the height h0,i and a width w0,i has
the best fit to the underlying wedge. The found wedge positions xi as well as the best fitting
template τ0,i for each xi position with (h0,i, w0,i) are needed for the precise determination
of the wedges’ areas, which is the next step of the algorithm.

2.3.3. Determination of the Wedge Area

In order to determine the additional area with turbulent flow in a thermogram caused
by premature flow transitions, the area A of all N wedges in a thermogram needs to be
known. The total area A is determined by summing up the area Ai of each wedge:

A =
N

∑
i=1

Ai. (5)

The area Ai of each turbulence wedge in the thermogram is calculated with the formula

Ai =
1
2

hiwi, (6)
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where hi denotes the height and wi the width of the wedge at the position xi. In order to
determine hi and wi, a measure of similarity between a template at the position xi and the
thermogram section of the same size is required, which is calculated for different template
sizes but at a fixed position to finally identify the most fitting template size.

The chosen measure of similarity is the weighted correlation, which is selected instead of
the regular correlation due to the intensity gradient near the leading edge in the thermogram,
which leads to a low contrast between the wedge’s tip and the surrounding region. This low
contrast between tip and surrounding causes the wedge height to be estimated too small and
therefore leads to an erroneously determined wedge area. By using the weighted correlation,
which weights a good fit between the template and the wedge at the base stronger than at the
tip, the intensity gradient near the wedge’s tip is counteracted. The weighted correlation in
between a template τ and the thermogram section ι is defined as

corr(τ, ι) =
cov(τ, ι)√

cov(τ, τ)cov(ι, ι)
, (7)

the covariance is the weighted covariance according to

cov(τ, ι) =
∑p ∑q γpq · (τpq − τ)(ιpq − ι )

∑p ∑q γpq
, (8)

with the weight matrix γ and the weighted mean values

τ =
∑p ∑q γpqτpq

∑p ∑q γpq
, ι =

∑p ∑q γpqιpq

∑p ∑q γpq
. (9)

The index p indicates the row index of each matrix, while q is the column index.
To determine the height hi and the width wi of the wedge at the position xi, the

template τ0,i with the height h′ = h0,i and the width w′ = w0,i, which was determined
during the detection of the wedges’ positions in Section 2.3.2, is used as an initial wedge
size for the search. Since the sizes of the templates used in the position detection are
chosen randomly, it is not ensured that h0,i and w0,i are the actual height and width of
the turbulence wedge at the position xi. Therefore, additional templates with sizes in the
vicinity of the initial template size are investigated by calculating the weighted correlation
according to Equations (7)–(9). The maximum value of these correlations yields the optimal
size parameters (hi, wi) of the wedge at the position xi, which are then inserted into
Equation (6) to obtain the wedge area.

3. Implementation of the Model-Based Algorithm and the Experimental Setup
3.1. Numerical Implementation of the Algorithm

The model-based wedge detection algorithm is implemented in the programming
language Python. The steps to determine the position xi, the size parameters (hi, wi) and
the area Ai of each turbulence wedge are outlined in a flowchart in Figure 5.

As a first step, either the simulated thermogram is created or the recorded thermo-
gram of the wind turbine blade is loaded. The loaded thermogram is then preprocessed,
which includes an optional normalization of the thermogram intensities by the maximum
intensity as well as an image rotation. The rotation aligns the natural transition line of
the thermogram horizontally, which simplifies the calculation of the correlations as the
y-positions of the line remain constant. To determine the rotation angle, the y-positions of
the natural transition line yNT are at first detected in the unprocessed thermogram, using
the classical gradient-based method described in Section 2.2. Using the coordinates of the
natural transition line, the rotation angle ϕ is calculated according to

ϕ = arctan
(

yNT(xend)− yNT(x0)

xend − x0

)
, (10)
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where yNT(xend) and xend are the last coordinates of the natural transition line and yNT(x0)
and x0 are the first coordinates of the natural transition line in the original, i.e., non-rotated
thermogram. The whole thermogram is rotated by the angle ϕ using the rotate functionality
from the Python Image Library (PIL). Note that the image rotation is not necessary for
simulated images, where the natural transition line is already aligned horizontally.

Figure 5. Flowchart of the model-based algorithm. yTE are the y-positions of the trailing edge, yNT

the y-positions of the natural transition line and yLE the leading edge’s y-positions. The output
quantities, which are highlighted with a colored circular background, are the x-position xi, the height
hi, the width wi and the area Ai of each turbulence wedge, where i denotes a running wedge number.

The preprocessing also includes the determination of the angle αi of the turbulence
wedges, which is currently the only manually estimated input parameter for the wedge
detection algorithm. However, αi remains the same for all turbulence wedges until the flow
condition changes at which the thermograms are captured.

After the preprocessing, the y-positions of the leading edge yLE and the trailing edge
yTE, as well as the natural transition line yNT, are detected in the thermogram by using the
gradient-based method introduced in Section 2.2. The values obtained by the gradient-
based method are fitted with a linear regression using the RANSAC algorithm of Python’s
sklearn library. To use the leading edge and the natural transition line in the wedge detection
algorithm, the y-position values are rounded to the next integer. With the y-positions of the
leading edge and the natural transition line, the maximum height hmax of the turbulence
wedges is calculated according to

hmax = 〈yLE(x)− yNT(x)〉, (11)

where the mean is taken over all x-positions.
As the next step, the wedges and their x-positions xi are detected along the natural

transition line by cross-correlating the thermogram with the wedge-shaped templates, see
Section 2.3.2. For the position detection, J ∈ N differently sized templates with running
template index j are randomly generated, where J = 100 is the default value. The templates’
heights h′j are drawn from a uniform distribution in the interval [0.5 · hmax, 0.95 · hmax].
This interval has proven adequate for detecting wedges in real thermograms, but the
interval can also be adapted to any values in (0, hmax] if needed. The investigation of real
thermograms (see Section 3.2) has further shown that the height-to-width ratio of real
turbulence wedges is, on average, 〈hi/wi〉 = 3. Consequently, the templates’ widths are
drawn from a normal distribution with N (µw′ = h′j/3, σ2

w′ = 0.2), where µw′ is the mean
and σ2

w′ is the variance of the normal distribution.
To calculate the cross-correlation between the thermogram and each turbulence wedge

template, the template with index j is placed with its top left corner at x0 = 0 and
y = yNT(x0) as a starting point. A section of the full thermogram the same size as the
template is required for the cross-correlation calculation. The columns (i.e., the width) of
the thermogram section are chosen from the position x to (x + w′j) of the full thermogram.
The rows (i.e., the height) of the thermogram section are determined from the position
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yNT(x) to (yNT(x) + h′j). The cross-correlation of the thermogram section and the template
is calculated using Equation (4) and the template is moved to the right by 1 pixel. This
way, the cross-correlation value C[x] is calculated for each x-position. However, when the
right edge of the template reaches the right edge of the thermogram, the top left corner
is at x = wtherm − w′j, where wtherm is the width of the thermogram. For the remaining
x-positions the cross-correlation can not be calculated as the template would otherwise
protrude outside the borders of the thermogram. Therefore, due to the different widths w′j
of each template, the length of the cross-correlation curve of each template is different. To
align the results of the cross-correlations of different templates, the cross-correlation values
for each template j are shifted to the right by w′j/2 and the maximum cross-correlation
value is subtracted. Using the aligned cross-correlation curves, the relative frequency
of minima is determined. The positions of the local maxima above 35% in the relative
frequency then correspond to the wedge positions xi. The threshold value of 35% can be
adapted depending on the desired sensitivity of the algorithm. The higher the threshold
value, the more contrast the turbulence wedges need to have in order to be detected, which
can lead to overlooked turbulence wedges. A lower threshold value, on the other hand,
can result in an erroneous detection of noisy structures in the image as a turbulence wedge.
Note that the relative frequency is currently not interpolated, i.e., the wedge positions xi
are integer values.

As the last step of the wedge detection algorithm, the wedges’ sizes (hi, wi) and their
areas Ai are determined for each wedge position xi using a weighted correlation, see
Section 2.3.3. For each xi, the initial template τ0,i with the size (h0,i, w0,i) is used to cre-
ate a range of new templates. Each template is then compared to the wedge to find the
template with the best fit to the turbulence wedge. The sizes of the new templates are taken
from a range of

h0,i − 3 pixels ≤ h′k ≤ h0,i + 3 pixels (12)

for the height and

w0,i − 3 pixels ≤ w′k ≤ w0,i + 3 pixels (13)

for the width. For each height and width combination of the two intervals, a new template
is created, which results in K = 49 templates in total with running template index k. Using
each template, the weighted correlation with the turbulence wedge at the position xi is
calculated. To calculate the weighted correlation, the top left corner of the current template
matrix is placed at (xi − w′k/2) along the natural transition line at yi = yNT(xi), resulting
in the top right corner of the template to be positioned at (xi + w′k/2). The columns (i.e.,
the width) of the thermogram section are selected from the x-position (xi − w′k/2) of the
thermogram to (xi + w′k/2). The rows (i.e., the height) of the thermogram section are
determined from the y-position yNT(xi) to yNT(xi) + h′k. Thus, the thermogram section
and the template have the same size. The weighted correlation is chosen as a measure
of similarity so that the intensity gradient near the leading edge of the thermogram is
counteracted, which is implemented through the weights γ in the weight matrix. Thus, the
weighting emphasizes a good match at the base of the template to the turbulence wedge.
Therefore, the weights are larger near the base of the turbulence wedge, with γbase = 10,
and linearly decrease row by row to smaller weights near the tip, γtip = 1. The number of
steps for the linear decrease, which was implemented with the linspace function of Python’s
numpy, is equal to the height h′j of the current template. The linear decrease is repeated in
each matrix column for w′j columns. The weight matrix, the thermogram section and the
template therefore all have the same size, and the weighted correlation is calculated using
Equation (7). The calculations result in a phase space of correlation values, i.e., one value
for each height-width combination, see Figure 6. The size of the template which attains the
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highest correlation value, see red x in Figure 6, is the size (hi, wi) of the turbulence wedge
at position xi, from which the area Ai can be calculated with Equation (6).

Figure 6. Phase space of correlations for a wedge at position xi, over the template height h′k and
width w′k. The height h0,i and the width w0,i are the initial values for the determination of the wedge’s
size. The phase space point (h0,i, w0,i) is marked with a black dot. The point (h′k, w′k) with the highest
correlation value is marked with a red x.

3.2. Simulation Setup

In order to verify the wedge detection algorithm and characterize it with respect to
the measurement uncertainties, simulated thermograms are needed, where all measurands
of the thermogram are a priori known exactly.

The simulated thermogram consists of a matrix with a height htherm and a width wtherm.
The trailing edge is placed at yTE = 0.10 · htherm, the natural transition at yNT = 0.45 · htherm
and the leading edge at yLE = 0.90 · htherm. The blade edges and natural transition lines
are aligned horizontally. The pixel intensities of the turbulent region Iturb and the laminar
region Ilam are quantities that need to be modelled to values in real thermograms. The
pixel intensity of the background is set to 0.1, as a low value results in a strong gradient
to the blade edge. However, the pixel intensity of the background does not influence the
wedge detection algorithm and the exact value is therefore inconsequential.

Moreover, the intensity gradient near the leading edge is simulated. Near the nat-
ural transition line, the laminar value is prevalent. Towards the leading edge, the pixel
intensities start to linearly decrease at some y-position yLE − hgrad, see Figure 1 (right).
Then, at a y-position yLE − hgrad,0 near the leading edge, the decreasing intensity reaches
the turbulent intensity value Iturb. After this y-position up to the leading edge, the pixel
intensities are set to Iturb. The parameters hgrad and hgrad,0 are modelled according to real
thermograms. Note that both parameters are subsequently presented normalized by hmax
to make them transferable to thermograms of any size.

In addition, the amount of Gaussian blur in the thermogram can be set, with a standard
deviation σblur of the Gaussian kernel of 1.0 pixel. The blur value was estimated manually
to match the blur in real thermograms.

Furthermore, the noise in real thermograms is simulated by creating a matrix of noise
values with the same size as the thermogram, for which each pixel value is drawn from a
normal distribution N (µnoise, σ2

noise) with mean µnoise = 0 and variance σ2
noise in arbitrary

pixel intensity units. By changing the variance σ2
noise, the amount of noise in the image can

be varied. The matrix is then added to the thermogram to obtain a noisy thermogram.
To emulate a turbulence wedge realistically, the parameters additionally required from

real thermograms are the typical range of the height hi and the width wi of the turbulence
wedge. Instead of the absolute height value (in pixels), the relative height hi/hmax is con-
sidered here, which makes the value applicable to thermograms of any size. To emulate the
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average width of the turbulence wedges, the height-to-width ratio hi/wi is further considered.
The angle αi of each wedges is set, by default, so that the tip position is centered below the
middle of the wedge for all turbulence wedges. Finally, the typical contrast-to-noise ratio
(CNR) of a turbulence wedge is emulated, where the CNR is defined as

CNRi =

√√√√√ (〈Ilam〉i −
〈

Iwedge

〉
i
)2

σ(Ilam)2
i + σ(Iwedge)

2
i

, (14)

where 〈Iwedge〉i and 〈Ilam〉i are the mean pixel intensities in the turbulent region inside
the wedge and the laminar region right outside of the turbulence wedge with index i,
respectively. Furthermore, σ(Iwedge)i and σ(Ilam)i denotes the spatial standard deviation
of the pixel intensities of the turbulence wedge or its surrounding area.

To realistically emulate real thermograms, the above mentioned features of real ther-
mograms and turbulence wedges need to be quantified. For this reason, real thermograms
of wind turbines in operation are analyzed. In the analysis, 14 different thermograms and
43 different turbulence wedges are included. All heights and widths are measured using
the program ImageJ [16], while the CNR calculations are performed in Python. The loaded
thermograms are normalized to a range of [0, 1]. The results can be seen in Table 1, where
the first section contains the values that are important for the modelling of a thermogram
without turbulence wedges. The second section contains the characteristic values of the
turbulence wedges.

Table 1. Important characteristics of the thermograms of rotor blades (first section) and the turbulent
wedges (second section) determined in real thermograms of wind turbines in motion. All thermo-
grams were normalized to a range of 0 to 1 in arbitrary intensity units. The standard deviation of the
mean is given as the measurement uncertainty.

Characteristic Determined Value Simulated Value

〈Ilam〉 0.96± 0.01 0.96
〈Iturb〉 0.75± 0.02 0.75
〈σ(Ilam)〉 0.010± 0.001 0.009
〈σ(Iturb)〉 0.009± 0.001 0.009〈

hgrad/hmax

〉
0.50± 0.07 0.50〈

hgrad,0/hmax

〉
0.16± 0.04 0.15

〈hi/hmax〉 0.73± 0.02 [0.6, 0.85]
〈hi/wi〉 3.01± 0.07 3
〈CNRi〉 10.1± 1.1 [2, 20]

By adapting the mean values in Table 1 in the simulated thermograms, thermograms
of rotor blades of in-service wind turbines are emulated realistically. The values used in
the simulation can be seen in the rightmost column. Note that the values for 〈σ(Iturb)〉 and
〈σ(Iturb)〉 are identical in the simulation, because the marginal difference in the experimen-
tal results is neglected. Furthermore, the values of the heights hi/hmax of the simulated
turbulence wedges are drawn from a uniform distribution in the interval [0.6, 0.85] if not ex-
plicitly stated otherwise, which places the found mean value approximately in the middle
of the range. The widths wi of the simulated turbulence wedges are drawn from a normal
distribution N (µw = hi/3, σ2

w = 0.2), where µw is the mean and σ2
w is the variance of the

normal distribution. By modifying the size of the turbulence wedges in the simulated
thermograms in a small interval which is easily detectable by the algorithm, no size that is
particularly well or poorly detected is chosen by chance.

In order to characterize the dependency of the model-based wedge detection algorithm
on the CNR value as well as the size of the turbulence wedges, Monte Carlo simulations are
performed which utilize the simulated thermograms. With the results of the Monte Carlo
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simulations, the systematic and the random errors of the wedge position xi, the wedge size
(hi, wi) and the wedge area Ai are investigated.

For the investigation of the dependency of the algorithm on the CNR, the CNR of a
single turbulence wedge is changed in a range of 2 to 20 by changing the pixel intensity of
the turbulence wedge. The choice of the CNR range places the mean value of 〈CNR〉 = 10
found in real thermograms in the middle of the range, but also covers more extreme CNR
values. Varying the intensity of the turbulence wedges instead of changing the amount of
noise in the image is more realistic, as the noise in real thermograms stays approximately
constant throughout the image.

To investigate the dependency of the algorithm on the size of the turbulence wedges,
the height of the turbulence wedge in the thermogram is changed systematically in a range
of 0.1 ≤ hi/hmax ≤ 1.0. Due to the identified relationship 〈hi/wi〉 = 3, the wedge width is
changed accordingly. The CNR value of the turbulence wedge, however, remains constant
at CNR = 11 throughout this analysis.

3.3. Measurement Setup

Real thermograms of rotor blades of in-service wind turbines are required to validate
the algorithm. Therefore, thermographic measurements are performed on a 1.5 MW wind
turbine of the type GE 1.5 sl, manufactured by General Electric (Boston, MA, USA), with
a hub height of 62 m and rotor diameter of 77 m. The thermograms are taken with an
actively cooled infrared camera called imageIR 8300, manufactured by InfraTec GmbH
(Dresden, Germany). This thermographic camera has an InSb focal plane array with a
format of (640 × 512)pixel2 where 1 pixel =̂ 15µm, and is sensitive to light of a wavelength
of 2–5µm. The dynamic range is 14 bit, the integration time is set to 1600 µs and the noise
equivalent temperature difference is about 25 mK at 30 ◦C. The measurements are taken
over multiple days on a wind turbines at a measurement distance of 100 m. Due to the
length of the rotor blades and to improve the spatial resolution, a 200 mm telephoto lens
is used. Consequently, the rotor blades are captured in segments. For this purpose, the
thermographic camera is triggered externally with an optical trigger camera when the
rotor blade is positioned horizontally, i.e., parallel to the ground. An example of a typical
measurement setup can be seen in Figure 7, where thermograms of the suction side of the
rotor blade are acquired.

Figure 7. Photo of experimental setup for field measurements of wind turbines in motion. The
thermographic camera, which takes thermograms of the wind turbine in the background, the optical
trigger camera, which triggers the thermographic camera, and the laptop, which acquires the images,
can be seen.

With the measurement setup, thermographic measurements of different rotor blade
segments are taken, where the turbulence wedge have varying sizes as well as different
CNR values, which are used to validate the wedge detection algorithm. Furthermore,
the distance between wedges differs between the measurements, which has not been
considered in the verification and which demonstrates the applicability of the wedge
detection algorithm to real thermograms.
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4. Results

In this section, the results of the image processing algorithm for turbulence wedge
detection are presented. First, a verification and detailed characterization of the algorithm
on simulated thermograms is performed in Section 4.1 and Section 4.2, respectively. Partic-
ularly, the dependency of the algorithm on the CNR value and the size of the turbulence
wedge is investigated. The validation of the algorithm for measured thermograms of wind
turbine blades in operation follows in Section 4.3. Note that the results of the verifica-
tion and the validation with the model-based algorithm (MBA) are compared with the
state-of-the-art, gradient-based image processing algorithm (GBA) from [14].

4.1. Verification

A verification of the model-based wedge detection algorithm is performed with a sim-
ulated thermogram with known position and size of the wedges. The studied thermogram
contains three wedges, I, II and III, with the CNR values 19, 5 and 3. The simulated thermo-
gram with the consecutively numbered turbulence wedges of different sizes is shown in
Figure 8a, while the reference turbulence wedge outline as well as the CNR value are shown
in Figure 8b. Both of the wedge detection algorithms result in a flow transition line which
includes all premature transitions across the width of the thermogram, see Figure 8d. To
determine the area of the turbulence wedges with the GBA, the y-coordinates of the natural
transition line are subtracted from the y-coordinates of the detected premature transition
line. The results of the GBA and the novel MBA are shown in Figure 8c,d, respectively.
The GBA detects wedge I, but fails to detect the other two wedges with lower CNR values.
In contrast, the MBA correctly detects all three wedges. The results of the verification
thus show that, with the introduced model-based algorithm, a reliable detection even at
CNR = 3 is possible, which is a significant improvement compared to the state-of-the-art,
gradient-based algorithm.

A quantitative comparison of the areas found by the two wedge detection algorithms
is shown in Table 2. The total area determined by the MBA has a relative deviation of
1.5% compared to the true value, while the state-of-the-art GBA detects a total area with a
relative deviation of −38.6% from the true value due to the undetected turbulence wedges.
The MBA determines a larger-than-true area for the smallest turbulence wedge in the
middle, but smaller areas for the larger turbulence wedges, which seems to be worth
investigating further in the subsequent, more detailed characterization.

Figure 8. Simulated thermogram with three different turbulence wedges with differing intensities, leading to different CNR
values. Both the model-based algorithm as well as the state-of-the-art, gradient-based algorithm were applied to the image.
(a) shows the simulated thermogram with the turbulence wedges numbered with roman numerals. (b) shows the reference
transition line as well as the CNR value of the wedges noted above the respective wedge. (c) shows the result of applying
the gradient-based algorithm (GBA) of Gleichauf et al. [14] to the image and (d) shows the result of the application of the
model-based algorithm (MBA) on the simulated thermogram.
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Table 2. Areas determined by the model-based algorithm (MBA) as well as the state-of-the-art,
gradient-based algorithm (GBA) for the wedges in Figure 8. The area values are given in unit pixel2.

True Value GBA MBA

Wedge I 389.5 512.0 370.5
Wedge II 187.5 - 180.0
Wedge III 256.5 - 270.0

Total 833.5 512.0 846.5
Measurement error normalized by the true value in % 0 −38.6 1.5

4.2. Characterization

To characterize the model-based algorithm in more detail, Monte Carlo simulations
with thermograms of the size (140 × 140) pixels2 are utilized, with which the dependency
of the model-based algorithm on the CNR value as well as on the size of the turbulence
wedges is examined. The deviations of the detected number N of turbulence wedges, the
measured position xi and the size parameters (hi, wi) as well as the area Ai are examined.

First, the dependency of the measurement results on the CNR value is investigated.
The CNR value is varied in a range of 2 ≤ CNR ≤ 20 by changing the pixel intensity
of the Ñ = 1 turbulence wedge present in the simulated thermogram. For each CNR
value, n = 100 thermograms are investigated. Note that the other parameters used in the
simulation, such as the wedge size and the intensity gradient, are stated in Section 3.2.

The number N of turbulence wedges that are detected in a thermogram is assessed
and compared to the true value Ñ. Here, the relative error

FN =
Ni − Ñi

Ñi
(15)

is investigated, where Ni is the number of detected wedges in the ith thermogram and Ñi = 1
is the true number of wedges. In Figure 9, the systematic error 〈FN〉 is shown as a function of
the CNR. Only for the lowest CNR value (CNR = 2), the number of detected wedges is not
equal to the true number of wedges, where 7% of turbulence wedges are missed.

Figure 9. Mean relative error 〈FN〉 for different CNR values. For each CNR value, n = 100
thermograms were investigated. The gray region marks CNR values found in real thermograms,
CNR = 10± 1 σ, with σ = 6. The error bar indicates the standard deviation of the mean.

In all other cases, 〈FN〉 = 0, which means that the number of found wedges is
equivalent to the true number of wedges in the thermogram, i.e., the detection error rate is
zero. Furthermore, the position error ∆x normalized by the average true width 〈w̃〉 of the
wedges, is investigated:

∆x
〈w̃〉 =

1
〈w̃〉 (xi − x̃i). (16)

Here, xi is the x-position of the found wedge in the ith thermogram, x̃i is the true
x-position and 〈w̃〉 = 15.01 pixels is the average true width of all wedges used. Only the
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x-position needs to be considered as the algorithm detects the wedges along the natural
transition line, i.e., the y-position follows from the x-position and the determined natural
transition line. Figure 10 shows ∆x

〈w̃〉 as a function of the CNR. For the lowest CNR value of
CNR = 2, seven thermograms were excluded from the analysis as no turbulence wedge
was found and, therefore, xi is unknown. The mean relative error 〈∆x

w̃ 〉 stays between 2%
and 4% for all CNR. The standard deviation of ∆x

w̃ in Figure 10 (right), which represents
the random error, is larger than the systematic error for most CNR values by a factor of 1.5.
However, for CNR < 3, the systematic error is larger than the random error. Therefore, the
systematic error plays a significant role at low CNR < 3, where it should be corrected.

Figure 10. (Left): Mean position error
〈

∆x
w̃

〉
normalized by the average wedge width (see

Equation (16)) for n = 100 thermograms for different CNR values. The error bar indicates the
standard deviation of the mean. The gray region marks realistic CNR values commonly found in real
thermograms. (Right): The standard deviation of ∆x

〈w̃〉 in percent, which represents the random error.

To investigate the systematic and random error concerning the size of the turbulence
wedge, the relative deviation of the height, the width and the area of the wedge are assessed.
The relative deviation for a variable X is defined as

FX =
Xi − X̃i

X̃i
, (17)

where X can be the height h, the width w or the area A to define the average relative
deviations Fh, Fw and FA. Figure 11 shows the mean relative deviations of the heights
(Figure 11a, left), the widths (Figures 11b, left) and the areas (Figure 11c, left) over different
CNR values. In general, the lower the CNR, the larger the deviations. Furthermore, while
the height of the wedge is consistently underestimated, the width is overestimated for all
CNR values. The largest deviations occur at CNR < 4, which is a CNR value not often
found in real thermograms as it is outside the 1 σ interval. As a result, the turbulence
wedge areas are underestimated throughout the investigated CNR range. The plots on the
right hand side of each figure show the standard deviation of the relative deviation, which
is a measure of the random error. For the width, the random error is slightly larger than
the systematic error by a factor of about 1.5 for CNR > 4. However, for the height and the
area, the random error is of about the same magnitude as the systematic error. Therefore,
the results should be corrected by the systematic error in the future. Currently, the height
and area of the wedge are underestimated on average by maximally about 10% for CNR
values that are common in thermograms, 4 ≤ CNR ≤ 16.
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(a)

(b)

(c)

Figure 11. Left: Mean relative deviation of (a) the wedges’ heights 〈Fh〉, the wedges’ widths 〈Fw〉
(b) and wedges’ areas 〈FA〉 (c) for each CNR value with n = 100 trials with randomly sized wedges.
The error bar indicates the standard deviation of the mean, and the gray region shows realistic
CNR values found in real thermograms. Right: Standard deviation of all respective mean relative
deviations in percent.

To further investigate how the height of the turbulence wedge influences the wedge
detection algorithm, a thermogram of the size (140× 140)pixels2 with a single turbulence
wedge with CNR = 11 is investigated, and the height h̃ of the wedge was changed systemati-
cally from h̃ = 0.1 · hmax to h̃ = hmax in 15 steps. For each wedge height, n = 50 thermograms
were investigated. The width of the wedge was drawn anew for each thermogram from
N (µ = h̃/3, σ2 = 0.2). In Figure 12a, 〈FN〉 is shown, while Figure 12b shows the position
error, and Figure 12c shows the relative deviations of the wedge’s size and area 〈Fh〉, 〈Fw〉 and
〈FA〉 over the relative true wedge heights h̃/hmax. The gray region in each figure indicates
relative heights commonly found in real thermograms, adapted from Table 1.

In Figure 12a, 〈FN〉 is plotted over the relative wedge heights h̃/hmax. For a relative
height h̃/hmax < 0.2, no wedge is detected by the algorithm because it is too small.
Therefore, no information about the positions or the areas is available and the thermograms
are excluded from the analysis for the determination of the position error and the relative
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deviation of the size and area of the wedge. For large wedges near h̃/hmax = 1, 〈FN〉
increases to 11%, which means that more than the correct number of wedges are found.
This can be explained by the fact that the wedge templates are drawn from an interval of
[0.5, 0.95] · hmax. When the templates are consistently smaller than the turbulence wedges,
two maxima form in the cross-correlation curve close to the actual position of the wedge:
One at the left edge of the wedge, one at the right, which leads to the algorithm detecting
two smaller wedges close together instead of one large wedge.

Figure 12b shows the mean position error 〈∆x
w̃ 〉 over the relative height. Note that

the mean wedge width 〈w̃〉 was calculated for each height parameter instead of averaging
over all. For small wedges with h̃/hmax < 0.4, the largest position error of 〈∆x

w̃ 〉 = 10%
can be found. However, for wedges with typical heights found in real thermograms
(see gray region in Figure 12b), the position error is only around 1%. For large wedges
near h̃/hmax = 1, where more than one wedge is detected, the average position error
only includes the position of the first found wedge. The position error therefore drops to
〈∆x

w̃ 〉 = −5% for h̃/hmax = 1, indicating that the first wedge is found slightly left of the
actual position. This issue could be solved by using larger templates; however, this wedge
size seldom occurs in real thermograms.

In Figure 12c, the relative deviation of the height, the width and the area of the wedge
is shown over the true relative wedge height. For wedges with 0.2 < h̃/hmax < 0.3, the
algorithm determines larger-than-true areas, which is evident from 〈FA〉 > 0. For wedges
larger than h̃/hmax > 0.6, the areas found are consistently smaller than the true areas,
which is also apparent in the verification results in Table 2. This can be explained by the
intensity gradient in the thermogram, which reaches the intensity value of the wedge at
h̃/hmax = 0.73. Therefore, the tips of the wedges in this height range have a CNR close to
zero, which interferes with the determination of the wedges’ areas.

(a) (b) (c)

Figure 12. Analysis of the deviation of the height h, the width w and the area A of one wedge in simulated thermogram,
averaged over n = 50 trials for each relative height value h̃/hmax. The CNR stays constant at a value of 11. (a) shows the mean
relative deviation of the number of detected wedges 〈FN〉 over the relative true wedge heights h̃/hmax. The mean normalized
position error 〈∆x

w̃ 〉 over the true relative heights h̃/hmax of the wedges is shown in (b). The relative deviations of the height,
the width and the area are shown in (c). The grey region indicates relative heights commonly found in real thermograms, i.e.,
0.73± 1 σ, with 1 σ = 0.12. The error bar indicates the standard deviation of the mean.

4.3. Validation: Application on Thermograms of an In-Service Wind Turbine

To validate the MBA, it was applied to real thermograms of rotor blades of in-service
wind turbines. In Figure 13a, such a real thermogram of a wind turbine blade with five
well-separated turbulence wedges with a CNR value of 6 or more is shown. Since the
ground truth is not known, the measured areas can only be compared with a manually
created reference, which is depicted in Figure 13b. The angle of the turbulence wedges
is specified as 5◦. The state-of-the-art results with the GBA are shown in Figure 13c for
comparison; the results of the novel MBA are shown in Figure 13d. The GBA only detects
the turbulence wedges with CNR > 15, resulting in only two detected turbulence wedges,
while the MBA detects all five turbulence wedges, regardless of the CNR value. In Table 3,
the values of the determined area, the reference area and the relative deviation of the total
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area FA are displayed. Note that the deviation of the total area for the GBA results in
FA = −64.2%, while the MBA only has a deviation of FA = −7.7%. The deviation value
is in agreement with the deviation determined in the characterization of the algorithm in
Section 4.2, where for CNR ≥ 15, a deviation of FA ≤ 8% is expected, see Figure 11c.

Figure 13. Thermogram of a segment of a rotor blade of an in-service wind turbine with N = 5 turbulence wedges.
(a) shows the preprocessed thermogram with the turbulence wedges numbered with roman numerals. (b) shows the
reference transition line, which was estimated manually, as well as the CNR of the wedges noted above the respective wedge.
(c) shows the result of applying the gradient-based algorithm (GBA) of Gleichauf et al. [14] to the image and (d) shows the
result of the application of the model-based algorithm (MBA) on the thermogram. Note the reduced color scale.

Table 3. Areas determined by the model-based algorithm (MBA) as well as the state-of-the-art,
gradient-based algorithm (GBA) for all turbulence wedges in Figure 13. The area values are given in
unit pixel2 and are summed over all turbulence wedges. N is the found or true number of wedges in
the image.

Total Wedge Area A FA in % N

Reference Value 3814.5 0 5
GBA 1364.9 −64.2 2
MBA 3520.5 −7.7 5

In contrast to Figure 13, Figure 14a shows a wind turbine blade with nine smaller
turbulence wedges that are close together or even touching. The skew of the turbulence
wedges is also larger, so that the angle of the turbulence wedges amounts to 12◦. Furthermore,
all turbulence wedges have a CNR value below 7. Between the seventh and eighth wedges, a
small region with lower intensity might be visible that has a CNR of only CNR = 0.2, and
was therefore excluded from the manually drawn reference line, seen in Figure 14b. The
GBA again only detects turbulence wedges with CNR > 3, while the MBA again detects all
turbulence wedges, see Figure 14c,d. This means that the GBA can detect wedges with a lower
CNR in this thermogram than in the thermogram depicted in Figure 13. This is probably due
to the preprocessing of the GBA, which applies a histogram equalization to each investigated
thermogram. Therefore, different thermograms can be optimized to different degrees, leading
to differences between thermograms with regard to the CNR of still detectable turbulence
wedges. The MBA does not exhibit this fluctuation in the performance as no preprocessing is
needed, which makes the MBA more reliable.

In Table 4, the summed areas of all wedges as determined by each algorithm and the
manually estimated reference area are listed. Even though the GBA does not detect every
turbulence wedge, the found areas of each wedge are determined to be much larger than
they actually are due to the image noise, which leads to a remaining relative deviation of
the total area of−5.1%. However, a quantitative comparison of the determined area of each
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wedge to the true area would show the error in the area determination more clearly. On the
other hand, the MBA detects ten wedges, which includes, in addition to the nine referenced
wedges, the turbulence wedge with CNR = 0.2 between wedges VII and VIII. However,
the determined areas are always slightly smaller than the true areas of the wedges, which
in total leads to a relative deviation of −20.2%.

Figure 14. Thermogram of rotor blade of an in-service wind turbine with N = 9 turbulence wedges. (a) shows the
preprocessed thermogram with the turbulence wedges numbered with roman numerals. (b) shows the reference transition
line, which was estimated manually, as well as the CNR of the wedges noted above the respective wedge. (c) shows the
result of applying the gradient-based algorithm (GBA) of Gleichauf et al. [14] to the image and (d) shows the result of
the application of the model-based algorithm (MBA) on the thermogram. Note the reduced color scale, which makes the
turbulence wedges more visible.

Table 4. Areas determined by the model-based algorithm (MBA) as well as the state-of-the-art,
gradient-based algorithm (GBA) for all turbulence wedges in Figure 13. The area values are given in
unit pixel2.

Area Type Total Wedge Area A FA in % N

Reference Value 2080.0 0 9
GBA 1972.9 −5.1 6
MBA 1659.0 −20.2 10

The validation demonstrates that the proposed model-based wedge detection algo-
rithm is capable of detecting turbulence wedges and their areas on real thermograms of
wind turbines in operation. The algorithm was able to determine wedges with CNR values
in a range of 0.2 ≤ CNR ≤ 20. The state-of-the-art algorithm consistently detects fewer
wedges than actually present in the thermogram due to low CNR values, but overestimated
the areas for each found wedge. While the model-based algorithm detected the number
of wedges correctly, it underestimated the area by 7% to 20% depending on the CNR of
the turbulence wedges, which is in agreement with results from the characterization of
the algorithm.

5. Conclusions and Outlook

A model-based image processing algorithm for the detection of turbulence wedges
on rotor blades of wind turbines in operation was introduced. The algorithm utilizes an
image-processing approach called template matching, a technique for finding parts of a
thermogram which match a template image. The templates are wedge-shaped, which
imitates the natural shape of a turbulence wedge. Using the template-matching method,
turbulence wedges are detected as a whole, including position and size parameters, instead
of identifying single positions of the premature transition line, which is the case in the state-
of-the-art gradient-based method. Therefore, the approach simplifies the determination
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of the additional turbulent area on the rotor blade due to turbulence wedges, once the
turbulence wedges are identified and located. The positions of the turbulence wedges
between the natural transition line and the leading edge are detected first using a cross-
correlation of the wedge templates and the thermogram. Then, the areas are determined
by comparing the detected wedges to wedge templates of different sizes, where the size of
the template with the highest similarity measure is finally considered as the measured size
of the turbulence wedge.

The model-based algorithm was verified and compared to the state-of-the-art algo-
rithm by evaluating a simulated thermogram with three turbulence wedges of different
CNR values. The state-of-the-art algorithm was only able to detect one of the three wedges,
leading to a relative deviation of the area of −38.5%. The area of the single detected wedge
was overestimated, which is why the relative deviation is not smaller. On the other hand,
the model-based algorithm found all three and also estimated their areas with a relative
deviation of 1.5%.

A detailed characterization of the algorithm was performed at different CNR values
and different wedge sizes. For 4 ≤ CNR ≤ 16, which are CNR values commonly found in
real thermograms, the absolute deviation of the determined position stayed below 2.5% of
the average wedge width. The relative deviation of the wedge areas remains below 10%
for 4 ≤ CNR ≤ 16. Overall, wedges with a CNR larger than 2 were detectable using the
model-based algorithm.

To finally validate the model-based algorithm, it was applied to two real thermograms
of rotor blades of wind turbines in operation. A comparison with the state-of-the-art
algorithm shows an improvement in the number of wedges detected: the state-of-the-art
algorithm consistently found fewer wedges than truly present in the thermogram, leading
to relative deviations of the area of up to−64.2%. However, the area of the detected wedges
was often overestimated. The model-based algorithm found all wedges but in general
underestimated their areas. Even so, the model-based algorithm had relative deviations
of at most −20.2%, which, in addition, can be reduced by correcting the systematic error
that was determined according to the algorithm characterization. As a result, a clear
improvement in the detection of turbulence wedges and their areas compared to the
state-of-the-art algorithm was achieved. Hence, a more accurate analysis of the impact
turbulence wedges have on the efficiency and the annual energy production of the wind
turbine is enabled.

As an outlook, the detection of the turbulence wedges’ positions still can be improved.
This concerns, in particular, turbulence wedges near the edge of the thermogram, which
currently have a lower probability of being detected, but which could be solved by padding
the thermogram. Additionally, the determination of the area can be improved. Instead
of using linearly decreasing weights for the weighted correlation evaluation, the actual
intensity gradient in the thermogram (in particular at the wedge tip) needs to be automati-
cally recognized and then taken into account in the weighting. Furthermore, the wedge
detection algorithm can be enhanced to work with subpixel accuracy by using interpolated
thermograms and templates. Lastly, an automatic determination of the wedge angle is
desirable in the future so that the algorithm then works completely automatically. A further
next step is the application of the algorithm for intensive field measurements of wind tur-
bines in motion to investigate the additional area with turbulent flow due to the turbulence
wedges over a one year operation and longer. On a shorter time scale, the algorithm will
be used to study dynamic flow effects and how they influence the turbulence wedges.
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