
applied
sciences

Article

Automatic Hate Speech Detection in English-Odia Code Mixed
Social Media Data Using Machine Learning Techniques

Sudhir Kumar Mohapatra 1 , Srinivas Prasad 2, Dwiti Krishna Bebarta 3 , Tapan Kumar Das 4,
Kathiravan Srinivasan 5 and Yuh-Chung Hu 6,*

����������
�������

Citation: Mohapatra, S.K.; Prasad, S.;

Bebarta, D.K.; Das, T.K.; Srinivasan,

K.; Hu, Y.-C. Automatic Hate Speech

Detection in English-Odia Code

Mixed Social Media Data Using

Machine Learning Techniques. Appl.

Sci. 2021, 11, 8575. https://doi.org/

10.3390/app11188575

Academic Editor: Shi-Jinn Horng

Received: 18 June 2021

Accepted: 13 September 2021

Published: 15 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Emerging Technologies, Sri Sri University, Cuttack 754006, India;
sudhir.mohapatra@srisriuniversity.edu.in

2 Department of Computer Science and Engineering, GITAM University, Visakhapatnam 530045, India;
srinivas_prasad@hotmail.com

3 Department of Information Technology, Gayatri Vidya Parishad College of Engineering for Women,
Vishakhapatnam 530048, India; dkbebarta@gvpcew.ac.in

4 School of Information Technology and Engineering, Vellore Institute of Technology, Vellore 632014, India;
tapan.das@vit.ac.in

5 School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India;
kathiravan.srinivasan@vit.ac.in

6 Department of Mechanical and Electromechanical Engineering, National Ilan University, Yilan 26047, Taiwan
* Correspondence: ychu@niu.edu.tw

Abstract: Hate speech on social media may spread quickly through online users and subsequently,
may even escalate into local vile violence and heinous crimes. This paper proposes a hate speech
detection model by means of machine learning and text mining feature extraction techniques. In
this study, the authors collected the hate speech of English-Odia code mixed data from a Facebook
public page and manually organized them into three classes. In order to build binary and ternary
datasets, the data are further converted into binary classes. The modeling of hate speech employs
the combination of a machine learning algorithm and features extraction. Support vector machine
(SVM), naïve Bayes (NB) and random forest (RF) models were trained using the whole dataset, with
the extracted feature based on word unigram, bigram, trigram, combined n-grams, term frequency-
inverse document frequency (TF-IDF), combined n-grams weighted by TF-IDF and word2vec for both
the datasets. Using the two datasets, we developed two kinds of models with each feature—binary
models and ternary models. The models based on SVM with word2vec achieved better performance
than the NB and RF models for both the binary and ternary categories. The result reveals that the
ternary models achieved less confusion between hate and non-hate speech than the binary models.

Keywords: hate speech; social media; English-Odia; machine learning; feature extraction; TF-IDF

1. Introduction

Social media is changing the face of communication and culture of societies around the
world [1]. Numbers of social media users in India have grown substantially in recent years,
despite the low quality of internet services and the occasional interruptions or blocking of
social media sites in the country. Multifarious populations in the country have been using
online social media to communicate, express opinions, engage with friends, and share
information [2–4]. However, the anonymity and mobility of online social media enable the
netizens behind the screen to easily spread hateful content [5,6].

Social media platforms, like Facebook and Twitter, are criticized for not doing enough
to prevent hate speech (HS) on their platform and have come under pressure to take
action against hate speech [7,8]. In order to control and prohibit hate speech, governments
worldwide are framing stringent regulations and keeping the implementation of such
policies under surveillance in their ambit [9]. The Indian government further monitors
social media content to prevent the spread of harmful information, and restricts online hate

Appl. Sci. 2021, 11, 8575. https://doi.org/10.3390/app11188575 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3065-3881
https://orcid.org/0000-0001-9860-3448
https://orcid.org/0000-0002-9352-0237
https://orcid.org/0000-0003-0183-8182
https://doi.org/10.3390/app11188575
https://doi.org/10.3390/app11188575
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11188575
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11188575?type=check_update&version=1

Appl. Sci. 2021, 11, 8575 2 of 21

speech by interrupting the internet service from time to time and blocking access to those
sites [10,11]. Furthermore, the government has already introduced a law that expands the
anti-terrorism law to encompass cyberspace in order to prohibit the dissemination of any
terrorizing or obscene information.

Even for humans, distinguishing whether a portion of text contains HS is not a simple
task [12]. Manual judgement of HS is not only time-consuming but may also introduce
subjective perceptions of HS composition [13]. Therefore, the definition of HS is crucial
in clearly outlining a rule for the annotation process of the dataset, for the annotator, and
in order to make the automatic model evaluation easier [14]. Most of the research on
social media defines HS as a language that attacks or diminishes, and incites violence or
hate against groups, based on specific characteristics, such as race, ethnic origin, religious
affiliation, political views, physical appearance, gender, etc. [15] The definition points
out that HS language incites violence or hatred against groups [16]. There is also an
acknowledgment that it is highly probable that HS on social media is related to actual hate
crimes. However, there are other kinds of speech whose definition is similar to HS, but are
of a different level or effect. One example of these kinds of speech is offensive speech used
to hurt someone. The indirect verbal/rhetoric disparity is the key to identifying whether
something is hate speech or offensive speech [17].

Social media currently provides localization, which allows users to use different world
languages on their websites. One of these languages is Odia, which is one of the oldest
spoken and working languages of the Odisha state in India. This language is written from
left to right and has its own unique script, which is a syllabic alphabet or an abugida, in
which all consonants are embedded with an inherent vowel. Since most of the Indian
population are bilingual and multilingual communities, and India is the second largest
English-speaking country in the world, it follows that many communities use English–Odia
code-mixed languages. The usage of such English-Odia on Facebook is very frequent. An
example of the hate texts in English-Odia code-mixed data is given below:

Hate Text: Sala to rakta peijibi, you don’t know me.
Translation: You don’t know me, I will drink your blood.

Substantial research has accomplished the HS detection in English-Hindi code-mixed
tweets [18–20], however, the study of HS detection in English-Odia code-mixed language
has not yet been carried out. Nowadays, in India—and especially in Odisha—hate
speech based on specific political views, ethnic origin, and religious affiliation has be-
come widespread, and much of this HS calls for violence and attacks on specific targets
of individual or groups. Therefore, monitoring or automatic detecting of hate speech on
online social media platforms and preventing its spread is important for reducing violence
and hate crimes that damage the lives of individuals, families, communities and, even, the
entire country [21].

This paper aims to address the problem of hate speech using a new dataset that is
annotated with three labels: hate, offensive and neither hate nor offensive (OK). Most of the
previous literature used binary class approach to solve the HS problem, which leads to a
confusion between hate and offensive speech and other types of speech. We argue that they
should not be mixed with each other, because if someone uses offensive speech that differs
from the definition of HS, people tend to respond with highly offensive terms for various
reasons, such as joking, criticism, debate and condemnation. As such, the dualization of
posts and comments into hate and non-hate leads to the conclusion that many people on
social media are treated as hateful people.

The main contributions of this paper are as follows:

• Propose the hate and offensive speech detection models for the English-Odia mixed
code data by using a new dataset of posts and comments from public Facebook pages;

• The proposed model use multiple feature extraction methods and multiple machine
learning classifier algorithms;

Appl. Sci. 2021, 11, 8575 3 of 21

• The proposed system achieved good prediction accuracy on an imbalanced dataset
and outperformed existing models.

The organization of this paper is as follows. Section 2 discusses the related works. Sec-
tion 3 describes the methodology of data preparation for machining learning.
Section 4 describes the proposed architecture of hate speech detection. Section 5 details
the experiment and result analysis. The conclusion section summarizes the findings of this
paper.

2. Related Works

This section presents a comprehensive review of the general techniques, methods,
and results of existing research about automatic hate speech detection on social media.
Mossie and Wang [22] investigated hate speech detection for the Amharic language. They
created a dataset of 6120 instances of Amharic posts from Facebook, and classified the
speech as “hate” and “not hate” using word2vec and term frequency-inverse document
frequency (TF-IDF) feature extraction. They used the machine learning classifier algorithms,
naïve Bayes (NB) and random forest (RF), to detect the features of “hate” and “not hate”
speech. The NB model achieved 73.02% and 79.83% accuracy, while the RF model achieved
63.55 and 65.34% accuracy, respectively, for both of the features. The authors conclude
that the result is promising for computing a large volume of data for a social network.
Ibrohim et al. [23] studied hate speech for the Indonesian language on social media. The
authors collected tweets and created a binary class dataset comprising HS and Non-HS
(NHS), and classified them using a different combination of feature and machine learning
classifier algorithms, which included a BOW model, word n-gram, character n-gram
and negative sentiment with NB, support vector machine (SVM), beacon-less routing
(BLR), and random forest decision tree (RFDT). They achieved a 93.5% F-measure; the
best performance with the combination of word n-gram with RFDT than other combined
models.

For the problem of differentiating hate from offensive speech, Davidson et al. [24]
studied the characterization of hate for other instances of speech, like offensive speech, for
automatic hate speech detection using 33,458 English tweets. They used hate speech lexicon
from hatebase.org to label the hate speech dataset into three categories: hate, offensive, and
neither. The authors then employed bigram, unigram, and trigram features with TF-IDF,
and used part-of-speech, sentiment lexicon for social media. Logistic regression with Linear
SVM yielded an overall precision of 0.91, recall of 0.90 and F1 score of 0.90. They concluded
that high accuracy detection can be achieved by differentiating between these two classes of
speech. Gambäck et al. [25] presented a deep-learning-based hate speech text classification
system for Twitter. They used a dataset prepared by Benikova et al. [26], which was
comprised of four categories: racism, sexism, both (racism and sexism), and NHS. They
used four features for embedding, namely word2vector, random vector, character n-grams,
and word vectors, combined with the deep learning of convolutional neural network
(CNN). The model that was based on word2vec embedding turned out to be the best, with
a 78.3% F-score.

Del Vigna et al. [27] studied an Italian online hate campaign on social network sites
using the textual content of comments that appeared on a public Italian Facebook page as a
source. The datasets are labeled as no hate, weak hate, and strong hate, and by merging
weak and strong hate together as hate, they formed the second dataset. By leveraging
morpho-syntactical features, sentiment polarity and word embedding lexicons, the authors
designed and implemented two classifier algorithms for the Italian language: one is the
traditional machine learning algorithm named SVM and the other is the deep learning
recurrent neural network (RNN) named the long short-term memory (LSTM) algorithm.
By conducting two different experiments with both datasets, in at least 70% of cases the
annotator agreed on the class of the data. SVM and LSTM achieved an F-score of 80%
and 79% for binary classification and 64% and 60% for ternary classification, respectively.
Another study on Italian tweets-TWITA was reported by Florio et al. [6]. They used SVM

Appl. Sci. 2021, 11, 8575 4 of 21

and AIBERTo, the Italian BERT language model, and revealed the importance of the time
difference between training and test data, because this will impact the performance of both
the SVM and AIBERTo models. Another development pertaining to Italian tweets is the
creation of a lexicon of hate words, known as Hurtlex, which can be used as a resource to
identify hate speech [28]. Table 1 summarizes the speech detection related works.

Table 1. Summary of hate speech detection related work.

Authors Objective Feature Extraction ML Method & Accuracy

Binary Class Hate speech

Mossie and Wang [22] Detection of HS in the Amharic language Word2Vec and TF-IDF NB and RF: 79.83% & 65.34%
respectively

Alfina et al. [29] Detection of HS in the Indonesian
Language

Bag-of-word (BOW), word n-gram and
character n-gram

NB, SVM, Bayesian LR (BLR) &
(RFDT): 93.5% RFDT

Djuric et al. [30] Detection of HS with comment
embeddings Paragraph2vec & BOW with TF & TF-IDF Logistic regression obtains 0.80 AUC

Watanabe et al. [31] Detection of HS on Twitter Unigrams with sentimental, semantic
features and pattern features

J48graft, SVM and RF: accuracy 87.4%
for binary and 78.4% for ternary

Fauzi et al. [32] Ensemble method for HS detection in
Indonesian Twitter BOW with TF.IDF weighting

NB, KNN, Maximum Entropy, RF, and
SVM, and two ensemble methods:
hard and soft vote, F1 measure 79.8%.
(SVM, NB, and RF)

Kiilu et al. [33] Detection of HS in Kenyan tweets Sentiment analysis & N-Gram feature NB: P-0.58, R-0.62, A-0.67

Multi-class hate speech

Davidson et al. [24] Automated HS and offensive language
detection

Bigram, unigram, and trigram features with
TF-IDF

Logistic regression with L1
regularization: 90%

Tulkens et al. [34] Racism detection in Dutch social media Word2vec, Dictionary-based SVM; F1: 0.46

Gaydhani et al. [35] Detecting HS and offensive language on
Twitter N-gram and TF-IDF LR, NB and SVM 95.6%

Shervin and Marcos [13] Detecting HS in social media Word skip-gram, and surface n-gram SVM: 0.78

Binary and multi-classification with deep learning

Gambäck and Kumar [25] Convolutional neural network (CNN) to
classify HS

Word2vec, Random vector, character
n-grams, and word2vec+character n-grams

CNN with word2vec: 0.78 F-score
multi-classification

Biere and Bhulai (2018) [36] HS detection using NLP Word2vec with 300 dimensions CNN accuracy of 91%, and a loss of
36%.

Badjatiya et al. [37] HS detection using deep learning Random embeddings & glove embeddings
CNN, LTSM & Fast Text best accuracy
is 93% f1-score CNN + Random
&Glove Embeddings

Rule-based hate speech detection

Gitari et al. (2015) [38] A lexicon-based approach for hate speech
detection

Semantic features, subjectivity features, and
grammatical patterns features

Subjectivity rule-based classifier called
Subjclue lexicon F1-score 65.12%

Zimmerman et al. [39] attempted to improve hate speech detection by using an
ensemble method, based on deep learning, which showed an improvement of 2% over
non-ensemble approaches. MacAvaney et al. [40] presented the challenges faced by the
existing systems when automatically processing hate speech. Furthermore, they designed
a system employing multiple SVMs that achieved almost state-of-the-art performance.

3. Datasets

This paper is investigating the automatic detection of hate speech from Odia/Odia-
English text. As such, this study requires the building of a new Odia HS dataset, because
there is no published or annotated dataset for this purpose. The process of building
the dataset consists of three main steps: (1) gathering the Odia/Odia-English posts and
comments texts from public Facebook pages; (2) preparing, filtering or consolidating
gathered data into one file dataset; and (3) annotating the data.

3.1. Data Collection

The Odia-English textual data are the posts and comments gathered from different
categories of popular public pages on the Facebook platform, because Facebook’s privacy

Appl. Sci. 2021, 11, 8575 5 of 21

policy does not allow access to the public contents of a private page. Table 2 lists the
Facebook pages that this paper used for dataset building. The sampling criteria and metrics
used in this paper for selecting public pages on social media platforms are listed below:

• The number of followers and likes has to be greater than 50,000, because such criteria
allows for more active public pages to be included in categories;

• Pages that post news or hot issues on political, ethnicity, religious, or gender issues at
least once every two days;

• Pages that use the Odia language frequently for posts and comments;
• Pages that published more than 500 posts from April 2018 to April 2019.

Table 2. Selected Social Media Page Categories.

No Categories Name Description

1 News media and broadcasting pages Delivering news to the general public or a target public.

2 Bloggers’ and journalists’ pages A person who regularly writes for blogs, newspapers, magazines.

3 Religious media and religious group pages Delivering religious news, religious teachings to the followers of
that religion or a target group.

4 Political party, politician and government
official’s pages

A group of people who come together to contest elections. A group
of politicians who have held the power of government.

5 Public figure: artists’ and authors’ pages A person or public figure who creates song, painting or drawing,
and a writer of a book, article, or document.

6 Activists’, general or interest community pages
A person who campaigns to bring about political or social change,
and pages promoting different issues on political, religious, ethnic
and other social issues.

This paper collects posts and comments from public pages that are in the listed
categories with larger number of followers and likes than the other pages in the category.
All of the selected posts and comments were posted from April 2019 to April 2020, which
covers the political and socio-economic changes experienced by the country in different
aspects in a year, and, in that period, the usage of social media—especially Facebook—in
the country has increased significantly. Table 2 lists the selected public Facebook pages and
provides information from each category. In addition, this paper collects the keywords for
filtering the collected Odia text data and the annotation process of the posts and comments.
These keywords are deemed as offensive words or the indicter of offensive or hate speech
text, and the words used to identify a target group. This study focuses on political, ethnic,
religious and gendered target groups.

3.2. Data Preparation

After the data collection is the data preparation process, which includes collecting,
cleaning, filtering, and consolidating data into one file or data table. The cleaning and
filtering of the raw data are primarily completed to prepare for the follow-up works—
namely the annotation of the posts and comments in the dataset and the training model
for Odia hate speech detection. The tasks performed in the data preparation process are
listed below:

1. Remove all non-Odia, non-English, and non-textual posts and comments;
2. Remove all null, blank value, and whitespace;
3. Filter data using keywords that are an indicator of hate and offensive language;
4. Join data of each page into one dataset;
5. Remove duplication to ensure the uniqueness of each text in the dataset.

All of the above preparation tasks consider the nature and behaviors of the Odia
language. The context of each text in a dataset is kept for annotation processes. The
keywords and offensive words are gathered for filtering purposes, from university students,
and also from different social media user pages known for using highly offensives words.

Appl. Sci. 2021, 11, 8575 6 of 21

The authors collected 27,422 posts. The total number of unique post and comment filtered
were 27,162.

3.3. Annotation

Annotation is a procedure for adding information to the collected data or document.
In this case, the annotation process needs to label a post or comment in order to build a
hate speech dataset. The paper uses a simple random sampling technique to select the
posts and comments to be annotated. The technique allows all of the filtered posts and
comments of each page to have an equal chance of being annotated. The annotation is
conducted based on the instruction guidelines provided by the researcher. The labeling is
conducted by at least four annotators.

4. Proposed Hate Speech Detection Architecture

The proposed architecture for detecting Odia-English posts and comments as hate,
offensive or normal speech is shown in Figure 1. It receives bilingual data as the input and
then pre-process it based on the language nature, which involves removing punctuations,
normalization, tokenization and another basic necessary pre-processes. Feature extraction
then extracts the feature using TF-IDF, n-gram, and word2vec. The output of this task is an
important feature vector (training data) of the dataset for training the model. After feature
extraction, the models are trained using SVM, NB, and RF machine learning algorithms.
The resulting models are then evaluated by K-fold cross-validation and, based on the
validation results, the best detection model is selected. The outcome of these tasks is a
detection model for detecting hate and offensive speech. The detection model is evaluated
and selected, based on the results of the model evaluation method discussion. The final
selected detection model is used to develop a prototype that can take new Odia-English
texts as input and classify the input according to whether it contains hate, offensive or
normal speech.

Figure 1. Hate speech detection architecture.

4.1. Proposed Odia-English Text Preprocessing

The pre-processing of Odia-English posts and comments is intended to prepare the
data for training and testing the model. It is performed based on the Odia and English

Appl. Sci. 2021, 11, 8575 7 of 21

language and basic text processing techniques, such as removing the punctuations and
special characters, normalization, and tokenization [41] (Figure 2).

Figure 2. Dataset pre-processing steps.

4.1.1. Removing (Cleaning) Irrelevant Character, Punctuations Symbol, and Emoji’s

The posts and comments on social media text usually contain special characters,
punctuations, symbols, and emojis to express different opinions and feelings. Therefore,
the cleaning task involves removing all irrelevant special characters, symbols, and emojis.
The source code of the cleaning Algorithm 1 is given below:

Algorithm 1 Cleanup Odia-English Mixed Text.

Input: Text in a dataset
Output: Clean text
Begin:
1.Read the text in the dataset;
2.While (! end of the text in a dataset):
If the text contains special_char [,’! @#$%ˆ&*] then Remove special_char;
If the text contains symbol [<>

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 23

Figure 1. Hate speech detection architecture.

4.1. Proposed Odia-English Text Preprocessing
The pre-processing of Odia-English posts and comments is intended to prepare the

data for training and testing the model. It is performed based on the Odia and English
language and basic text processing techniques, such as removing the punctuations and
special characters, normalization, and tokenization [41] (Figure 2).

Figure 2. Dataset pre-processing steps.

4.1.1. Removing (Cleaning) Irrelevant Character, Punctuations Symbol, and Emoji’s
The posts and comments on social media text usually contain special characters,

punctuations, symbols, and emojis to express different opinions and feelings. Therefore,
the cleaning task involves removing all irrelevant special characters, symbols, and emojis.
The source code of the cleaning Algorithm 1 is given below:

Algorithm 1 Cleanup Odia-English Mixed Text.
Input: Text in a dataset
Output: Clean text
Begin:
1. Read the text in the dataset;
2. While (! end of the text in a dataset):
If the text contains special_char [,’! @#$%^&*] then Remove special_char ;
If the text contains symbol [<>‹›«»=፦`~_/] then Replace symbol and add space;
If a text contains odia_Punc=[! . ?”] then Remove Odia_Punc;
If text contain number = [0–9] then Remove number;
If a text containsemoji = [😂👍😤 ……] then Remove emoji;
If a text contains extra white space then Trim the text;

~_/] then Replace symbol and add space;
If a text contains odia_Punc=[! . ?”] then Remove Odia_Punc;
If text contain number = [0–9] then Remove number;
If a text containsemoji = [

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 23

Figure 1. Hate speech detection architecture.

4.1. Proposed Odia-English Text Preprocessing
The pre-processing of Odia-English posts and comments is intended to prepare the

data for training and testing the model. It is performed based on the Odia and English
language and basic text processing techniques, such as removing the punctuations and
special characters, normalization, and tokenization [41] (Figure 2).

Figure 2. Dataset pre-processing steps.

4.1.1. Removing (Cleaning) Irrelevant Character, Punctuations Symbol, and Emoji’s
The posts and comments on social media text usually contain special characters,

punctuations, symbols, and emojis to express different opinions and feelings. Therefore,
the cleaning task involves removing all irrelevant special characters, symbols, and emojis.
The source code of the cleaning Algorithm 1 is given below:

Algorithm 1 Cleanup Odia-English Mixed Text.
Input: Text in a dataset
Output: Clean text
Begin:
1. Read the text in the dataset;
2. While (! end of the text in a dataset):
If the text contains special_char [,’! @#$%^&*] then Remove special_char ;
If the text contains symbol [<>‹›«»=፦`~_/] then Replace symbol and add space;
If a text contains odia_Punc=[! . ?”] then Remove Odia_Punc;
If text contain number = [0–9] then Remove number;
If a text containsemoji = [😂👍😤 ……] then Remove emoji;
If a text contains extra white space then Trim the text;

.] then Remove emoji;
If a text contains extra white space then Trim the text;
3.Return clean_text;
End:

4.1.2. Tokenization

After the cleaning and normalization tasks, the tokenization splits the post and com-
ment text into individual words or tokens by using spaces between words or punctuation
marks. This is important because the meaning of text generally depends on the relations of
words in that text and this helps the feature extraction methods to obtain the appropriate
features from the dataset.

4.2. Proposed Feature Extractions

The proposed feature extractions performs the extraction of important features of the
dataset. It goes along with the input of prepossessed and tokenized dataset words and
performs extractions, as shown in Figure 3. The extracted features are used for training
the models and to predict the class of posts and comments as hate, offensive, and normal
speech. The adopted feature extraction methods, word2vec, TF-IDF, and n-gram, are well
known in text mining approaches [42]. Each method provides the feature vectors used to
train the machine learning classifier.

4.2.1. n-Gram Feature Extraction

This paper proposes a word n-gram feature extraction method that is experimented
on a different value of n that ranges from one to three where n is the number of words used
in the probability sequences. An n-gram of two words is called a bigram (2-g). The feature
extraction is performed by using unigram, bigram, trigram and combination n-grams. The
performance of n-gram needs a proper choice of the n value. In addition, it provides a
different feature model to train and compare the n-gram features with one another.

Appl. Sci. 2021, 11, 8575 8 of 21

Figure 3. The feature extraction flow chart.

4.2.2. TF-IDF Feature Extraction

TF-IDF feature extraction is experimented in order to obtain the word frequency in
the dataset by applying the TF. The importance of the word in the dataset is represented by
measuring the IDF of the word in the dataset. This featured model provides the classifiers
for the frequency and the importance of a word in the dataset as a feature vector for
training.

4.2.3. Word2vec Feature Extraction

The proposed word2vec method performs the modeling of word to vector on a
larger amount of data, due to the absence of a standard Odia word2vec model, and it is
recommended that domain-related models are built to achieve better results. The word2vec
model contains a vectors space and a similarity of all the words in posts and comments.
These models extract features from the text in the dataset by calculating the average of
all vectors using the model. This paper performs feature extraction, not only based on
single methods, but also on a combination of some of these methods together, like n-grams
weighted by TF-IDF and combined n-grams. Multiple feature extraction models are used
in order to compare the performances of each feature extraction method.

4.3. Machine Learning Model Building

This subcomponent performs machine learning classifier training on all feature vectors
constructed by the feature extraction component methods. This paper builds a classifica-
tions model by using the machine-learning algorithms SVM, RF, and NB on the dataset
features and labels, as shown in Figure 4. The process of modeling is intended to find the
patterns in the training dataset that maps the posts and comments with their features to
the target class by using machine learning algorithms. The output of the machine learn-
ing modeling is a trained model that can be used for detecting hate speech and making
predictions on newly input posts and comments.

This paper proposes the one-vs-rest (OVR) strategy of SVM classifier. This is because
a simple form of the SVM algorithm is a binary classifier, which can separate a specific
group from the others among the classes. In order to classify multiple groups of classes, the
authors apply a modified version of the SVM algorithm, which is used for multiple class
classifications. This method separates each class from the rest of the classes in the dataset.
The NB classifier is a probabilistic machine learning model that is used for classification [43].
This paper uses a multinomial NB for modeling. The NB classifier is a specific instance
of the classifier which uses multiple distributions for each of the features in the dataset.
The RF classifier is a meta-estimator that fits a number of decision tree classifiers on a

Appl. Sci. 2021, 11, 8575 9 of 21

subsample of the dataset. The RF consists of a large number of individual decision trees
that operate as an ensemble by bagging and feature randomness.

Figure 4. The model building flow chart.

4.4. Model Evaluation and Testing

In order to evaluate the accuracy of the machine learning models for hate speech
detection—in other words, the generalization error of the resulting models on the finite
datasets—this paper adopts k-fold cross-validation (CV) and different performance evalua-
tion metrics, such as confusion matrix, accuracy, precision, recall, and F-measure.

5. Experiment and Results

The tools mentioned in the previous section are deployed on a personal computer
equipped with a processor Intel® Core™ i5-4310M, CPU 2.70GHz, 2 Core(s), 8 Gigabyte of
physical memory, and 465 Gigabyte hard disk storage capacities. The operating system is
Window 10 pro, 64 bits.

5.1. Dataset Description

In order to build the dataset for this paper, the authors collected posts and comments
from Facebook manually. Firstly, we selected 35 different public Facebook pages, which
belonged to categories that contain a range of three to six selected pages based on the
selection criteria of public pages. We then collected all posts on the page from April 2019 to
April 2020, and recorded the comments under each post. Next, we filtered the Odia-English
mixed posts and comments by removing non-textual data. This process resulted in a total
number of 837,077 posts and comments. There were, in total, 27,162 posts and comments on
unique pages being filtered through the keywords. The keywords helped to filter the posts
and comments which were likely to have hateful or offensive speech in the content. Finally,
5000 posts and comments were annotated and labeled as hate speech (HS), offensive speech
(OFS), and neither offensive nor hate speech (OK) categories.

5.2. Preprocessing Implementation

The authors utilized a simple random sampling technique to select the posts and
comments to be annotated. This technique provided an equal chance for all of the filtered
posts and comments to be annotated. Because of the time limitation of the research and
the resources of the annotation process for filtered posts and comments, 5000 posts and
comments were selected to be annotated. There were four annotators in total and everyone
labelled the posts and comments based on the same guidelines. Three of the annotators
were given 500 similar instances and 1000 unique posts and comments. The same instances
were used to evaluate the consistency of the annotations among the annotators. The
fourth annotator was the researcher who oversaw the whole process of the annotation and
annotated 1500 unique posts and comments. The process of building the dataset is tedious,
challenging, and time-consuming, therefore, we consider only 500 of the same posts and

Appl. Sci. 2021, 11, 8575 10 of 21

comments to be annotated by the three annotators and the researcher decided the final
class using the majority vote’s method.

The annotation process resulted in a distribution of classes shown in Table 3 for each
annotator. The labeling result for the common 500 instances of posts and comments by
the annotators is presented in Table 4. The resulting three-class distribution in dataset
is shown in Table 5. The dataset used to train the machine learning models consisted of
4500 uniquely annotated posts, and the final class of 500 posts and comments were decided
by the researcher using the majority vote’s method. A total of 5000 posts and comments
were collected in the annotated dataset.

Table 3. Annotation result of unique posts and comments.

Label Annotator 1 Annotator 2 Annotator 3 Annotator 4 Total Unique Annotated

Offensive (OFS) 484 628 304 619 2035
Hate (HS) 281 202 198 417 1098

Neither (OK) 235 170 498 464 1367
Total annotated 1000 1000 1000 1500 4500

Table 4. Annotation result of common posts and comments.

Label Annotator 1 Annotator 2 Annotator 3 Final Class by Voting

Offensive (OFS) 251 227 221 264
Hate (HS) 93 114 151 95

Neither (OK) 156 159 128 141
Total 500 500 500 500

Table 5. The three-class distribution of the dataset.

Label or Class Number of Post and Comments

Offensive (OFS) 2299
Hate (HS) 1193

Neither (OK) 1508
Total 5000

The inter-rater agreement for the 500 similar posts and comments annotated by three
annotators is 0.54 kappa. The kappa value interpretation indicates a moderate agreement
between annotators. In order to build the binary class dataset, the three-class data set is
converted to two class datasets by considering all offensive language to be hate speech.
Hence, all of the OFS labeled are converted to HS and this results in a dataset with 3492 HS-
class. The inter-annotator agreement for two-class on the 500 similar posts and comments
results in 0.66 kappa, which indicates a good agreement between the annotators.

5.3. Feature Extraction Result

The feature extraction process uses three methods, N-gram, TD-IDF, and word2vec,
and produces seven different sets of features vectors for the dataset. For word2vec, the
window is set to 10, the embedding size is set to 150, and the min count is taken as two.
This paper uses skip-gram. To implement word2Vec, this paper utilizes a python Gensim
module that is used to implement different embedding methods. It includes both skip-gram
and CBOW, but the authors chose skip-gram for this experiment. Feature modeling with
Gensim word2Vec is straightforward. First, the word2Vec class is imported and instantiated
with the necessary parameters and the vocabulary is built. The word2Vec model is then
trained using the posts and comments that are gathered from the selected pages. The
resulting feature vector is also known as the embeddings. Embeddings are the features
that describe the target word. The resulting word2vce model is then used to extract feature
by computing the similarity for a word in the dataset and using it as a feature to train the
machine learning models. The authors conducted the experiment with the embedding size
varying from 100 to 300, but the optimal result occurs at the embedding size of 150, hence,
the authors performed the experiment with 150.

Appl. Sci. 2021, 11, 8575 11 of 21

These feature vectors are used in the training of the SVM, NB and RF models. For
SVM, the parameters are multilabel classifications, *, n_jobs = None. For multinomial NB,
the parameters are alpha = 1.0, fit_prior = True, class_prior = None. For RF, the param-
eters are estimators = 100, criterion = ‘gini’, max_depth = None, min_samples_split = 2,
min_samples_leaf = 1, min_weight_fraction_leaf = 0.0, max_features = ‘auto’, max_leaf_nodes
= None, min_impurity_decrease = 0.0, min_impurity_split = None, bootstrap = True, oob_score
= False, n_jobs = None, random_state = None, verbose = 0, warm_start = False, class_weight
= None, ccp_alpha = 0.0, max_samples = None. Table 6 shows the extracted feature vector
size for the dataset.

Table 6. Results of the extracted features vector size.

Features Extraction Method Features Vectors Size

Word unigram 10,282
Word bigram 14,298
Word trigram 14,830

Word unigram + bigram + trigram (combined n-grams) 39,410
TF-IDF 10,279

TF-IDF + combined n-grams 49,692
Word2vec 150

5.4. Models Evaluation Results

The experiment results in twenty-one different models based on seven features and
three classifiers for both binary and ternary classification. These trained models are tested
by 5-fold cross-validation. This method randomly splits the dataset into five equal sized
datasets or folds. For each unique fold, the fold is taken to be the test dataset, and the
models are trained using the remaining datasets. This process is iterated for each unique
fold. The results are presented in binary and ternary classification models below.

5.5. Binary Classification Models Evaluation Results

These classification models are built using the two-class dataset that is converted
from the annotated three-class dataset, which means that the target classes are HS and
OK. The trained models are tested using 5-fold CV. The result of each test accuracy score
for the SVM, NB, and RF models based on extracted feature vectors are presented in
Tables 7–9, respectively. Table 7 shows the accuracy scores of SVM model based on feature
with corresponding fold tests. The average accuracy of the results recorded by the TF-IDF
feature model is low, at 69.84%; while the accuracy of the results using the word2vec feature
is high, at 72.54%. Table 8 shows the prediction accuracy scores of the NB model on each
feature extracted with the corresponding fold tests. The lower average accuracy of the
70.78% result was recorded on the word2vec feature model and the slightly higher accuracy
of 74.66% was recorded using the combined n-gram feature. Table 9 shows the prediction
accuracy scores of the RF model on the extracted features with corresponding each fold
test. The lower average accuracy of the 71.5% result was recorded on the TF-IDF with
the combined n-gram feature. The higher accuracy of 75.39% was recorded on the model
using the word2vec features. The bar chart of Figure 5 visualizes the 5-fold CV average
accuracy of each model based on the features in the above three tables (Tables 7–9) for
binary class experiments. It reveals that the average accuracy of the NB models is slightly
greater than that of the SVM and RF models based on the n-grams feature and TF-IDF
combined with n-grams. In addition, the RF obtains higher accuracy using word2vec and
the TF-IDF feature.

Appl. Sci. 2021, 11, 8575 12 of 21

Table 7. SVM models’ accuracy scores for each feature using the binary class dataset.

Features
5-Folds Accuracy (%) for SVM Model Average

Accuracy
(%)1st 2nd 3rd 4th 5th

Word unigram 72.12 70.72 68.10 73.27 73.07 71.46
Word bigrams 73.32 71.62 68.50 73.47 72.97 71.98
Word trigrams 73.22 71.52 68.40 73.47 73.07 71.94

Combined n-grams 72.82 70.72 68.20 72.27 73.47 71.50
TF-IDF 70.02 70.22 66.80 71.67 70.47 69.84

TF-IDF+ Combined n-gram 70.12 70.22 67.20 71.57 70.67 69.96
Word2vec 73.12 71.42 70.10 73.67 74.37 72.54

Table 8. NB models’ accuracy scores on each feature using binary class the dataset.

Features
5-Folds Accuracy (%) for NB Model Average

Accuracy
(%)1st 2nd 3rd 4th 5th

Word unigram 73.72 74.52 74.2 75.27 74.97 74.54
Word bigrams 74.62 74.22 72.80 75.97 75.37 74.60
Word trigrams 74.72 74.22 72.90 75.97 75.27 74.62

Combined n-grams 74.72 74.82 72.30 76.07 75.37 74.66
TF-IDF 70.62 71.52 71.40 73.97 73.77 72.26

TF-IDF+ Combined n-gram 73.12 72.72 71.90 75.27 75.37 73.68
Word2vec 71.32 67.33 69.5 72.97 72.77 70.78

Table 9. RF models’ accuracy scores on each feature using the binary class dataset.

Features
5-Folds Accuracy (%) for RF Model Average

Accuracy
(%)1st 2nd 3rd 4th 5th

Word unigram 74.44 72.12 72.80 73.97 72.87 73.24
Word bigram 73.82 71.62 71.80 74.17 72.57 72.80
Word trigram 73.52 71.92 72.10 73.67 73.47 72.92

Combined n-gram 73.32 72.02 72.40 74.97 71.87 72.92
TF-IDF 74.52 71.92 71.7 73.87 71.97 72.79

TF-IDF+ combined n-gram 71.23 71.63 70.60 71.77 72.27 71.50
Word2vec 75.32 76.12 74.3 76.07 75.17 75.39

Figure 5. Binary models’ comparisons using CV average accuracy.

Appl. Sci. 2021, 11, 8575 13 of 21

In addition to the result accuracy score obtained by the 5-fold CV, this paper also uses
other models’ performance evaluation metrics. These metrics are Precision (P), Recall(R),
and F-score (F1). Table 10 shows the results of the evaluation metrics of each model based
on the features extracted. It further uses the normalized confusion matrix of the models
that use 5-fold prediction, with the results shown in Figures 6–8 below. Based on the
F1-score, the SVM model with word2vec obtains a higher score of 73% than the RF and NB
models. However, the accuracy of the RF model is 75.39% which is higher than that of the
SVM and NB models using the word2vec features (Figure 5). F1-score metrics are selected
in order to compare the models based on the features because this is more useful than
the accuracy when the dataset contains uneven class distribution. Figure 6 illustrates the
sampled confusion matrix for SVM models. SVM models based on bigram classify 79% of
HS and 55% of NH correctly, but 21% of HS and 45% of NH are misclassified; SVM models
based on TF-IDF classify 78% of HS and 50% of NH correctly, but 22% of HS and 50% of NH
are misclassified; and SVM models based on word2vec classify 73% of HS and 72% of NH
correctly, but 27% of HS and 28% of NH are misclassified. Figure 7 illustrates the sampled
confusion matrix for the NB models. NB models based on combined n-grams classify 91%
of HS and 38% of NH correctly, but 9% of HS and 62% of NH are misclassified; NB models
based on TF-IDF classify 86% of HS and 40% of NH correctly, but 14% of HS and 60% of
NH are misclassified; and NB models based on word2vec classify 73% of HS and 65% of
NH correctly, but 27% of HS and 35% of NH are misclassified. Similarly, Figure 8 shows
the confusion matrix of the RF model. RF models based on unigram classify 89% of HS and
34% of NH correctly, but 11% of HS and 66% of NH are misclassified; RF models based
on TF-IDF classify 90% of HS and 33% of NH correctly, but 10% of HS and 67% of NH
are misclassified; and RF models based on word2vec classify 96% of HS and 28% of NH
correctly, but 4% of HS and 72% of NH are misclassified. A normalized confusion matrix
for binary classifier models based on the feature extracted using the prediction result of
5-fold CV for the models is shown in Figures 6–8 respectively. The actual class is the labels
post or comment in the dataset and the predicted class is the prediction labels made by the
models. The heatmap represents the predicted or classified instance of posts and comments
in each class. Finally, the result of the binary models demonstrates that the NB model
based on n-grams shows better accuracy than the RF and SVM models. However, the
RF models based on word2vec and TF-IDF show higher accuracy than the SVM and NB
models. Furthermore, SVM models with word2vec give better classification results than
both models.

Figure 6. Confusion matrix of sample binary SVM models based on extracted features.

Appl. Sci. 2021, 11, 8575 14 of 21

Table 10. Classification performance result of binary models.

Feature
SVM NB RF

P R F1 P R F1 P R F1

Word unigram 0.72 0.71 0.72 0.73 0.75 0.71 0.71 0.73 0.70
Word bigrams 0.72 0.72 0.72 0.73 0.75 0.72 0.71 0.73 0.70
Word trigrams 0.72 0.72 0.72 0.73 0.75 0.72 0.71 0.73 0.70

Combined n-grams 0.72 0.71 0.72 0.73 0.75 0.72 0.70 0.72 0.70
TF-IDF 0.70 0.70 0.70 0.70 0.72 0.71 0.71 0.73 0.70

TF-IDF+ combined n-grams 0.70 0.71 0.70 0.72 0.74 0.72 0.70 0.72 0.70
Word2vec 0.76 0.73 0.73 0.73 0.71 0.72 0.75 0.75 0.72

Figure 7. Confusion matrix of sample binary NB models based on extracted features.

Figure 8. Confusion matrix of sample binary RF models based on extracted features.

5.6. Ternary Classification Models Evaluation Results

The models were also trained based on the prepared three-class dataset. The trained
models are tested using the 5-fold CV. Tables 11–13 show the accuracy scores of the models
trained by SVM, NB, and RF, respectively, with various feature extraction vectors. Table 11
reveals that the SVM model using TF-IDF feature has the lower average accuracy of 48.51%,
and the SVM model using word2vec feature has the higher average accuracy of 53.35%.
Table 12 shows that the NB model using the unigram feature has the lower average accuracy
of 41.89%, and the NB model using the word2vec feature has the higher average accuracy
of 49.57%. Table 13 shows that the EF model using the bigram feature has the lower average
accuracy, at 50.08%, and the EF model using the word2vec feature has the higher average
accuracy, at 55.05%. The bar chart of Figure 9 visualizes the 5-fold CV average accuracy of
each model based on the features in Tables 11–13 for the ternary classification experiments.
It reveals that the NB models result in a lower score than the SVM and RF models. The

Appl. Sci. 2021, 11, 8575 15 of 21

SVM model achieves a higher score on bigram, trigram and combined n-gram. However,
the RF model has the highest score using TD-IDF and word2vec based features.

Table 11. SVM models’ accuracy scores on each features using three class dataset.

Extracted Feature
5-Folds Accuracy Scores (%) for SVM Model Average

Accuracy
(%)1st 2nd 3rd 4th 5th

Word unigram 52.6 51.7 46.9 50.7 52.5 50.88
Word bigrams 53.5 51.1 48.5 50.7 52.4 51.24
Word trigrams 53.3 51.7 48.7 51.0 52.2 51.40

Combined n-grams 53.3 53.2 48.4 50.1 52.8 51.56
TF-IDF 50.2 50.0 45.5 48.0 48.8 48.51

TF-IDF+ combined 50.8 50.4 45.5 47.8 50.0 48.73
Word2vec 57.1 55.7 49.5 51.5 53.0 53.35

Table 12. NB models’ accuracy scores on each features using three class dataset.

Feature Models
5-Folds Accuracy Scores (%) for NB Model Average

Accuracy
(%)1st 2nd 3rd 4th 5th

Word unigram 40.2 42.8 44.3 38.8 43.5 41.89
Word bigrams 41.8 44.1 47.2 42.6 43.8 43.87
Word trigrams 41.9 44.5 47.6 42.7 43.8 44.07

Combined n-grams 52.7 51.4 48.8 47.1 48.6 49.73
TF-IDF 48.4 48.3 47.4 45.9 47.4 47.45

TF-IDF+ combined 49.5 49.3 48.4 46.9 48.0 48.39
Word2vec 54.0 51.0 49.5 46.0 47.3 49.57

Table 13. RF models’ accuracy scores on each features using three class dataset.

Extracted Feature
5-Folds Accuracy Scores (%) for the RF Model Average

Accuracy
(%)1st 2nd 3rd 4th 5th

Word unigram 52.6 50.6 50.4 52.8 48.9 51.07
Word bigrams 52.9 50.4 51.1 51.0 48.7 50.08
Word trigrams 52.4 51.7 49.0 51.4 49.0 50.69

Combined n-grams 53.3 50.5 50.6 50.9 48.4 50.75
TF-IDF 52.2 50.0 48.2 52.2 49.3 50.38

TF-IDF+ combined 52.9 50.1 49.7 49.9 50.3 50.59
Word2vec 56.0 56.7 53.0 54.3 55.2 55.05

Figure 9. Ternary models’ comparison using CV average accuracy.

Appl. Sci. 2021, 11, 8575 16 of 21

Table 14 shows the results of the evaluation metric of each model, based on the features
extracted and the normalized confusion matrix of the models using 5-fold CV prediction
results. Comparing the result of the F1-score, the SVM model that was based on word2vec
attained an F1-score of 53%; a higher score than the rest of the models. However, in terms of
accuracy, the RF model (at 55.5%) was higher than the NB and SVM models with word2vec
features. Figure 10 shows the confusion matrix for the SVM models. The SVM model with
trigram classifies 43% of HS, 60% of OFS and 45% of the neither (OK) classes correctly, but
48% of HS and 45% of the OK class were misclassified as OFS. The misclassification rate of
the HS and OK classes is 10% and 9%, respectively. The SVM model with TF-IDF+n-grams
classifies 45% of HS, 52% of OFS and 48% of the OK class correctly, but 41% of HS and
38% of the OK class were misclassified as OFS. The misclassification rate of the HS and OK
classes is 15% and 14%, respectively. Similarly, the SVM model with word2vec classifies
46% of HS, 49% of OFS and 65% of the OK class correctly, but 42% of HS and 28% of the
OK class were misclassified as OFS. The misclassification rate of the HS and OK classes
are 12% and 7%, respectively. Figure 11 shows a confusion matrix of the NB models. The
NB model with combined n-gram classifies 50% of HS, 58% of OFS and 36% of the OK
class correctly, but 46% of HS and 47% of the OK class were misclassified as OFS. The
misclassification rate of the HS and OK classes is 4% and 17%, respectively. The NB model
with TF-IDF+n-grams classifies 50% of HS, 54% of OFS and 39% of the OK class correctly,
but 44% of HS and 42% of the OK class were misclassified as OFS. The misclassification
rate of the HS and OK classes are 7% and 19%, respectively. In addition, the NB model
with word2vec classifies 55% of HS, 38% of OFS and 63% of the OK class correctly, but 28%
of HS and 26% of the OK class were misclassified as OFS. The misclassification rate of the
HS and OK classes is 11% and 17%, respectively. Figure 12 shows the confusion matrix of
the RF models. The RF model with unigram classifies 33% of HS, 64% of OFS and 46% of
the OK class correctly, but 54% of HS and 48% of the OK class were misclassified as OFS.
The misclassification rate of the HS and OK classes are 6% and 13%, respectively. The RF
model with TF-IDF classifies 31% of HS, 65% of OFS and 46% of the OK class correctly,
but 55% of HS and 47% of the OK class were misclassified as OFS. The misclassification
rate of the HS and OK classes is 6% and 13%, respectively. In addition, the RF model with
word2vec classifies 18% of HS, 83% of OFS and 40% of the OK class correctly, but 78% of
HS and 59% of the OK class were misclassified as OFS. The misclassification rate of the
HS and OK classes is 3% and 2%, respectively. Normalized confusion matrices for ternary
classifier models based on the feature extracted are represented in Figures 10–12, exhibiting
the classification results of a 5-fold CV of each model. The actual class is the label’s post or
comment in a dataset and the predicted class is the prediction labels by the models. The
classes are hate, offensive and neither (OK). Conclusively, the SVM model with word2vec
produced slightly better classification results than the NB and RF models.

Figure 10. Confusion matrix of sample ternary SVM models based on extracted features.

Appl. Sci. 2021, 11, 8575 17 of 21

Table 14. Classification performance result of ternary models.

Extracted Feature
SVM NB RF

P R F1 P R F1 P R F1

Word unigram 0.51 0.51 0.51 0.43 0.42 0.42 0.51 0.51 0.50
Word bigrams 0.51 0.51 0.51 0.45 0.44 0.44 0.51 0.51 0.50
Word trigrams 0.51 0.51 0.51 0.45 0.44 0.44 0.51 0.51 0.50

Combined n-grams 0.52 0.52 0.52 0.52 0.50 0.50 0.50 0.51 0.50
TF-IDF 0.49 0.49 0.49 0.50 0.47 0.48 0.50 0.51 0.50

TF-IDF+ combined n-grams 0.49 0.49 0.49 0.50 0.48 0.49 0.50 0.51 0.50
Word2vec 0.53 0.53 0.53 0.51 0.50 0.49 0.57 0.54 0.50

Figure 11. Confusion matrix of sample ternary NB models based on extracted features.

Figure 12. Confusion matrix of sample ternary RF models based on extracted features.

5.7. Comparision with Results of Conventional ML Methods

In this section, the authors use four conventional machine learning (ML) techniques:
logistic regression (LR), decision tree (DT), gradient boosting (GB) and K-nearest neighbor
(KNN) for the classification of text. For comparison, the authors used the exact same
dataset of Odia-English code mixed data devised by themselves. The authors reinforced
the models using three classes of data: hate, offensive and neither (OK). First, the authors
investigated using the unigram feature based on ML methods, followed by the bigram and

Appl. Sci. 2021, 11, 8575 18 of 21

trigram features. Classification performances of LR, DT, GB, and KNN by P, R and F1 score
are listed in Table 15.

Table 15. Results using conventional machine learning methods.

Model Extracted Features P R F1 Average Accuracy (%)

LR
Word unigram 0.50 0.50 0.50 50.01
Word bigrams 0.50 0.50 0.50 50.02
Word trigrams 0.50 0.50 0.50 49.65

DT
Word unigram 0.45 0.43 0.44 43.34
Word bigrams 0.47 0.45 0.46 43.09
Word trigrams 0.49 0.45 0.47 42.17

GB
Word unigram 0.50 0.50 0.50 49.11
Word bigrams 0.49 0.50 0.49 48.23
Word trigrams 0.50 0.50 0.50 48.52

KNN
Word unigram 0.44 0.44 0.44 41.32
Word bigrams 0.45 0.45 0.45 42.31
Word trigrams 0.45 0.45 0.45 42.89

For accuracy, it is quite evident from Table 11 that the SVM model with the word
trigram features has an accuracy of 51.4%, which is higher than the average accuracies
reported by any of the four standard ML techniques. From Table 14, it can be seen that
the SVM model has a precision of 0.51, which is a slight improvement on the precision of
any of the methods shown in Table 15. It signifies that the false-positive cases recorded
by SVM are less compared to other models. The recall value for SVM model stands at
0.51, which is also marginally higher than the precision value reported by all of the four
standard techniques. This reveals that the false-negative case conveyed by our model is less
compared to classic ML techniques, which signifies a drop in misclassification instances.

5.8. Discussion

The defining characteristics of the few hate detection models published in the last
four years are summarized in Table 16. The first column shows the paper, and the year
of publishing, and columns two to five reflect the details of the datasets used in the
experiments. The subsequent columns exhibit the features considered (the features used
in the best model are in bold), and the classification models tested (the best classification
model is in bold). Finally, the performance of the best model found is presented using the
accuracy (A) and F1-scores (F1). A dash (-) indicates that the value is not available.

Binary detection models were developed by Mossie and Wang [22] using NB and RF
with the extracted features word2vec and TF-IDF. They reported performance accuracy
results of 79% and 73% for NB, and 65% and 63% for RF with both features, respectively.
They used a total of 6120 instances as dataset. Among those, 1821 were labeled posts and
comments and a dictionary of hateful word and phrases was extracted from the annotated
dataset. The dataset contains 3296 non-hate and 2824 hate speech instances, and the model
used 80% of the dataset for training and 20% for testing. In contrast, the RF models of our
study perform better than the RF models of Mossie and Wang’s study [22], by a margin of
10% and 9% for both features, respectively. The NB model with TF-IDF feature of this study
also performs equally with Mossie and Wang; however, our NB model with word2vec
falls behind by 8%. A CNN-based model for HS detection from Twitter on word2vec
embeddings reported by Gambäck and Kumar [25] showed the values of the P, R and F1
scores as 0.85, 0.72 and 0.78, respectively. Furthermore, the P and F1 score values of [25]
are marginally higher than our results, which were P = 0.76, R = 0.73 and F1 score = 0.73.
This small marginal difference of accuracy results obtained by the same feature extraction
method shows that the size of neither the dataset nor the setup used is the core problem.
The problems are the ambiguity of dataset labels, which resulted in a larger percentage of
non-hate class being misclassified as hate by the models. However, the SVM models with

Appl. Sci. 2021, 11, 8575 19 of 21

word2vec used in this study show a better classification performance than the NB and RF
models.

This is the first time in the current research that a dataset on Odia-English mixed
representation has been prepared. It is prepared using Facebook posts, which are in
English alphabets but representing Odia phonetics. The datasets are annotated and labeled
properly.

Table 16. Contemporary Hate speech Detection Models.

Reference/Year Name/Language Number of
Instances

Labels in
Dataset Source Features Model

Performance

A F1

[24], 2017 English 25000
Hate,

offensive and
neither

Twitter
Unigram, bigram, and
trigram features with

TF-IDF

LR, NB, DT,
RF and linear

SVM
– 0.90

[29], 2017 Indonesian 1100 HS and
non-HS Twitter BOW, word n-gram and

character n-gram

NB, SVM,
Bayesian LR,

RFDT
– 0.935

[33], 2018 English

45,645—
training,
22,820—
testing

Not labelled Twitter Unigram,
Bigram NB 0.70 –

[22], 2018 Ahmaric in
Ethiopia 6,120 Hate and not

hate Facebook word2vec and TF-IDF NB, RF 0.798 0.853

[44], 2018 English 5143 Hate and not
hate

Comments
from videos

posted in
YouTube and

Facebook

n-grams, semantic and
syntactic, TF-IDF,

word2vec embeddings,
doc2vec embeddings

LR, DT, RF,
Adabost, SVM – 0.79

[35], 2018 Crowdflower
(Public) 14509

Hateful,
offensive and

clean
Twitter N-gram and TF-IDF LR, NB, SVM 0.956 0.96

[18], 2018
Hindi-English

code mixed
data

4575 Hate and
normal Twitter

Character n-gram, word
n-gram, punctuations,
lexicon, all features

SVM, RF 0.717 –

[20], 2020
Hindi-English

code mixed
data

10000 Hate and
non-hate

Twitter,
HASOC FastText, word2vec SVM- linear,

SVM-RBF, RF 0.8581 0.8580

6. Conclusions

This paper proposes a solution for detecting hate speech on social media using ma-
chine learning techniques. The research attempts to develop, implement and compare
machine learning and text feature extraction methods specifically for hate speech detec-
tion for the Odia-English mixed code language. To successfully execute the research, it
is essential to understand and define hate and offensive speech on social media, explore
the various existing techniques used to tackle the problem, and understand the Odia lan-
guage. In addition, it is important to identify the different method followed to implement
and design the models that have the capability of detecting hate speech. These methods
include: collecting posts and comments for building the dataset; developing annotation
guidelines; pre-processing and features extraction using n-gram; TF-IDF, and word2vec,
models training using SVM, NB, and RF; and models testing. Finally, comparisons of
the models based on 5-fold CV evaluation metric results were performed. In this paper,
the authors manually annotated the posts and comments into three classes of hate (HS),
offensive (OFS), and neither (OK) speeches. The annotated dataset was converted into two
class labelled datasets by converting all OFS to HS classes. This resulted in two datasets
with 5000 instances of posts and comments; one with binary classes and the other with
ternary class dataset. Based on the two datasets, the models were developed using SVM,
NB, and RF, along with seven feature extraction methods, and the models were then ex-
ecuted. The experiment performed using these two datasets resulted in 21 binary and
ternary models for each dataset. On one hand, binary models using RF with word2vec
resulted in better accuracy than both the SVM and NB models. On the other hand, the SVM
model with word2vec brought about a classification with a 73% F1-score, demonstrating a

Appl. Sci. 2021, 11, 8575 20 of 21

better performance than the NB and RF models. The ternary models performed better in
handling misclassification between the hate and non-hate posts and comments than the
binary models. Furthermore, the ternary SVM model with word2vec resulted in a 53%
F1-score, which showed a better performance than the models with NB and RF. Finally, the
models based on SVM using word2vec yielded slightly better performances than the NB
and RF models for both the datasets used in this research.

Author Contributions: Conceptualization, S.K.M. and S.P.; methodology, S.K.M.; software, S.K.M.;
validation, D.K.B., S.P. and Y.-C.H.; formal analysis, S.K.M. and Y.-C.H.; investigation, S.P.; data
curation, D.K.B.; writing—original draft preparation, T.K.D.; writing—review and editing, K.S. and
Y.-C.H.; visualization, T.K.D.; supervision, K.S.; project administration, Y.-C.H.; funding acquisition,
Y.-C.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was not funded.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fiok, K.; Karwowski, W.; Gutierrez, E.; Liciaga, T.; Belmonte, A.; Capobianco, R. Automated Classification of Evidence of Respect

in the Communication through Twitter. Appl. Sci. 2021, 11, 1294. [CrossRef]
2. Das, T.K.; Acharjya, D.P.; Patra, M.R. Opinion mining about a product by analyzing public tweets in Twitter. In Proceedings of

the 2014 International Conference on Computer Communication and Informatics, Coimbatore, India, 3–5 January 2014; pp. 1–4.
3. Bermingham, A.; Smeaton, A. On using Twitter to monitor political sentiment and predict election results. In Proceedings of the

Workshop on Sentiment Analysis Where AI meets Psychology (SAAIP 2011), Chiang Mai, Thailand, 13 November 2011; pp. 2–10.
4. Xu, X.; Mei, Y.; Sun, Y.; Zhu, X. Analysis of the Effectiveness of Promotion Strategies of Social Platforms for the Elderly with

Different Levels of Digital Literacy. Appl. Sci. 2021, 11, 4312. [CrossRef]
5. De Choudhury, M.; Sundaram, H.; John, A.; Seligmann, D.D. Analyzing the dynamics of communication in online social networks.

In Handbook of Social Network Technologies and Applications; Springer: Boston, MA, USA, 2010; pp. 59–94.
6. Florio, K.; Basile, V.; Polignano, M.; Basile, P.; Patti, V. Time of your hate: The challenge of time in hate speech detection on social

media. Appl. Sci. 2020, 10, 4180. [CrossRef]
7. Alshalan, R.; Al-Khalifa, H. A Deep Learning Approach for Automatic Hate Speech Detection in the Saudi Twittersphere. Appl.

Sci. 2020, 10, 8614. [CrossRef]
8. Pereira-Kohatsu, J.C.; Quijano-Sánchez, L.; Liberatore, F.; Camacho-Collados, M. Detecting and monitoring hate speech in Twitter.

Sensors 2019, 19, 4654. [CrossRef]
9. Gagliardone, I.; Pohjonen, M.; Beyene, Z.; Zerai, A.; Aynekulu, G.; Bekalu, M.; Teferra, Z. Mechachal: Online Debates and

Elections in Ethiopia-from Hate Speech to Engagement in Social Media. Available online: https://ssrn.com/abstract=2831369
(accessed on 5 September 2021).

10. Gagliardone, I. Mapping and Analysing Hate Speech Online. Available online: https://ssrn.com/abstract=2601792 (accessed on
5 September 2021).

11. Stokel-Walker, C. Alt-right’s’ Twitter’is hate-speech hub. New Sci. 2018, 3167, 15. [CrossRef]
12. Mathew, B.; Dutt, R.; Goyal, P.; Mukherjee, A. Spread of hate speech in online social media. In Proceedings of the 10th ACM

Conference on Web Science, Boston, MA, USA, 30 June 2019; pp. 173–182.
13. Malmasi, S.; Zampieri, M. Detecting hate speech in social media. arXiv 2017, arXiv:1712.06427.
14. Zhang, Z.; Luo, L. Hate speech detection: A solved problem? the challenging case of long tail on twitter. Semant. Web 2019, 10,

925–945. [CrossRef]
15. Jaki, S.; De Smedt, T. Right-Wing German Hate Speech on Twitter: Analysis and Automatic Detection. arXiv 2019,

arXiv:1910.07518.
16. Saleem, H.M. A Web of Hate Tackling Hateful Speech in Online Social Spaces. arXiv 2017, arXiv:1709.10159. Available online:

http://arxiv.org/abs/1709.10159 (accessed on 5 September 2021).
17. Al-Hassan, A.; Al-Dossari, H. Detection of hate speech in social networks: A survey on multilingual corpus. In Proceedings of

the 6th International Conference on Computer Science and Information Technology, Dubai, United Arab Emirates, 4–5 May 2019;
Volume 10.

18. Bohra, A.; Vijay, D.; Singh, V.; Akhtar, S.S.; Shrivastava, M. A dataset of Hindi-English code-mixed social media text for hate
speech detection. In Proceedings of the Second Workshop on Computational Modeling of People’s Opinions, Personality, and
Emotions in Social Media, New Orleans, LA, USA, 6 June 2018; pp. 36–41.

http://doi.org/10.3390/app11031294
http://doi.org/10.3390/app11094312
http://doi.org/10.3390/app10124180
http://doi.org/10.3390/app10238614
http://doi.org/10.3390/s19214654
https://ssrn.com/abstract=2831369
https://ssrn.com/abstract=2601792
http://doi.org/10.1016/S0262-4079(18)30377-4
http://doi.org/10.3233/SW-180338
http://arxiv.org/abs/1709.10159

Appl. Sci. 2021, 11, 8575 21 of 21

19. Kamble, S.; Joshi, A. Hate speech detection from code-mixed hindi-english tweets using deep learning models. arXiv 2018,
arXiv:1811.05145.

20. Sreelakshmi, K.; Premjith, B.; Soman, K.P. Detection of Hate Speech Text in Hindi-English Code-mixed Data. Procedia Comput. Sci.
2020, 171, 737–744. [CrossRef]

21. Saroj, A.; Pal, S. An Indian language social media collection for hate and offensive speech. In Proceedings of the Workshop on
Resources and Techniques for User and Author Profiling in Abusive Language, Marseille, France, 11–16 May 2020; pp. 2–8.

22. Mossie, Z.; Wang, J.H. Social network hate speech detection for Amharic language. In Proceedings of the 6th International
Conference on Computer Science and Information Technology, Copenhagen, Denmark, 28–29 April 2018; pp. 41–55.

23. Ibrohim, M.O.; Budi, I. A dataset and preliminaries study for abusive language detection in Indonesian social media. Procedia
Comput. Sci. 2018, 135, 222–229. [CrossRef]

24. Davidson, T.; Warmsley, D.; Macy, M.; Weber, I. Automated hate speech detection and the problem of offensive language. In
Proceedings of the Eleventh International AAAI Conference on Web and Social Media, Montreal, QC, Canada, 15–18 May 2017.

25. Gambäck, B.; Sikdar, U.K. Using convolutional neural networks to classify hate-speech. In Proceedings of the First Workshop on
Abusive Language Online, Vancouver, BC, Canada, 30 July–4 August 2017; pp. 85–90.

26. Benikova, D.; Wojatzki, M.; Zesch, T. What does this imply? Examining the Impact of Implicitness on the Perception of Hate
Speech. In International Conference of the German Society for Computational Linguistics and Language Technology; Springer: Cham,
Switzerland, 2017; pp. 171–179.

27. Del Vigna, F.; Cimino, A.; Dell’Orletta, F.; Petrocchi, M.; Tesconi, M. Hate me, hate me not: Hate speech detection on facebook. In
Proceedings of the First Italian Conference on Cybersecurity (ITASEC17), Venice, Italy, 17–20 January 2017; pp. 86–95.

28. Bassignana, E.; Basile, V.; Patti, V. Hurtlex: A multilingual lexicon of words to hurt. In Proceedings of the 5th Italian Conference
on Computational Linguistics, CLiC-it 2018, Torino, Italy, 10–12 December 2018; Volume 2253, pp. 1–6.

29. Alfina, I.; Mulia, R.; Fanany, M.I.; Ekanata, Y. Hate speech detection in the Indonesian language: A dataset and preliminary study.
In Proceedings of the 2017 International Conference on Advanced Computer Science and Information Systems (ICACSIS), Bali,
Indonesia, 28–29 October 2017; pp. 233–238.

30. Djuric, N.; Zhou, J.; Morris, R.; Grbovic, M.; Radosavljevic, V.; Bhamidipati, N. Hate speech detection with comment embeddings.
In Proceedings of the 24th International Conference On World Wide Web, Florence, Italy, 18–22 May 2015; pp. 29–30.

31. Watanabe, H.; Bouazizi, M.; Ohtsuki, T. Hate speech on twitter: A pragmatic approach to collect hateful and offensive expressions
and perform hate speech detection. IEEE Access 2018, 6, 13825–13835. [CrossRef]

32. Fauzi, M.A.; Yuniarti, A. Ensemble method for indonesian twitter hate speech detection. Indones. J. Electr. Eng. Comput. Sci. 2018,
11, 294–299. [CrossRef]

33. Kiilu, K.K.; Okeyo, G.; Rimiru, R.; Ogada, K. Using Naïve Bayes algorithm in detection of hate tweets. Int. J. Sci. Res. Publ. 2018,
8, 99–107. [CrossRef]

34. Tulkens, S.; Hilte, L.; Lodewyckx, E.; Verhoeven, B.; Daelemans, W. A dictionary-based approach to racism detection in dutch
social media. arXiv 2016, arXiv:1608.08738.

35. Gaydhani, A.; Doma, V.; Kendre, S.; Bhagwat, L. Detecting hate speech and offensive language on twitter using machine learning:
An n-gram and tfidf based approach. arXiv 2018, arXiv:1809.08651.

36. Biere, S.; Bhulai, S.; Analytics, M.B. Hate Speech Detection Using Natural Language Processing Techniques; Master Business Analytics,
Department of Mathematics, Faculty of Science, Vrije Universiteit Amsterdam: Amsterdam, The Netherlands, 2018.

37. Badjatiya, P.; Gupta, S.; Gupta, M.; Varma, V. Deep learning for hate speech detection in tweets. In Proceedings of the 26th
International Conference on World Wide Web Companion, Perth, Australia, 3–7 April 2017; pp. 759–760.

38. Gitari, N.D.; Zuping, Z.; Damien, H.; Long, J. A lexicon-based approach for hate speech detection. Int. J. Multimed. Ubiquitous
Eng. 2015, 10, 215–230. [CrossRef]

39. Zimmerman, S.; Kruschwitz, U.; Fox, C. Improving hate speech detection with deep learning ensembles. In Proceedings of the
11th Edition of the Language Resources and Evaluation Conference, Miyazaki, Japan, 7–12 May 2018; pp. 2546–2553.

40. MacAvaney, S.; Yao, H.R.; Yang, E.; Russell, K.; Goharian, N.; Frieder, O. Hate speech detection: Challenges and solutions. PLoS
ONE 2019, 14, e0221152. [CrossRef]

41. Miron’czuk, M.M.; Protasiewicz, J. A recent overview of the state-of-the-art elements of text classification. Expert Syst. Appl. 2018,
106, 36–54. [CrossRef]

42. Roy, P.K.; Tripathy, A.K.; Das, T.K.; Gao, X.Z. A Framework for Hate Speech Detection Using Deep Convolutional Neural Network.
IEEE Access 2020, 8, 204951–204962. [CrossRef]

43. Das, T.K. A customer classification prediction model based on machine learning techniques. In Proceedings of the 2015
International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), Davangere, India,
29–31 October 2015; pp. 321–326.

44. Salminen, J.; Almerekhi, H.; Milenkovic’, M.; Jung, S.G.; An, J.; Kwak, H.; Jansen, B.J. Anatomy of online hate: Developing a
taxonomy and machine learning models for identifying and classifying hate in online news media. In Proceedings of the Twelfth
International AAAI Conference on Web and Social Media, Palo Alto, CA, USA, 25–28 June 2018.

http://doi.org/10.1016/j.procs.2020.04.080
http://doi.org/10.1016/j.procs.2018.08.169
http://doi.org/10.1109/ACCESS.2018.2806394
http://doi.org/10.11591/ijeecs.v11.i1.pp294-299
http://doi.org/10.29322/IJSRP.8.3.2018.p7517
http://doi.org/10.14257/ijmue.2015.10.4.21
http://doi.org/10.1371/journal.pone.0221152
http://doi.org/10.1016/j.eswa.2018.03.058
http://doi.org/10.1109/ACCESS.2020.3037073

	Introduction
	Related Works
	Datasets
	Data Collection
	Data Preparation
	Annotation

	Proposed Hate Speech Detection Architecture
	Proposed Odia-English Text Preprocessing
	Removing (Cleaning) Irrelevant Character, Punctuations Symbol, and Emoji’s
	Tokenization

	Proposed Feature Extractions
	n-Gram Feature Extraction
	TF-IDF Feature Extraction
	Word2vec Feature Extraction

	Machine Learning Model Building
	Model Evaluation and Testing

	Experiment and Results
	Dataset Description
	Preprocessing Implementation
	Feature Extraction Result
	Models Evaluation Results
	Binary Classification Models Evaluation Results
	Ternary Classification Models Evaluation Results
	Comparision with Results of Conventional ML Methods
	Discussion

	Conclusions
	References

