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Abstract: Theoretical models and results of experimental campaigns relating to non-classic regimes
occurring in atmospheric optical turbulence are overviewed. Non-classic turbulence may manifest
itself through such phenomena as a varying power law of the refractive-index power spectrum,
anisotropy, the presence of constant-temperature gradients and coherent structures. A brief historical
introduction to the theories of optical turbulence, both classic and non-classic, is first presented.
The effects of non-classic atmospheric turbulence on propagating light beams are then discussed,
followed by the summary of results on measuring the non-classic turbulence, on its computer and
in-lab simulations and its controlled synthesis. The general theory based on the extended Huygens–
Fresnel method, capable of quantifying various effects of non-classic turbulence on propagating
optical fields, including the increased light diffraction, beam profile deformations, etc., is then
outlined. The review concludes by a summary of optical engineering applications that can be
influenced by atmospheric non-classic turbulence, e.g., remote sensing, imaging and wireless optical
communication systems. The review makes an accent on the results developed by the authors
for the recent AFOSR MURI project on deep turbulence.

Keywords: non-classic turbulence; anisotropic turbulence; non-Kolmogorov turbulence

1. Introduction

The aim of the introductory section is three-fold: first, outlining the historical develop-
ment of concepts and parameters characterizing 3D turbulent motion; second, thoroughly
familiarizing the reader with the classic theory of turbulence; and third, briefly discussing
the 2D turbulence theory being a stand-alone, comprehensive example of non-classic tur-
bulence.

1.1. Early Studies

Leonardo da Vinci was one of the first scholars who attempted to visualize, classify
and comprehend the phenomenon of turbulence. Figure 1 shows the drawing that he made
in 1509 on recording the experimental observation of water surface turbulence produced
by differently shaped objects. The appearance of the turbulent eddies behind the flat
obstacle is evident. It is currently argued that Leonardo could have been exposed to ancient
books that flooded Italy after the fall of Constantinople earlier in 1453. This suggests that
the phenomenon of turbulence could have been appreciated for millennia.

In the middle of the 18th century, Leonard Euler established the broad field of fluid
dynamics by introducing a set of partial differential equations governing the motion
of incompressible, adiabatic and inviscid flows. The Euler equations are the consequence
of the balance between the fluid’s energy and momentum and incorporate the continu-
ity law (conservation of mass) [1]. Almost a century later, Gabriel Stokes derived a set
of equations that generalized Euler’s equations to viscous fluids and are now known as
the Navier–Stokes equations [2].
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Figure 1. Turbulence generated by inserting differently shaped obstacles into a stream of water. Drawing
by Leonardo da Vinci, 1509, from Codex Windsor, Royal Collection in Windsor Castle, 1478–1518.

By the middle of the 19th century, the interest in turbulence resurfaced. On studying
instabilities in the pendulum’s motion, G. Stokes introduced a parameter that characterizes
fluid flows by the amount of their mixing [3], currently known as the Reynolds number (after
Osborn Reynolds who was the first to make practical use of the concept [4]). The Reynolds
number characterizes the ratio of inertial to viscous forces in the fluid:

Re = uL/ν, (1)

where u [m/s] is the speed, L [m] is the characteristic linear dimension, and ν [m2/s] is
the kinematic viscosity of the fluid. The transition from laminar (mixing-free) to turbulent
flows depends on geometry—from 2.3× 103 to 5.0× 104 for pipe flow to 106 for boundary
layers. In atmospheric cyclones, the number can reach values on the order of 1012.

On developing the tools for weather forecasting, Lewis Fry Richardson came up in
the early 1920s with the construction that is now known as the direct energy cascade or
Richardson energy cascade [5]. In a classic 3D turbulent flow, the energy is mechanically
injected into a volume filled with a fluid by means of a velocity field, such as wind in a gas
or a current in a liquid. If the initial distribution of some scalar field (temperature, pressure,
concentration of a chemical compound) within the volume is not uniform, the injected
energy creates a few sizable eddies, which later break down into a larger number of smaller
ones. The process repeats until a sufficiently small scale is reached and the mechanical
energy starts dissipating into heat. A turbulent eddy is intuitively understood as a region
of space in which the scalar field remains fairly correlated. In 1925, Ludwig Prandtl intro-
duced a parameter, currently known as the Prandtl number, which characterizes the ratio
of momentum diffusivity to diffusivity of an advected scalar. It is defined by the following
expression: [6]

Pr = ν/αj, (2)

where αj [m/s2] is the diffusivity relating to the nature of the advected scalar: thermal
for temperature advection, mass for molecular advection, etc. This parameter plays a crucial
part in characterizing non-classic turbulent regimes. For atmospheric turbulence, the value
of Prandtl number is about 0.72.

Having been greatly influenced by the work of Richardson, in 1935, Sir Geoffrey
Ingram Taylor introduced the concept of locally isotropic 3D turbulence [7], the isotropy
(or invariance, in the limit) being understood as the weak dependence of the flow’s charac-
teristics on orientations in space. Taylor is also known for his frozen turbulence hypothesis,
suggesting that all the eddies are advected by the mean streamwise velocity without
changes in their properties. Using the conception of Taylor, Theodore de Karman and
Leslie Howarth introduced the 3D correlation tensor of the turbulent flow and reduced it
to a scalar correlation under the isotropy constraint [8].
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1.2. Kolmogorov Theory (1941–1942)

After establishing the rigorous, mathematical theory of random functions in 1930s [9,10]
Andrey Nikolaevich Kolmogorov and his students attempted its application to isotropic
turbulence. Greatly influenced by the results of de Karman and Howarth, Millionshchikov
applied the concept of Kolmogorov’s ensemble averages to a homogeneous and isotropic
turbulent flow [11]. He also developed the system of equations governing the veloc-
ity correlation and implemented quasi-normal approximation to obtain the closed system
of the second- and third-order correlations [12].

Between 1941 and 1942, Kolmogorov established the foundations of the classic tur-
bulence theory by formulating three hypotheses regarding the equilibrium regime in
a homogeneous turbulent flow at sufficiently high Reynolds numbers and for sufficiently
small scales [13–17] (see also important parallel work by Obukhov [18–20]). This theory
largely elaborated on the Richardson turbulent energy cascade by assigning to a turbulent
eddy a scale l, a velocity vector u(l) and a time τ(l). It was then conjectured that the cas-
cade is formed by the largest eddies, with a scale L0 (integral or outer scale), L0 ≤ L, L
being the scale of entire region of mixing. It can be estimated as follows:

L0 ∼ K3/2/ε, (3)

where K is the turbulent kinetic energy (reduced to unit mass) as follows:

K =
1
2

u · u (4)

and ε [m2 s−3] is the energy dissipation rate. Then, by defining the turbulent Reynolds number as

Rt = u2(l)l/ν, (5)

and applying it to the integral scale, one obtains the following:

RtL =
√

KL0/ν = K2/(εν), (6)

attaining very large values.
The first Kolmogorov hypothesis states: (i) the turbulent motion of eddies with scales

l << L0 is statistically isotropic. It appears possible to estimate a threshold scale LI that
separates the regimes with isotropic (LI < l < L0) and anisotropic (l < LI) eddy scales, as
LI ∼ L0/6. The second hypothesis postulates that (ii) the statistics of the small-scale (l < LI)
eddy motion have a universal form that is uniquely determined by ε and ν. This range of scales is
also known as the universal equilibrium range. It follows from (ii) that a set of parameters
solely depending on ε and ν can be introduced:

lK =
4
√

ν3/ε, uK = 4
√

εν, τK =
√

ν/ε, RtK = lKuK/ν = 1. (7)

These are the characteristics of the smallest eddies before dissipation, carrying Kol-
mogorov’s name. Note that Rt starts at a very large number when energy is injected at
scale L0 and decreases to unity at scale lK. The third hypothesis states that (iii) the statistics
of motion of eddies with scales in the range lK << l << L0 have a universal form that is uniquely
determined by ε and are independent of ν.

There is another scale, lD ≈ 60lK, that splits the universal dissipation range (l < lD)
in which motion is the result of viscous forces.

The Kolmogorov theory established the regime of classic turbulence conceptually,
and also led to specific mathematical law governing the structure of turbulent velocity
correlation function or, equivalently, its energy spectrum. On introducing spatial frequency
as κ = 2π/l (or κlK for dimensionless version) and energy spectrum EK(κ) such that
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K =

∞∫
0

EK(κ)dκ, (8)

one finds at once that, in order for EK(κ) to depend on κ and ε, i.e., to be in the form

EK(κ) ∼ εpκq, (9)

it suffices to perform dimensional analysis. Substituting [K] = m2 s−2, [ε] = m2 s−3,
[κ] = m−1, [EK(κ)] = [K]/[κ] = m3 s−2 into the equation above, one finds that p = 2/3
and q = −5/3, thereby leading to the famous Kolmogorov law as follows:

EK(κ) = Cε2/3κ−5/3, (10)

where C = 1.5 is a data-fitted constant. One may also define the dissipation rate spectrum,
DK(κ) [m3/s3], as follows:

ε =

∞∫
0

DK(κ)dκ. (11)

It was estimated that most of the energy (80%) is contained in the energy production
range LI < l < L0, and most of the dissipation (90%) occurs in the interval 8lK < l < lD.
Additionally, in terms of a temporal scale of an eddy, on converting to its lifespan τ = K/ε,
90% is spent in the production range and 10% in the inertial range.

1.3. Batchelor-Leigh-Kraichnan Theory

In the late 1960s, Robert Harry Kraichnan [21], Cecil Leith [22] and George Batche-
lor [23] (see also earlier important work [24]) developed the theory of 2D turbulence. Unlike
in the 3D case, in addition to energy K, the turbulent flow must also be characterized by
enstrophy (reduced to unit mass):

Z =
1
2

w ·w, (12)

where w =
−→∇ × u is the flow helicity. The power spectra of energy EK and enstrophy EZ

can be shown to be in a simple relation as follows:

EZ(κ) = κ2EK(κ). (13)

Unlike in 3D turbulence, described by the direct turbulent energy cascade, in which
the energy is injected at the largest scale and dissipates at the lowest scale, the 2D turbulence
is characterized by a dual cascade: the enstrophy undergoes the direct cascade from
the intermediate injection scale to the lowest scale, having the κ−3 power law and the energy
exhibits the inverse energy cascade from the intermediate scale to the largest scale, having
the same (in form) power law κ−5/3 as the classic 3D turbulence.

Even though the 2D turbulence model could not be directly applied to 3D turbu-
lence research and applications, it provided the invaluable insight into both classic and
non-classic turbulent regimes and helped in describing various equilibrium and non-
equilibrium turbulent regimes, particularly those appearing in rotating and conducting
fluids. We refer the reader to a recent comprehensive review of these studies [25].

2. Measurements and Synthesis

In this section, we bring together the results of some early and recent measurements,
both thermodynamic and optical, as well of computer simulations, indicating the possibility
of air turbulence to deviate from its classic regime, as originally postulated by Kolmogorov.
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2.1. Anisotropic Turbulence

The classic Kolmogorov theory, based on Richardson’s energy cascade, implies that in
the inertial sub-range of scales, all turbulence eddies are isotropic. However, it appears
possible, in free atmosphere, within the stably-layered stratosphere, for the turbulence to
become anisotropic (direction-dependent) at large spatial scales (e.g., [26,27]). A similar
situation may appear in the close proximity of a hard boundary, i.e., ground surface,
a building, an airplane, etc., i.e., within a boundary layer [28–31].

In their 1970 experimental paper, Consortini, Ronchi and Stefanutti illustrated in
the laboratory (over 130 m path, at 1 m height) that in the close proximity of a bound-
ary (ground), a pair of laser beams, co-aligned and set to propagate along the horizontal
direction, would lead to short-exposure relative beam wander (“relative dancing”), de-
pending on the placement of the two sources [32]. In particular, the statistics were shown
to qualitatively and quantitatively differ for horizontal and vertical orientations, implying
the presence of turbulent anisotropy. This measurement procedure suggested a very sim-
ple, optics-based method for imprinting the signature of air turbulence onto the intensity
statistics of propagating light. Since the fluctuating temperature of the turbulent air is
the dominating random process affecting the fluctuating refractive index, the air velocity
turbulence can be directly related to the refractive index turbulence, also termed optical
turbulence. In particular, because temperature fluctuations are largely responsible for optical
turbulence of the air, the anisotropic behavior of the temperature field carries over that in
the fluctuating refractive index field.

In order to develop the theory, a 3D Gaussian (ellipsoidal) correlation function model
of the refractive index fluctuations of the turbulent air was implemented:

Bn(∆x, ∆y, ∆z) = 〈n2〉 exp

[
−
(

∆x2

∆x2
0
+

∆y2

∆y2
0
+

∆z2

∆z2
0

)]
, (14)

where 〈n2〉 is the mean-square value of the refractive index about its mean value, and
∆j0 is a typical deviation in direction j, (j = x, y, z). Physically, the anisotropic turbulent
medium can be viewed as the random collection of ellipsoidal lenses with average semi-
axes lengths and orientations corresponding to geometrical directions x, y (horizontal) and
z (vertical). In the vicinity of a horizontal boundary, for example, ground, ∆z0 < ∆x0, ∆y0.
This discrepancy leads to qualitatively different refraction scenarios along the horizontal
and vertical axes. The dancing of the two beams is characterized by the wave structure
function, being a variance of the difference of the optical field measured at several separation
distances. The structure functions Dy and Dz, measured for horizontal and vertical sources’
placement, are shown in Figure 2A,B, respectively. The solid lines denote the theoretical
joint structure functions, while dots denote the experimental data. The discrepancy in
Dy and Dz is related to the shape of Bn along directions x and y.

Since the 1990s, high-altitude atmospheric temperature field measurements have
become available. A strong anisotropy in temperature was first found by Grechko et al. [33]
from experimental observations of starlight scintillation at the intermediate altitudes.
Another experimental campaign by Dalaudier et al. [34] revealed the presence in the atmo-
sphere, at altitudes of up to 25 km, of very strong positive temperature gradients within
very thin layers, or sheets, with vertical distortions up to 10 m and of horizontal extensions
larger than 100 m. The anisotropy in the experimentally measured optical wavefront tilt’s
statistics was also revealed by Belenkii: the outer scale in horizontal direction was found to
be smaller than that in vertical [35]. In addition, the anisotropy of stratospheric turbulence
was revealed in [36], with the help of a two-component (isotropic/anisotropic) power
spectrum. The validity of such a spectrum was verified by balloon-borne experiments
showing that the major contribution to scintillation comes from the anisotropic component.
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(A)

(B)

Figure 2. Measurement of anisotropic turbulence. Structure functions of the mean posi-
tions of two beams: (A) horizontal Dy; (B) vertical Dz, normalized by saturation values
Dj,sat = 4

√
π〈n〉2L3Rox/3Roj, j = y, z, respectively. Here, 〈n〉2 is the root-mean square value

of the refractive index fluctuations, L is the range, and Roj, j = x, y, z are constants on the order
of outer scale. Reprinted with permission from Reference [32].

Recently, several experimental campaigns aimed for extending the results in [32] to the
assessment of turbulent air anisotropy in all directions, not solely horizontal and vertical,
while doing so in the actual atmosphere. The field measurements of the boundary-layer
turbulent anisotropy were carried in Wang et al. [37] on the grounds of the University
of Miami, by means of the two-point intensity–intensity correlation function of a nearly
spherical wave, i.e., a divergent Gaussian beam (over 200 m path, up to 2 m from the grassy
field). The measurements were taken along three horizontal links (differing slightly with
respect to effects of the wind penetration) at three heights from the ground. The intensity–
intensity correlation function (each recorded pixel correlated with the center of the beam)
revealed an elliptic form inclined at an angle of about 30 degrees with respect to horizontal.
Both the ellipse’s eccentricity and orientation angle were shown to be link- and height-
dependent. Figure 3 (top row) shows the results of (sequential) measurements carried out
for the same path at three heights. The ellipse is the most stretched and rotated for the path
closest to the ground. Figure 3 (bottom row) shows the results for three different links taken
over the same (middle) height. The ellipse in the two-point intensity–intensity correlations
can be directly related to the mean-path averaged anisotropy ellipse of the turbulent eddies.

A similar measurement campaign obtained the intensity covariance function of a plane
wave propagating in the vicinity of a runway (2 km path, 2 m above the ground) [38]. As
Figure 4 illustrates, a more precise anisotropy structure was revealed in which both positive
and negative correlations are seen. The orientation angle was shown to vary up to 90◦ to
the vertical, depending on the path length and meteorological parameters. The data were
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well matched with the suggested theoretical model. It was also confirmed in Reference [39]
that the ellipse’s parameters may have the signature of seasons and time of the day and
night. A field measurement of the two-point optical field correlation (mutual coherence)
function and the wave structure function (sub 100 m paths, 1.5 m from ground) were also
recently carried out at the University of Maryland facilities by means of a plenoptic sensor in
Reference [40]. The elliptic shapes, having a substantial orientation angle with respect to the
horizontal direction, were also captured in these statistics. While the elliptic shape appearing
in various light statistics can be readily explained with the ellipsoid-like eddy correlation
function of the turbulent eddies, the qualitative and quantitative justification for the varying
orientation angle remains obscure.

Figure 3. Experimental campaign showing anisotropy ellipse of intensity covariance function.
Top row: the same path, height from ground (a) 39 cm, (b) 84 cm, (c) 139 cm. Bottom row: at 84 cm
taken over three different paths, in (a–c). Reprinted with permission from Reference [37].

Figure 4. Experimental field measurements compared with theoretical results showing anisotropy
ellipse of intensity covariance function: (a) measurement; (b) theory; (c,d) are major and minor
cross-sections (solid curves: measurement; triangles: theory). Horizontal and vertical axes in (a,b)
have extent (−6 cm, 6 cm). In (c,d) horizontal axes have extent (−6 cm, 6 cm) and vertical axes are
unitless with range [0, 1]. Reprinted with permission from Reference [38].
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2.2. Non-Kolmogorov Power Law

In addition to anisotropy effects, the Kolmogorov power law (11/3) of the 3D power
spectrum of the refractive index in the inertial range of scales might be violated. In
the 1990s, Kyrazis et al. measured non-Kolmogorov turbulence in velocity and temperature
statistics in the upper troposphere and lower stratosphere [41,42] and found that substantial
qualitative discrepancies are possible between them. Such discrepancies could lead to
optical power spectra, with the exponent differing from the Kolmogorov value. The non-
Kolmogorov turbulence was also recently measured in an experiment involving urban
paths [43].

2.3. Presence of Refractive Index Gradients

Yet another effect pertinent to a non-classic turbulent regime is that due to the pres-
ence in the same region of space of the refractive index fluctuations and the constant
(or very slowly varying) refractive index gradients. The refractive index is typically in
the inverse dependence with the average temperature. For example, over a hot ground
surface, the average refractive index increases with height. Therefore, an image received by
an observer would be shifted down from its actual direction and possibly be overlapped
with the direct line-of-sight image. In addition, the turbulent air may add image jitter and
diffraction. Recent measurements of this turbulent mirage phenomenon [44] indicate that
over the 13–15 km path, the vertical image shift might reach several meters. See also [45,46]
for related analytical and numerical calculations.

2.4. Deep Turbulence Effects

While performing wave-optics simulation in the strong focusing regime of turbulence,
Lachinova and Vorontsov [47] discovered a significant mismatch between numerically esti-
mated and theoretically predicted values of the optical wave scintillation index (normalized
variance of fluctuating intensity). The authors showed in their analysis that the reason
for this disagreement is due to the irregular appearance of giant irradiance spikes with
the amplitudes several times exceeding the diffraction-limited intensity. These spikes would
emerge spontaneously due to random formation of focusing lenses extended along the prop-
agation path. Such lenses “trap” irradiance speckles of a suitable size; hence, the spikes
can propagate over distances of several kilometers. The statistical analysis of probability
of giant spikes appearance provides the distance ranges where these spikes are most likely
to be observed. It was also shown that, if compared to the long-exposure (mean) intensity,
the spikes whose amplitudes exceed the mean value by a factor of several tens are observed,
with the probability being nearly independent from the propagation distance. The probability
of spikes’ occurrence obtained in the numerical simulations were compared to the theoretical
estimations based on the log-normal probability distribution. According to the wave-optics
simulations, the giant spikes exceeding the diffraction-limited intensity value by a factor
of five or more emerge 10- to 20-fold more frequently than the theory predicts.

2.5. Non-Classic Turbulence Emulators

In the laboratory conditions, simulation of a non-classic air turbulence with the con-
trollable anisotropy ratio and the non-Kolmogorov exponent can be achieved by mixing
the hot and cold air streams flowing from the opposite directions with different speeds and
passing through a fine mesh [48] (see Figure 5). The power law exponent and the anisotropy
ratio can then be related to the beam wander analysis of a sufficiently narrow laser beam
propagating through mixed air in a direction orthogonal to the air flows. The experimental
campaigns indicated that, in fact, achieving the classic turbulence regime precisely is not
an easy task, and it does not generally hold for equal temperatures and velocities of the two
air streams.

Figure 6 shows data for the Hurst exponents H in horizontal and vertical directions in
the case of unequal air flow speeds with (top) hot air moving faster and (bottom) cold air
moving faster. The Hurst exponent provides an alternative measure of self-similarity (long-
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term memory) of a random process, calculated directly from the time series. It is limited to
interval 0 < H < 1 and characterizes positive/negative correlation for H < 0.5/H > 0.5.
The dashed line indicates isotropic turbulence with H = 5/6, which corresponds to
the Kolmogorov case. It is evident that in the former case, H is more consistent in both
directions and approaches the value of 5/6 for sufficiently high air speeds, while in the later
case, the anisotropy is more pronounced but is independent from the air speed. The case
of equal air speeds resembles the top subfigure but with more evident tendency to H = 5/6
at high air velocities (not shown).

Figure 5. The schematic diagram of a turbulator used for non-classic turbulence simulations.
Reprinted with permission from Reference [48].

Figure 6. Data obtained with turbulator shown in Figure 5 for unequal hot and cold air flow speeds.
Reprinted with permission from Reference [48].
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3. Theoretical Modeling of Optical Turbulence

In the previous section, the motivation for the thorough analytic modeling of non-
classic optical turbulence was presented. Here, we follow the well-known and recent
theories capable of characterizing optical turbulence in various regimes. In particular, we
first review the Obukhov–Corrsin theory, adjusting the Kolmogorov spectrum in the near-
dissipation regime and then outlining the theories for non-Kolmogorov, anisotropic turbu-
lence (in inertial range) followed by jet-stream turbulence and coherent turbulence.

3.1. Obukhov-Corrsin Theory

We begin by discussing the Obukhov–Corrsin theory, suitable for characterization
of the 3D atmospheric, boundary-free, homogeneous and isotropic turbulence, for which Re
can reach values on the order 108–109. Additionally, the Péclet number must be sufficiently
high, and the Mach number (both dimensionless) must be subsonic. The Péclet number
(for temperature) is defined as a ratio of the rate of advection to the rate of diffusion
as follows:

PeT = RePr =
uL
αT

, (15)

and the Mach number is a characteristic of the fluid velocity u relative to the speed of sound
us in the medium as follows:

Ma =
u
us

. (16)

For Ma > 1.35 and Ma < 0.65 the flow is characterized as supersonic and subsonic, respectively.
The fluctuations of the refractive index are conventionally treated as a random process

with stationary increments. It is a possibility of involving such a random process since
the average value of the refractive index is a slowly-varying function of time. Then, it is
sufficient to characterize the refractive-index by its two moments— the average value and
the autocovariance function as follows:

n̄(r) = 〈n(r)〉M, (17)

Bn(r1, r2) = 〈[n(r1)− n̄(r1)][n(r2)− n̄(r2)]〉M. (18)

Here, subscript M stands for the statistical average over the realizations of turbulence,
and r is the 3D position vector. If turbulence is homogeneous, using the Wiener–Khinchin
theorem, it is also possible to characterize the classic fluctuations in the spatial frequency
domain via the power spectrum:

Φn(κκκ) =
1

(2π)3

∫∫∫
Bn(rd) exp[−iκκκ · rd]d3rd, (19)

rd = r1− r2 and κκκ = κxx̂+ κyŷ+ κzẑ being the difference vector and the 3D vector of spatial
frequencies, respectively. Further, if turbulence is also isotropic, its 3D spectrum can also
be written as Φn(κ), where κ = |κκκ|.

Based on the Kolmogorov–Obukhov theory for the turbulent velocity field, the power
spectrum for any advected scalar field can be determined by the Obukhov–Corrsin the-
ory [49,50], according to which the equilibrium turbulent regime is split into three regimes:
inertial-convective, viscous-convective and viscous-diffusive, depending on the participating
scales. The inertial-convective regime corresponds to scales between the outer scale L0
(the largest eddy size) and the following:

ηK =
4
√

ν3/ε, ηB = 4
√

να2
d/ε, (20)

known as the Kolmogorov scale [m] and the Batchelor scale [m], where ε [m2 s−3] is the turbu-
lent kinetic energy dissipation rate (per unit mass) and αd is diffusivity [m2/s]. The viscous-
convective regime occurs for smaller scales, and and for even smaller ones, the energy
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rapidly dissipates within the viscous-diffusive regime. In cases when the Prandtl number
is sufficiently small, the inertial-convective regime can be directly followed by the inertial-
diffusive regime.

The general form of the 3D power spectrum temperature or for refractive index
fluctuations is as follows:

Φj(κ) =
C0

4π
ε−1/3χjκ

−11/3g(κηK), (21)

where C0 = 0.72 is the Obukhov–Corrsin constant, χj is the variance dissipation rate, having
units [K2 s−1] for temperature, and [s−1] for the refractive index. Function g is a constant in
the inertial-convective range function (hence the spectrum is of Kolmogorov −11/3 type),
and then it increases to a maximum in the viscous-convective regime and then decreases to
zero in the viscous-diffusive regime. Function g depends on Pr. In the inertial-convective
regime, the 3D power spectrum is described by Kolmogorov’s power law [51] as follows:

ΦT(κ) = 0.033C2
Tκ−11/3, (22)

where C2
T [m−2/3] is the temperature structure parameter as follows:

C2
T = 0.9Γ(1/3)C0χTε−1/3, (23)

where Γ denotes the Gamma function. For higher spatial frequencies, the spectrum involves
function gT :

ΦT(κ) = 0.033C2
Tκ−11/3gT(κηK). (24)

It is a convention in atmospheric propagation studies to use inner scale l0 instead
of ηK. The two quantities are proportional:

l0 = [27Γ(1/3)C0/5Pr]3/4ηK, (25)

reducing to l0 = 7.42ηK for atmospheric case. The widely used models for function
gl(κl0) = gT(κηK) were suggested in [52] as follows:

gl(κl0) = exp
[
−(κl0/5.92)2

]
, (26)

and in [53]

gl(κl0) = exp(1.1090l0κ)
[
1 + 0.70937l0κ + 2.8235(l0κ)2

− 0.28086(l0κ)3 + 0.08277(l0κ)4
]
.

(27)

While Tatarskii’s model gives a smooth decay, the Freilich model predicts the oc-
currence of a bump as spatial frequencies transition from inertial-convective to viscous-
diffusing regime (see Figure 7). Other models (e.g., [54]) have been suggested but were
later shown to somewhat undershoot/overshoot a constraint that must be imposed on
the power spectrum to be consistent with the first principles of thermodynamics [55].
More generally, in the 1978 papers of Hill [56,57], several analytical and numerical models
were suggested for more precise modeling of power spectra that can be directly related to
the thermodynamic state of the air. For instance, in the maritime atmosphere, the power
spectrum may have to be substantially modified at high spatial frequencies, as compared
to the over-the-ground turbulence, as was revealed in Reference [58].
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Figure 7. Function gl depending on κl0.

3.2. Non-Kolmogorov Turbulence

It was shown long time ago by Bolgiano that turbulence does not always follow
the Kolmogorov power spectrum model, even in the inertial range [59]. This is due to
the fact that the abstraction of turbulent energy by buoyancy forces leads to a sharp decrease
in the rate of energy transfer with the wave number. As a consequence, the kinetic energy is
transported across the spectrum with a non-uniform rate, while decreasing with increasing
the wave number.

Analytic models for the isotropic, non-Kolmogorov power spectrum were used since
the 1990s (e.g., [60]). A comprehensive model developed in Reference [61], including
the small- and the large-scale cut-offs, has the following form:

Φn(κ) = A(α)C̃2
n

exp[−κ2/κ2
m]

(κ2 + κ2
0)

α/2
, 3 < α < 5, (28)

where C̃2
n(z) has units m3−α and

A(α) =
Γ(α− 1)

4π2 cos[απ/2]. (29)

Here, the small and the large spatial frequency cut-offs are as follows:

κ0 = 2π/L0, κm = c(α)/l0, (30)

with
c(α) = [2πΓ(5− α/2)A(α)/3]1/(α−5). (31)

The major effect of varying α on the turbulence structure is in the weight distribu-
tion among the participating turbulent scales: for smaller values of α, more energy is
contained in smaller scales, and hence, the turbulence acquires a finer, more granular struc-
ture; for larger values of α, more energy is attributed to larger scales, and the turbulence
fluctuations takes a cruder structure.

It was suggested in Reference [62] that the non-Kolmogorov power spectrum has
a dependence on height, such as z, above the ground, i.e., the following:

Φn(κ, z) = A[α(z)]C̃2
n(z)κ

−α(z), (32)

where

A[α(z)] =
Γ(α(z)− 1)

4π2 sin[π(α(z)− 3)/2], (33)
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and the dependence α = α(z) is obtained by combining the Kolmogorov power spectrum
(α1 = 11/3, A = 0.033) in the boundary layer (up to ≈2 km above the ground), power law
(α2 = 10/3, A = 0.015) for helical turbulence in the troposphere (≈2–8 km) and the power
law (α3 = 5, A = 0.0024) pertinent to the stratosphere (above ≈8 km) as follows:

α(z) =
α1

(1 + z/H1)b1
+

α2(z/H1)
b1

1 + (z/H1)b1
· 1

1 + (z/H2)b2

+
α3 + (z/H2)

b2

1 + (z/H2)b2
.

(34)

Here, H1 and H2 are the adjustable separation altitudes, and b1 and b2 are the suitable
regime matching coefficients. The corresponding dependence of C̃2

n on height z was also
discussed in [62] (see also work [63,64] by the same authors). Figure 8 shows the α-height
dependence for two sets of parameters b1 and b2.

Some other modeling aspects and representations relating to non-Kolmogorov turbu-
lence were also discussed in [65–67].

Figure 8. Three-layer model of non-Kolmogorov turbulence spectrum exponent α versus height z
[m] above the ground. Solid curve: b1 = 8, b2 = 10; Dashed curve: b1 = 15, b2 = 20. Reprinted with
permission from Reference [62].

3.3. Anisotropic Turbulence

In the most general case, the turbulent anisotropy can be modeled with the ellipsoid-
like correlation function (or the power spectrum) discussed in Section 2.1. As was illustrated
above with the optical measurements, such an ellipsoid can be arbitrarily oriented with
respect to the ground. However, for analytical modeling, the ellipsoid with the semi-axis
describing a vertical and two mutually orthogonal horizontal directions is typically used,
in which the vertical semi-axis is shorter than two equal horizontal semi-axes. In this case,
a typical turbulent eddy can be viewed as a horizontally oriented “crepe”. Such a model was
applied to two light propagation cases: (A) vertical path (see Figure 9) and (B) horizontal
path (see Figure 10). See also [68] for qualitative theory of anisotropic irregularities.
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Figure 9. Anisotropic turbulence. Vertical case. Vectors ρρρ′ = x′ x̂′ + y′ ŷ′ and ρρρ = xx̂ + yŷ are 2D
position vectors of points in the source and in the field planes.

Figure 10. Anisotropic turbulence. Horizontal case. Vectors ρρρ′ = x′ x̂′ + y′ ŷ′ and ρρρ = xx̂ + yŷ are 2D
position vectors of points in the source and in the field planes.

In case (A), the power spectrum model accounts for the turbulent eddy symmetry
axis placed along the optical axis, for example, z [69]. In addition, since the deviation
of the power law from the Kolmogorov value of 11/3 is also regarded to be a consequence
of stratification and anisotropy [35], these two phenomena can be expressed together
as follows:

Φn(κκκ, α, µz) =
Γ(α− 1) cos(απ/2)C̃2

nµ2
z

4π2[µ2
zκ2

z + (κ2
x + κ2

y)]
α/2 , (35)

where Γ stands for the Gamma function and C̃2
n is the generalized refractive index structure

parameter with units m3−α. The anizotropic factor µz is related to the ellipse eccentricity in
the z (vertical) direction.
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In case (B), the power spectrum describes the axis of eddy symmetry being orthogonal
to the optical axis z [70,71]:

Φn(κκκ, α, µx, µy) =
Γ(α− 1) cos(απ/2)C̃2

nµxµy

4π2[κ2
z + µ2

xκ2
x + µ2

yκ2
y]

α/2 . (36)

Here, anisotropic factors µx and µy define the eccentricity of the ellipse in the x-y
planes, i.e., the planes orthogonal to the direction of propagation. In these spectra, the inner
scale and the bump at high spatial frequencies are not included but can also be modeled in.

The power spectrum model of Reference [71] assumes the same degree of anisotropy
for all turbulent scales in the inertial sub-range, according to Kolmogorov theory [13].
Toselli introduced an extension of this model to the situations when anisotropy may be
scale-dependent [72]. In this model, the eddies on the scale comparable to the inner scale
are spherically symmetric and gradually increase in the anisotropy in the vertical direction
as the outer scale is approached. Other elaborate models for treating anisotropy were also
suggested, e.g., in [73]).

3.4. Jet-Stream Turbulence

A comprehensive model for turbulence spectrum having anisotropy along all three
Cartesian directions for description of a aerojet stream was overviewed in Reference [74],
largely based on experimental work by V. S. Sirazetdinov, e.g., in [75]:

Φn(κκκ) = 0.033C2
n

{
Q

[(
2π

Ls

)2
+ κ2

]−11/6

exp
[
− κ2

κ2
m

]

+
(L0xL0y)

11/6

[1 + (κxL0x)2 + (κyL0y)2]11/6 exp

[
− κ2

x
κ2

mx
−

κ2
y

κ2
my

]}
,

(37)

where measurements return C2
n on the order of 10−9 m−2/3 and the longitudinal anisotropy

factor Q ≈ 6.

3.5. Coherent Turbulence

A number of theoretical models have been proposed for accounting for turbulence con-
taining coherence structures, which may be present in the close proximity of hard boundaries
(see References [76,77] and references wherein). Such coherent structures appear because
of the temperature or pressure gradients, and are formed as spatial vortices. They have
a longer lifespan as compared with classic turbulence eddies. The coherent structures also
undergo the direct energy cascade process, being deterministic, unlike the classic turbulent cas-
cade. A typical situation in which a solitary coherent eddy would be generated is an obstacle
placed across the air flow. The associated power spectrum has the following form:

Φn(κ) = 0.033C2
n(6.6κ0)

2(ν−1/3)κ−2(ν+3/2)

× exp
(
− κ2

κ2
m

)[
1− exp

(
−κ2

κ2
0

)]
.

(38)

Here, ν = 1/3 and ν = 5/6 correspond to Kolmogorov and coherent turbulence.

4. SLM/DMD Benchtop Simulations

Computer simulations of atmospheric optical turbulence and its effects on light beams
have been popular since the 1990s (see Reference [78] and references wherein). They
allowed to make predictions about the trends in optical beam evolution through a variety
of turbulent regimes, both classic and non-classic. An interesting alternative to purely
digital simulations are the laboratory benchtop systems, using real light as a source and
a spatial light modulator (SLM) or a digital mirror device (DMD) as a simulator of a thin
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phase screen properly tuned to mimic an extended turbulence path [79]. The non-classic
(anisotropic) turbulent thin phase screens were developed and studied in depth, e.g., in [80].
Unlike in computer simulations, having the possibility of using a large set of screens
distributed along the propagation path, the SLM/DMD based simulations are limited to
one, or possibly two to three screens because of the substantial power loss and the need
for synchronization. The fundamental difference between the two devices is their spatial
modulation quality and the refresh rate. A quality SLM (with a high fill factor), being
a relatively slow device (several hundred Hz), can provide a fine spatial profile, while
a DMD, attaining the kHz rates, produces a crude spatial modulation. In addition, at very
high refresh rates, the DMD can only operate in a binary mode.

In order to explore the effects of non-Kolmogorov, isotropic and anisotropic turbulence
along the vertical paths the laboratory experiment with a liquid crystal, nematic SLM
was carried out [81]. The wave optics simulation (WOS) [82] was adopted to the SLM
dimensions and the propagation path between the SLM and the camera. It was revealed that
for a larger ratio of anisotropic factors, the effect of turbulence on the intensity fluctuations
diminishes, i.e., anisotropy acts as a factor to power the spectrum strength. At the same
rate, the largest effects on the scintillation index were observed for power law α in the range
from 3.1 to 3.2, depending on the applied anisotropy. We remark that the scintillation index
shows a peak in the mentioned range if the chosen length unit is the meter [83].

The same numerical procedure and the laboratory arrangement was also used for illus-
tration of the effects of anisotropic turbulence in the horizontal scenario [84]. The anisotropic
turbulence was shown to stretch the initially circular beam profile to an elliptical shape
oriented along the vertical direction. This is implied by the fact that the weaker/stronger
refractive index fluctuations in the horizontal/vertical directions lead to smaller/larger
turbulence–induced diffraction: for the fixed ratio of anisotropic factors, µx and µy with
the largest eccentricity corresponding to α ≈ 3.2 (for fixed ratio of anisotropic factors).
Typical phase screens used in these measurement campaigns are given in Figure 11.

Figure 11. Turbulent phase screens of non-classic turbulence with 2π wrapped phase for application
on SLM/DMD. Vertical turbulence with α = 3.2 (a) µz = 1, (b) µz = 5. Horizontal turbulence with
µx = 3, µy = 1, (c) α = 3.2, (d) α = 3.67. Reprinted with permission from References [81,84].



Appl. Sci. 2021, 11, 8487 17 of 30

The single SLM arrangement used in References [81,84] can be also modified to include
the second SLM which pre-modulates laser light before sending it through the SLM with
the turbulent screens [85]. In this case, a sufficient distance between the two devices must
be set to send the pre-modulated light into the far-zone. The iris before the second SLM
is used to pass the first-order of the first SLM. The optical setup is controlled from three
personal computers: for the two (not synchronized) SLMs and for the camera. Figure 12
illustrates the optical setup and lists examples of an average intensity of the frame-like
partially-coherent beams produced by the first SLM, set to interact with non-Kolmogorov
turbulence of different power laws, set on the second SLM. Just like for the laser beams,
the strongest effect of turbulence is seen for α = 3.2, provided that the chosen length unit
is meter.

Figure 12. The two-SLM setup for generation of any pre-modulated beam (SLM1) and simulating
its interaction with non-Kolmogorov turbulence (SLM2). LD—laser diode, NDF—neutral density
filter, L—lens, CMOS—complementary metal oxide semiconductor camera, PC1, PC2 and PC3 are
personal computers. (a–e) Generated frame-like beams passing through simulated turbulence with
different α; (f) comparison of cross-sections. Printed with permission from Reference [85].

5. Theoretical Predictions for Non-Classic Turbulence-Light Interactions

In this section, we will overview the extended Huygens–Fresnel (EHF) method
for characterizing the interactions between an optical beam and atmospheric turbulence
described with non-Kolmogorov and anisotropic power spectra on the order of the second-
order statistical moments of the field.

Several important second-order statistics can be generally deduced from the knowl-
edge of the cross-spectral density (CSD) matrix [86] of the beam. EHF is currently the most
popular method used for predictions of CSD propagation of beams radiated by sources
with any spectral composition, degree of coherence and polarization state. For a beam
originating in the source plane z = 0 and propagating close to the positive z direction,
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the EHF integral relates the components of the CSD matrix in the source
←→
W (0) and in

the field
←→
W by the following law:

Wij(r1, r2; ω) =
∫∫

Wij(r′1, r′2; ω)K(r1, r2; r′1, r′2; ω)d2r′1d2r′2, (39)

where r′α (α = 1, 2) are the 2D source points (z = 0), rα (α = 1, 2) are the 3D field points,
ω is the angular frequency, and the integration is taken twice over the source plane.
Additionally, i and j refer to the mutually orthogonal components x and y of the electric
field, transverse to optical axis z. Propagator K, being the correlation of two spherical wave
Green’s functions, takes for the 3D power spectrum Φn(κκκ) the following form [87]:

K(r1, r2; r′1, r′2; ω) =

(
k

2πz

)2
exp

[
−ik

(r′1 − r⊥1 )
2 − (r′2 − r⊥2 )

2

2z

]

× exp

[
−2πk2z

∫ 1

0
dξ
∫ ∞

0
d2κΦn(κκκ)

× [1− exp[ξr⊥d · κκκ + (1− ξ)r′d · κκκ
⊥]]

]
.

(40)

Here, r⊥d = r⊥2 − r⊥1 , r′d = r′2 − r′1 and κκκ⊥ = (κx, κy, 0). The first line of propagator K in
Equation (40) corresponds to free-space diffraction, while the rest attributes to the effects
of turbulence. To arrive at propagation law (39), the Markov approximation was employed,
under which the correlation in the forward directions is modeled as the delta-function.

Under the assumption of isotropic turbulence, the turbulence-related part of K reduces
further to the following expression:

exp

[
−4π2k2z

∫ 1

0
dξ
∫ ∞

0
dκΦn(κ)[1− J0[|(1− ξ)r⊥d ) + ξ(r′d)|κ

⊥]

]
, (41)

where κ⊥ = |κκκ⊥| and J0 are the zero-order Bessel functions of the first kind. The two-fold
integral can be either solved numerically or approximated for small values of the Bessel
function argument.

The anisotropic spectrum can also be first converted to an isotropic spectrum, and
then the procedures above can be applied. For example, in the case of a horizontal link,
the transformation can be done by implementing the change of variables µακα → κα,
α = x, y and considering new power spectrum depending only on function |κ|⊥ in the
new variables.

From the knowledge of the field CSD matrix components Wij, the evolution of the spec-
tral density S and the degree of coherence µ can be found as follows:

S(r; ω) = Tr
←→
W (r, r; ω), (42)

and

η(r1, r2; ω) =
Tr
←→
W (r1, r2; ω)√

S(r1; ω)
√

S(r2; ω)
. (43)

A variety of polarization properties can also be determined the most important
of which is the degree of polarization [86]:

P(r; ω) =

√√√√1− 4
Det[
←→
W (r, r; ω)]

Tr2[
←→
W (r, r; ω)]

. (44)

Here, Tr and Det stand for matrix trace and determinant.
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Second-order statistics of stationary optical beams radiated by a large number of sources
with various spectral compositions, spectral density distributions as well as coherence
and polarization states were theoretically analyzed in interactions with non-Kolmogorov
turbulence (e.g., [88–93]). The beams discussed the first three of these references, referring
to the broad class of Gaussian Schell–Model (GSM) beams (either vectorial or treated under
scalar approximation). These beams are the extensions of the Gaussian laser beams to any
coherence state (from coherent to incoherent) and any polarization state (from polarized
to unpolarized). They can either be considered at a fixed frequency ω [88,91], or a model
spectral composition can be employed [90].

Figure 13 illustrates the average spreading of a GSM beam with growing propagation
distance from the source, defined as follows:

w(z; ω) =

∫∫
r⊥2S(r⊥; ω)d2r⊥∫∫

S(r⊥; ω)d2r⊥
, (45)

for several values of α. Figure 14 illustrates the changes in the degree of coherence η and
the degree of polarization P as the GSM propagates in non-Kolmogorov turbulence [90].

Figure 13. The root-mean-square width of a scalar Gaussian–Schell model (GSM) beam on propaga-
tion in non-Kolmogorov turbulence. Reprinted with permission from Reference [91].

Interaction of the electromagnetic GSM (EM GSM) beams with anisotropic turbu-
lence along a vertical path (up-link) was examined in Reference [94]. The refractive-index
structure constant profile was included in accordance with the well known Hafnagel–
Valley model [95]. Figure 15 presents the behavior of the spectral density of a coherent
(A) and partially coherent (B) EM GSM beam in the up-link configuration in the presence
of the anisotropic, non-Kolmogorov turbulence with α = 3.5 and several values of the
effective anisotropy parameter ζ ∼ µ−1

z . For ζ = 1, the turbulence reduces to isotropic,
while for ζ > 1, it accounts for anisotropic structure. In the vertical propagation case,
the anisotropy only acts as a strength modifier of turbulence. We also note that for a co-
herent beam, its impact is larger than in the case of a partially coherent beam: in the latter
case, most of the diffraction is caused by source correlation at any rate.

The evolution of the EM GSM along a horizontal path in an anisotropic turbulence was
considered in Reference [96]. Figure 16 presents the transverse cross-sections of three EM
GSM beams with different source coherence states (top row corresponds to more coherent
beam) on passing in such turbulence at different ranges. While a more coherent beam
acquires an elliptical profile (vertically stretched) on passing at a sufficient distance from
the source, the less coherent beam retains its initial circular cross-section, proving to be
more resilient to turbulence fluctuations. A similar analysis, performed on the degree



Appl. Sci. 2021, 11, 8487 20 of 30

of coherence of such beams, leads to a similar set of cross-sections but the ellipses are
stretched along the horizontal direction [96].

(A)

(B)

Figure 14. Changes in (A) the degree of coherence and (B) the degree of polarization of the electro-
magnetic Gaussian–Schell model (EM GSM) in non-Kolmogorov turbulence. α = 3.01 (solid curve),
α = 3.1 (dashed curve), α = 3.67 (dotted curve) and free space (dot-dashed curve). Reprinted with
permission from Reference [90].

(A)

(B)

Figure 15. Spectral density S of (A) a coherent; (B) a partially coherent electromagnetic Gaussian–
Schell model (EM GSM) beam in the up-link anisotropic turbulence, for α = 3.5 and several values
of the effective anisotropic factor ξ ∼ µ−1

z . Reprinted with permission from Reference [94].
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Figure 16. Spectral density S of an electromagnetic Gaussian–Schell model (EM GSM) beam with
(a–d) high; (c–h) intermediate and (i–l) low values of the typical coherence width δ0, on propagation
through an anisotropic turbulence in a horizontal direction, at specified distances. Reprinted with
permission from Reference [96].

Light propagation analysis through turbulence with the jet-stream spectrum slightly
modified for integral convergence was performed in [97]. In addition, the behavior
of higher-order statistics of light in non-classic turbulence was also studied by other
methods, e.g., the Rytov method. We will discuss some of these results below on consider-
ing the applications. The evolution of the second-order statistics of non-stationary (pulsed)
fields in non-Kolmogorov turbulence was treated in [98,99].

6. Influence in Applications
6.1. Wireless Optical Communications

Wireless optical communication (WOC) systems using laser light are attractive because
of high data rates (due to extremely wide bandwidth) and enhanced security (supported
by high laser directionality). However, WOC systems suffer from atmospheric turbulence–
induced signal degradation. Non-classic turbulent regimes can also affect WOC in a number
of ways. Toselli and Korotkova used the extended non-Kolmogorov anisotropic power spec-
trum introduced in [71] to investigate the performance of a WOC system (with a Gaussian
beam used as the information carrier) embedded into anisotropic turbulence [100]. Specifi-
cally, the scintillation index/flux with aperture averaging, the probability of fade, the mean
signal-to-noise ratio (SNR) and the bit-error rate (BER) for the on–off key modulation were
analyzed for a specific case of horizontal propagation path at high altitude.

6.1.1. Aperture-Averaged Scintillation of a Gaussian Beam

The intensity fluctuations measured at the focal plane of the receiving telescope are
conventionally characterized by the aperture-averaged scintillation flux [100], generally
defined as follows:

σ2
I =
〈I2〉
〈I〉2 − 1, (46)

with I being the instantaneous optical intensity (see [71] containing the well-known ex-
pressions for σI derived for basic types of waves). This parameter is crucial since it is
required for calculation of the probability of fade, the SNR and the BER in the direct
detection systems. The complete theoretical analysis of the scintillation flux in non-classic
turbulence is given in [100] (see, in particular, Equation (14)). Here, we display in Figure 17
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the scintillation flux with the fixed structure function at the Fresnel distance, for six pairs
of anisotropic factors along the x and y axes (shown as zxeff and zyeff in the figure legend).
It is evident that at higher values of anisotropy factors, the scintillation flux is reduced at
any power law in the range from 3 to 4.

Figure 17. Scintillation flux with fixed structure function at the Fresnel distance for six pairs
of anisotropic factors along the x and y axes (shown as zxeff and zyeff in the legend). Reprinted with
permission from Reference [100].

6.1.2. Probability of Fade

For a given probability density function (PDF) of the irradiance fluctuations, the prob-
ability of fade describes the percentage of time, and the irradiance of the received signal is
below some prescribed threshold value, for example, It. Hence, the probability of fade as
a function of a set threshold level is defined by the cumulative probability as follows:

Prob(I < It) =

It∫
0

PI(I)dI, (47)

where PI(I) is the PDF of the fluctuating instantaneous irradiance. In weak turbulence,
the log-normal PDF model is most frequently used for description of the optical intensity
fluctuations, leading to the following expression for the probability of fade [95]:

Prob(I < It) =
1
2

[
1 + Erf

(
σ2

I /2− 0.23Ft√
2σI

)]
, (48)

where Erf(x) is the error function. Here, threshold (fade) parameter Ft represents the in-
tensity margin in decibels (dB) from the threshold It, which is usually the sensitivity
of the receiver.

On using the scintillation flux (from [100]) in Equation (48), one can deduce the proba-
bility of fade as a function of slope α for a fixed fade threshold parameter (say Ft = 6 dB)
and fixed structure function at the Fresnel distance, in a particular horizontal case scenario
and for different values of anisotropy parameters along the x and y axes (shown as zxeff
and zyeff in the legend). The curves in Figure 18 indicate that the decrease in scintillation
due to anisotropy reduces the probability of fade.
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Figure 18. Probability of fade as a function of α for several cases of anisotropy and fixed structure
function (shown as zxeff and zyeff in the legend). Reprinted with permission from Reference [100].

6.1.3. Mean-Signal-to-Noise Ratio

Due to turbulent fluctuations, the received irradiance must be treated as a random
variable, over long detection intervals. Hence, in the case of a shot-noise limited system and
under the assumption of sufficiently small beam spreading due to turbulence, the mean
SNR at the output of the detector 〈SNR〉 assumes the following general form [95]:

〈SNR〉 = SNR0√
1 + σ2

I SNR2
0

, (49)

where the scintillation flux is developed in [100] and SNR0 is the free-space SNR.
We show in Figure 19 the mean SNR, 〈SNR〉, keeping the structure function at the Fres-

nel distance fixed, as shown in [100] and previously proposed in [83]. The two anisoropic
factors are kept fixed (shown as zxeff and zyeff in the figure title). The impact of anisotropy
on the mean SNR is noticeable: in general, the decrease in scintillation due to anisotropy
leads to an increase in the SNR, implying better performance.

Figure 19. Mean SNR with fixed structure function for fixed values of anisotropic factors (shown as
zxeff and zyeff). Reprinted with permission from Reference [100].
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6.1.4. Mean Bit-Error Rate

The probability of error of a beam wave after propagation in the atmospheric turbu-
lence is the conditional probability that must be averaged over the PDF of the random
received signal to determine the unconditional mean BER. In terms of a normalized signal
with unit mean, if a direct detection scheme is used, this leads to the following expres-
sion [95]:

PE =
1
2

∞∫
0

Pu(u)Erfc(〈SNR〉1
4

u
√

2)du. (50)

where Erfc is the complimentary error function and the PDF of the instantaneous intensity is
assumed to be log-normal distributed with the unit mean. In Figure 20, we show the mean
BER for different values of power law α as a function of the mean SNR (in dB), for several
sets of anisotropy factors (shown as zxeff and zyeff in the legend) and a given value of the
structure function (kept fixed) [100]. The effect of anisotropy on the mean bit-error rate
is well visible: as for the probability of fade and the signal-to-noise ratio, the decrease
in scintillation, due to anisotropy leads to a decrease in the bit-error rate.

Figure 20. Mean BER as a function of mean SNR for several sets of anisotropy factors (shown as zxeff
and zyeff in the legend) with α= 3.2. Reprinted with permission from Reference [100].

Toselli and Gladysz also showed that the removal by adaptive optics of several Zernike
modes from the turbulence-affected phase can be very effective in reducing scintillation in
non-classic turbulence [101].

6.2. LIDARs

Light detection and ranging systems (LIDARs) are currently used in various applica-
tions from meteorology to headlight sensing. In these systems, light must travel through
the same medium twice, either through exactly the same path (mono-static case) or along
slightly different paths (bi-static case). In the former case, the phase conjugation phe-
nomenon considerably complicates the analysis, producing intensity redistribution in
the region around the optical axis. This phenomenon is known as enhanced back-scatter
(EBS), and is positive for retro-reflector targets and negative for flat mirror targets. While
double-passage propagation of laser beams were thoroughly investigated for Kolmogorov
turbulence [95,102] a more complex case of non-Kolmogorov turbulence was not fully
explored until recently. The seminal analysis of LIDARs in weak non-Kolmogorov turbu-
lence was made in [103], revealing how a power law different from Kolmogorov’s impacts
the average intensity distribution, the long-term spread and the scintillation index of an op-
tical beam after it passes through turbulence to a (smooth) target surface, interacting with
such a target and passing back through the same turbulent channel. Such an analysis was
conducted for both mono-static and bi-static configurations. In the case of the mono-static
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channel, the enhanced backscattering effects were also investigated. Both the analytical
results and those based on wave-optics simulation were obtained and compared.

The double-passage problem of a laser beam propagating in the presence of non-
Kolmogorov atmospheric turbulence at any turbulence strength was analyzed in Refer-
ence [104]. In particular, using the extended Rytov theory, for the horizontal path, the
authors theoretically investigated the scintillation index of a Gaussian beam reflected from
a small unresolved target in deep turbulence conditions. The authors theoretically showed
that different power laws substantially affect the scintillation results; however, they did
not observe the scintillation peaks predicted by the theory near the focusing regime, us-
ing wave optics simulations. In addition, authors showed that the occurrence of giant
intensity spikes previously discussed in Section 2.4 is currently not captured by the theory.
The numerical outcomes for the scintillation index in mono-static and bi-static cases, at
any turbulence strength, are shown in Figures 21 and 22, respectively. Finally, we show
in Figure 23 the EBS factor appearing in the mono-static LIDAR scenario, as a function
of the square root of the Rytov variance for several power law values [104].

Figure 21. Mono-static case: scintillation index as a function of the square root of the Rytov variance
for several power law values. Reprinted with permission from Reference [104].

Figure 22. Bi-static case: scintillation index as a function of the square root of the Rytov variance
for several power law values. Reprinted with permission from Reference [104].
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Figure 23. Mono-static case: enhancement factor as a function of the square root of the Rytov variance
for several power law values. Reprinted with permission from Reference [104].

6.3. Imaging Systems

The analysis of imaging systems using random illumination and/or operating through
random environments relies on the modulation transfer function (MTF) describing a filter
acting on the continuum of spatial frequencies characterizing the system [95]. The MTF can
be directly derived from the CSD function, discussed above. In the clear-air (particle-free)
atmospheric turbulence, the MTF is defined by the following convolution:

MTF(Ω) = MTF0(Ω) ? MTFT(Ω), (51)

where the first term prescribes the properties of the system in the absence of turbulence,
and the second term characterizes spatial filtering due to turbulence, its form depending
on long or short exposure options. Parameter Ω represents the spatial frequency scaled by
wavelength and the collecting aperture diameter. Imaging through various regimes of non-
classic turbulence was discussed in References [60,105–108]. The influence of both non-
Kolmogorov power spectra and anisotropy on the MTF profiles, and thus, on the quality
of the formed images, is illustrated.

7. Concluding Remarks

We have overviewed the classic and a relatively recent body of work highlighting
various manifestations of non-classic optical turbulence in the atmosphere and discussed
the ways of characterizing and predicting its effects on propagating light. The main accent
was made on phenomena and applications that were investigated by the authors over
the last decade, through analytical modeling and computer simulations as well as in lab
and field measurement campaigns.

Optical wavefronts are extremely susceptible to turbulent air fluctuations and, hence,
present excellent means for the sensing of classic and non-classic turbulence. We have
brought together a large number of investigations reported in the literature, which illustrate
that the exponent variations of the power spectrum, anisotropy, constant temperature
gradients, and other manifestations of non-classic turbulence are imprinted into light
statistics and can be used for assessing turbulence’s structure and statistics. On the other
hand, non-classic turbulent regimes present obstacles for tuning various optical systems
operating through the air. As we showed, careful theoretical analysis and simulations
can provide an idea of the limits that the non-classic turbulence can set for high-quality
operation of WOC, imaging and LIDAR systems. To conclude, we must mention that
other natural turbulent media, such as ocean water and soft biological tissues, often exhibit
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non-classic regimes. Therefore, the summary suggested here may also become useful
for further investigations relating to these media.
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