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Abstract: Vein recognition technology identifies human vein characteristics under near-infrared
light and compares it with stored vein information for personal identification. Although this has
high anti-counterfeiting performance, it is possible to fabricate artificial hands that simulate vein
characteristics to deceive the identity authentication system. In view of this potential deficiency, we
introduced heart rate information to vein authentication, a means of living body detection, which can
further improve the anti-counterfeiting effect of vein authentication. A hand vein transillumination
imaging experiment was designed to prove its effectiveness. In the proposed method, a near-infrared
light source is used to transilluminate the hand, and the transillumination images are collected
by a common camera. Then, the region of interest is selected for gray-scale image processing, the
feature value of each frame is extracted by superimposing and averaging the images, and then the
one-dimensional pulse wave is drawn. Furthermore, the baseline drift phenomenon is filtered by
morphological methods, and the maximum percentage frequency is determined by Fast Fourier
Transform, that is, the pulse wave frequency. The heart rate value is then calculated, and finally,
the stability of the heart rate detection result is evaluated. The experiment shows that the method
produces accurate and stable results, demonstrating that it can provide living information (heart rate
value) for vein authentication, which has great application prospects and development opportunities
in security systems.

Keywords: PPG; vein authentication; non-contact heart rate detection; ordinary camera; transillumi-
nation imaging

1. Introduction

The heart rate is an indicator of the physical health of the human body and has
important applications in medicine, emotional analysis and other fields. In the medical
field, monitoring the heart rate can play a role in preventive care [1,2], such as the screening
of patients with early cardiovascular disease. The premise of affective computing is that
changes in physiological states such as heart rate are closely linked to people’s emotions [3,4],
so heart rate parameters are essential for building a comprehensive emotion recognition
system. In addition, in recent years, heart rate detection has attracted increasing attention
in the field of biometric authentication [5,6], and it can be used as an important parameter
to improve the anti-spoofing systems.

Common heart rate monitoring methods include the electrocardiographic signal
method, the arterial blood pressure method, photoplethysmography (PPG), and imaging
photoplethysmography (iPPG), among others. The electrocardiographic signal method [7]
is based on the sinus node, which rhythmically controls the systolic and diastolic con-
tractions to pump blood to the trunk. The electrical signal gradually spreads to the body
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surface and can be measured by electrodes on the skin surface. The arterial blood pressure
method [8] uses a pressure sensor to convert the pressure signal corresponding to the
regular fluctuation of arterial blood pressure into a heart rate signal. In 1938, Hertzman
proposed PPG [9], which detects the pulse by using light to transmit or reflect blood flowing
in blood vessels. In 2000, AT Wu et al. proposed iPPG [10] on the basis of PPG, which
collects reflected light images with a black-and-white camera and analyzes the picture
sequence to obtain pulse wave signals. Since traditional heart rate monitoring methods,
such as electrocardiographic signal and arterial blood pressure methods, require contact
with the skin, users may experience discomfort, and it is not suitable for obtaining heart
rate parameters when applied in the field of biometrics. On the other hand, with the
development of technology, cameras have become ubiquitous, so their use in heart rate
detection has many potential applications.

Biometric technology combines computers with high-tech approaches, such as optics,
acoustics, biosensors, and biostatistics principles, and uses the inherent physiological
characteristics of the human body (fingerprints, iris, gait, veins, etc.) to confirm a person’s
identity [11–14]. Traditional identification methods include identification items (keys,
certificates, ATM cards, etc.), and security information (such as usernames and passwords).
However, because these methods mainly rely on external objects or memory, once the
identification item or security information that proves identity is stolen or forgotten,
the individual can be easily impersonated or replaced by others. Biometrics is more
secure, confidential and convenient than traditional identification methods. Biometric
identification technology has several advantages: it does not require memorization, has
good anti-counterfeiting performance, is difficult to forge or steal, and is “carried” with the
individual, and is usable anytime, anywhere. Among these techniques, vein recognition
technology [15] is highly effective against counterfeiting. Veins are hidden in the body,
and are inherent features that are difficult to forge and steal. Vein authentication is a
second-generation biometric recognition technology [16], with great application prospects
and development opportunities in security fields.

Although vein authentication has a high anti-counterfeiting ability, if an individual
has permission to access the internal database and print out the vein characteristic data,
it is possible to deceive the identity authentication system by creating a fake hand that
simulates the vein characteristics [17–21]. Therefore, vein authentication can be improved
by combing heart rate information obtained based on the iPPG method to perform living
body recognition. This approach can not only prevent internal information leakage and
fraud, but also assess the emotional state of the human person. If the heartbeat value is not
within the normal range [3,4], it may indicate intimidation or extreme irritation, in which
case, the user is unable to perform normal authentication, thus ensuring the security of
the system.

Based on the above considerations, this paper proposes a non-contact heart rate
detection method based on hand vein transillumination imaging. Near-infrared light is
used as the light source, and a fisheye lens camera obtains high-information images, which
are then further processed. The eigenvalue is used to obtain the one-dimensional pulse
wave signal, which is filtered through morphological processing [22]. Then, the pulse wave
frequency is obtained through the Fourier transform, which realizes the detection of the
heart rate. This method provides heart rate information during vein authentication, thereby
ensuring that the subject is a living body, which has high a practical application value.

2. Materials and Methods
2.1. Acquisition of Vein Transmission Images

The transmission image acquisition device used to obtain the pulse wave of a hand is
shown in Figure 1. It consists of an infrared light-emitting tube, an 850 nm narrowband
filter (manufacturer: Hua Shang Laser, model: HS-850LGP-F4.5), a 150◦ fisheye lens camera
(model: 3200_720P), a computer (model: HP Pavilion Gaming Desktop 690-05xx), and
MATLAB software (MATLAB version: R2018a) which is employed to further process
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images. The infrared light-emitting tube light source used in the experiment has an
emission angle of 45◦, a voltage of 1.3–1.6 V, a current of 20–30 mA, and a peak wavelength
of 850 nm. The center wavelength of the narrow-band filter is 850 ± 10 nm, the half-band
is 30 nm, the peak transmittance is > 86%, and the ring depth is <1%. The camera frame
rate is 20 fps, the output resolution is set to 1280 * 720, and the output format is set to JPG.
In the process of data collection, the light source directly illuminates the hand, and the
light passing through the hand is received by the camera and then transferred to the PC
via USB for storage and post-processing. The entirety of the above-mentioned experiment
was carried out in a closed environment to avoid interference from ambient light.
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Figure 1. The diagram of the experimental device.

This experiment was performed on 10 subjects, and 10 sets of data were collected for
each participant. Each set of data includes a heart rate measured by a blood pressure meter,
which is treated as the true heart rate. Before data collection, the subjects were instructed
to relax for a period of time while maintaining steady breathing and a stable emotional
state. During data collection, the subjects held the near-infrared light source and tried to
keep their hands steady. The data were collected by camera, and the measurement time
of each subject in the experiment was 20 s. Image acquisition was performed on the basis
of the experimental device to obtain the original vein transmission image (a set of data is
used as an example for illustration below).

Infrared light serves as the experimental light source. The light source was held in
the palm and the camera was located on the other side. The light source was turned on
and video images of the light transmitted through the hand were recorded. A 20 s video
was obtained, from which 400 image frames were extracted. Since the data obtained in
the initial stage of acquisition may be unstable, 300 frames of the intermediate acquisition
stage are selected for experimental data processing and analysis, one of which is shown in
Figure 2a. The region of interest (ROI) was determined, and the corresponding interception
for each frame was performed to obtain the image corresponding to the ROI, which is
expressed as Ii (i = 1, 2 . . . m, m = 300), as shown in Figure 2b. A gray-scale operation was
performed to obtain a single-channel image corresponding to the ROI, denoted as Igrayi ,
one of which is shown in Figure 2c.
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2.2. Acquisition and Pre-Processing of One-Dimensional Pulse Wave Signal
2.2.1. Acquisition of One-Dimensional Pulse Wave Signal

All pixels in each frame of ROI image (si = sum(sum(Ii))) were accumulated to obtain
the feature value of each frame. All feature value points constitute a one-dimensional pulse
wave signal (i = 1, 2 . . . m, m = 1000). The schematic diagram is shown in Figure 3.
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2.2.2. Elimination of Baseline Drift Based on Morphological Operation

In the process of collecting video images for a period of time with an ordinary camera,
noise is inevitably be introduced due to the influence of external factors (camera instability,
light intensity, etc.), which contaminates the collected signal and affects subsequent process-
ing. In addition, the heart rate signal, the PPG signal also contain a series of low-frequency
noises, from sources such as breathing, body tremor, and skeletal muscle contraction.
Therefore, the signal-to-noise ratio should be improved to obtain a more accurate blood
volume. The pulse waveform requires the source signal to be denoised. In this research, a
morphological operation was used to denoise the signal.

Mathematical morphology theory states that open and close operations move struc-
tural elements below and above the signal, respectively. The open operation can cut off
the signal “wave crest”, which is contractible, eliminates isolated signal points, suppresses
the positive impulse noise, and makes the signal smooth; the close operation can fill the
signal “valley”, with expansion, and can suppress negative impulse noise. The open and
close operations both have low-pass characteristics. The purpose of the morphological
filter is to eliminate the peaks and troughs of a specific width in the signal by combining
open and close operations. The components that are actually filtered out of the signal are
related to the structural elements used in the calculation. For example, the width of the
structural element is M, and the width of the peak or trough in the signal is N, as shown in
Equation (1). {

N > M, signal is retained
N < M, signal is f iltered out

(1)
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In order to simultaneously remove the positive and negative pulse noises in the signal,
a cascade combination of open and close operations was adopted to define the open-close
and close-open filters, as shown in Equation (2).{

Morphological opening− closing : OC( f ) = ( f ◦ k)•k
Morphological closing− opening : CO( f ) = ( f •k) ◦ k

(2)

where, f represents the original signal, and k represents the structural element.
Due to the shrinkage of the open operation, the output of the morphological open-

close filter is too small, and due to the expandability of the close operation, the output of
the morphological close-open filter is too large, which greatly affects the filter’s ability to
efficiently remove noise. To reduce the occurrence of offsets and improve filtering effects,
they are generally not used alone, instead the signal is filtered through the cascade of
morphological open-close and close-open operations. The mathematical expression of the
signal f after morphological filtering is shown in Equation (3).

f ′ =
1
2
[OC( f ) + CO( f )] (3)

The mathematical morphology filter adopts the linear structure element. The width of
the linear structure element is set to 20, which is greater than the width of the characteristic
pulse waveform. Morphological open-close and close-open filters are applied to the pulse
wave signal to simultaneously remove both positive and negative impulse noises in the
signal, respectively. The signal is filtered through the cascade of morphological open-close
and the close-open operations, thereby improving the filter’s high-efficiency noise removal
performance and achieving better filtering effects. The pulse wave signals before and after
filtering are shown in Figure 4a,b.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 10 
 

N M sig
N M s

nal
ignal 

 is fi
is ret

ltered
a

 
ine

out
d

 
>

 <

，

，
 (1) 

In order to simultaneously remove the positive and negative pulse noises in the sig-
nal, a cascade combination of open and close operations was adopted to define the open-
close and close-open filters, as shown in Equation (2). 

Morphological opening - closing OC(f) (f k) k
Morphological closing - opening CO(f) (f k) k

•
 •





： =

： =
 (2) 

where, f  represents the original signal, and k  represents the structural element. 
Due to the shrinkage of the open operation, the output of the morphological open-

close filter is too small, and due to the expandability of the close operation, the output of 
the morphological close-open filter is too large, which greatly affects the filter’s ability to 
efficiently remove noise. To reduce the occurrence of offsets and improve filtering effects, 
they are generally not used alone, instead the signal is filtered through the cascade of 
morphological open-close and close-open operations. The mathematical expression of the 
signal f  after morphological filtering is shown in Equation (3). 

' 1 [ ]
2

f OC(f) CO(f)+=  (3) 

The mathematical morphology filter adopts the linear structure element. The width 
of the linear structure element is set to 20, which is greater than the width of the charac-
teristic pulse waveform. Morphological open-close and close-open filters are applied to 
the pulse wave signal to simultaneously remove both positive and negative impulse 
noises in the signal, respectively. The signal is filtered through the cascade of morpholog-
ical open-close and the close-open operations, thereby improving the filter’s high-effi-
ciency noise removal performance and achieving better filtering effects. The pulse wave 
signals before and after filtering are shown in Figure 4a,b. 

 
Figure 4. Pulse wave signal. (a) The original pulse wave signal and (b) the filtered pulse wave signal. 

  

Figure 4. Pulse wave signal. (a) The original pulse wave signal and (b) the filtered pulse wave signal.

2.3. FFT-Based Heart Rate Calculation

FFT [23] is the general term for an efficient and fast calculation method that uses a
computer to calculate the discrete Fourier transform (DFT). The signal is transformed from
the time domain to the frequency domain through FFT, and then the frequency spectrum
structure and the change law of the signal are analyzed.
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The full-period pulse wave signal is determined by peak-to-peak value detection,
and the full-period FFT is further performed on the obtained pulse wave signal. The
frequency domain diagram of the pulse wave is shown in Figure 5. Then, the heart rate
value is determined by the maximum frequency ratio in the frequency chart, the maximum
frequency ( f ) = 1.467 Hz, that is, the corresponding heart rate (HR) = f × 60 = 1.467 × 60 ≈
88 bpm.
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2.4. Performance Evaluation of Heart Rate Detection Algorithm

Accuracy and robustness are important indicators for judging the performance of
a heart rate detection algorithm. Accuracy indicates the closeness of the measurement
result of the heart rate detection algorithm to the heart rate reference value. Robustness
refers to the performance of the heart rate detection algorithm under different interference
conditions. To determine the degree of stability, also known as anti-interference, this article
will evaluate the performance of the heart rate detection algorithm using four quantitative
indicators and one qualitative indicator.

2.4.1. Qualitative Index

In modern science, the feasibility of a device or technology is assessed using a complete
evaluation system, called a consistency evaluation, to determine whether two methods are
interchangeable. Generally, the consistency evaluation method is used to determine the
agreement between two methods. This article uses the Bland-Altman evaluation method
to verify whether the non-contact heart rate test results are consistent with the reference
values, thereby determining the effectiveness and accuracy of the algorithm.

The Bland–Altman analysis is named after the two scholars who proposed it in
1986 [24]. The main steps are to calculate the consistency limit of the two methods, display
the calculation results graphically, and finally determine whether the two are consistent.

2.4.2. Quantitative Index

The error between the measured heart rate (HRg) and the actual heart rate (HRerro) is
shown in Equation (4).

HRerro = HRm − HRg (4)

(1) Mean Error (M)
M refers to the average heart rate measurement error, which reflects the deviation of

the measurement result from the reference heart rate. It is negatively related to the accuracy
of the heart rate detection method.

(2) Standard Deviation (SD)
In order to improve the reliability of the average error index, as much sample data

as possible should be used for the calculation in the analysis. SD represents the standard
deviation of the measurement error value of the heart rate detection, which indicates the
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degree of dispersion of the heart rate error values. It is inversely related to the stability of
the heart rate detection algorithm.

(3) Root Mean Squared Error (RMSE)
RMSE is the square root of the squared sum of the measurement error and the ratio

of the number of video samples used for heart rate detection. The calculation formula is
shown in Equation (5). RMSE is an indicator that measures the degree of deviation between
the detected heart rate detection value and the true value; thus, the RMSE value reflects
the accuracy of the heart rate detection algorithm, and is inversely related to the heart rate
detection effect.

RMSE =

√√√√ 1
N

N

∑
i=1

(HRerro
i )2 (5)

where, N is the number of video samples used for heart rate detection, HRerro
i represents

the error value of the i-th video heart rate measurement, and M is the average error.
(4) Pearson Correlation Coefficient (r)
The Pearson correlation coefficient (r) is the ratio of the covariance of the measured

heart rate and the real heart rate and the product of the standard deviation of the two.
The closer its value is to 1, the stronger the positive correlation. The calculation formula
is shown in Equation (6). The larger the absolute value of r, the stronger the correlation
between the measured value and the actual value, and the higher the accuracy of heart
rate detection.

r =
Cov(HRm, HRg)

SD(HRm) ∗ SD(HRg)
=

N
∑

i=1
((HRi

m − HRi
m)

N
∑

i=1
(HRi

g − HRi
g))√

(HRi
m − HRi

m)
2
∗ (HRi

g − HRi
g)

2
(6)

where, N is the number of video samples used for heart rate detection, Cov refers to the
covariance, SD represents the standard deviation, HRi

m and HRi
g represent the measured

and true values in the i-th video, respectively, HRi
m and HRi

g are the average value of the
detected heart rate of all sample videos and the average of the actual values of the tested
sample videos, respectively.

3. Results and Discussion

In this study, we obtained heart rate information through hand vein transmission
images, introduced living body information to vein authentication, and further improved
the anti-counterfeiting effect of the vein authentication system. If the purpose is only to
determine whether the body is alive, then it is only necessary to confirm whether the heart
rate can be detected; however, we plan to further use heart rate information to assess the
emotional state of the subject. If the heart rate value is not within the normal range, the
individual may be under duress or experiencing extreme anger, in which case, the user
is be unable to perform normal authentication, which can further ensure the security of
the system. Based on the above considerations, we also have certain requirements for
the accuracy of the heart rate obtained through the vein transmission image described in
this article. Therefore, in this section, we further analyze the anti-interference ability and
accuracy of the proposed heart rate detection method. Accuracy is the closeness of the
measurement result of the heart rate detection algorithm to the heart rate reference value.
Robustness refers to the stability of the heart rate detection performance under different
interference conditions, that is, the anti-interference ability.

First, we analyzed the results theoretically. In the image acquisition process, we used
a near-infrared light source for active illumination and collected hand vein images through
transmission, so a high signal-to-noise ratio and information-rich transmission image can
be obtained. Before obtaining the one-dimensional pulse wave signal, we used spatial
superposition averaging. When obtaining the single-channel image, the three-channel
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image superimposition average was used; when the one-dimensional pulse wave signal
was obtained, all of the pixels in the image frame were used. Spatial superposition and
averaging were performed, thereby largely suppressing the interference of random noise. In
pulse wave preprocessing, the morphological filtering method was used to reduce baseline
drift. In summary, the aim is to obtain pulse wave signals with a high signal-to-noise ratio
and high stability from multiple perspectives of image acquisition and processing.

Secondly, we verified the anti-interference ability and accuracy of the heart rate
monitoring method through further data analysis. The results are analyzed and explained
from two perspectives: qualitative and quantitative indicators.

3.1. Qualitative Index

This section uses the Bland-Altman method to verify whether the non-contact heart
rate test results are consistent with the reference values, so as to confirm the effectiveness
and accuracy of the method. The differences between the estimated values from the contact
and non-contact methods are plotted with the average value of HR, and 100 pairs of
measurement data of 10 participants are analyzed with the Bland-Altman method, as
shown in Figure 6a,b.
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Figure 6. Bland-Altman diagram. (a) The regression line between the true heart rate and the measured
value of camera: the abscissa represents the true heart rate, and the ordinate represents the value
measured by the camera; (b) the level of consistency between the true heart rate and the value
measured by the camera: the abscissa represents the average difference between the true heart rate
and the value measured by the camera, and the ordinate represents the difference between the true
heart rate and the value measured by camera.

First, a scatter plot is drawn based on the true heart rate and the measured value
obtained by the camera, and the image is used to analyze the correlation between the two.
As shown in Figure 6a, the relationship between the true heart rate and the measured value
obtained by the camera is approximately linear.

Second, based on the number of data points outside the 95% consistency limit and the
maximum difference within the agreement limit, and the degree of acceptability, consistency
evaluation can be performed. It can be seen from Figure 6b that the 95% consistency is
limited to -5.3~5.8 bpm, and 7.00% (7/100) of points are outside the 95% consistency limit.
Within the consistency limit, the true heart rate is compared with the value measured by
the camera. The maximum absolute value of the difference is 7 bpm, and the average error
is 2.28 bpm. According to the pharmaceutical industry standard of the People’s Republic
of China (error <= 5 bpm), the error is acceptable. Thus, the value measured by the camera
is considered to be in good agreement with the true heart rate. In addition, the average HR
difference is 0.3 bpm. The closeness of the true heart rate to the measured value obtained by
the camera is indicated by the blue solid line, which represents the average HR difference.
Close to the line (orange dashed line) represents an average difference of 0, which also
reflects the high consistency between the two datasets.
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3.2. Quantitative Index

In order to quantitatively evaluate the accuracy of the pulse wave detection method
based on hand transmission imaging from various aspects, this section presents a quantita-
tive analysis from four perspectives: mean error (M), standard deviation (SD), root mean
squared error (RMSE), and the Pearson correlation coefficient (r).

Table 1 reports the evaluation results using different indicators. The values of M,
SD, and RMSE are 2.2814, 1.1373, and 2.8254, respectively. Based on the work in [25], an
index value of about 4 or less demonstrates the feasibility of the algorithm for heart rate
detection. When the value of the index is close to or greater than 10, the algorithm is
completely invalid for heart rate detection. The three indices are negatively correlated with
the accuracy of heart rate detection, and thus, the results indicate the high accuracy of
the heart rate values obtained by the method in this paper. The r value is 0.7522, which is
positively correlated with the accuracy of the heart rate detection and also verifies the high
accuracy of the heart rate results obtained in this study.

Table 1. Statistical results of indicators.

Index M SD RMSE r

value 2.2814 1.1373 2.8254 0.7522

4. Conclusions

This paper proposes a non-contact heart rate detection method based on hand vein
transillumination that can be used in vein authentication. The experimental results prove
the effectiveness and stability of the method for detecting heart rate. The hand vein
transillumination image is collected by near-infrared illumination, the ROI is extracted
and grayed out, and the one-dimensional pulse wave signal is drawn by superimposition
and averaging. The baseband drift noise is further filtered by the morphological method,
and finally the pulse wave frequency is obtained through frequency domain analysis,
resulting in the heart rate value. This article takes vein authentication as the starting point
and aims to introduce living body identification information so as to further improve its
anti-counterfeiting effect, which has potential value and significance for the application
and development of vein authentication in the security field.
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