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Abstract: Rotational Risley prisms are one of the fastest two-dimensional (2D) optomechanical
scanning systems. Their drawback is the strong non-linearity of the scan patterns they produce, in
contrast to the most common (but slower) raster scanning modalities of 2D dual axis galvanometer
scanners (GSs) or Micro-Electro-Mechanical Systems (MEMS) with oscillatory mirrors. The aim
of this work is to develop a graphical method, which, to our knowledge, we have introduced to
determine and characterize, using a commercially-available mechanical design program (for example
CATIA V5R20 (Dassault Systems, Paris, France)) to simulate the exact scan patterns of rotational
Risley prisms. Both the maximum and minimum angular and linear deviations of this type of
scanner are deduced theoretically to characterize the outer diameter/Field-of-View (FOV) and the
inner diameter (of the blind zone) of its ring-shaped patterns, respectively. This multi-parameter
analysis is performed in correlation with the shape of the scan patterns, considering the four possible
configurations of laser scanners with a pair of rotational Risley prisms, as well as all their parameters:
prisms angles, refractive indexes, rotational speeds, distance between the two prisms, and the distance
from the system to the scanned plane. Marshall’s synthetic parameters are also considered, i.e., the
ratios of the rotational velocities and of the angles of the prisms. Rules-of-thumb for designing this
optomechanical scanner are extracted from this analysis, regarding both shapes and dimensions of
the scan patterns to be produced. An example of experimental validation completes the mathematical
analysis and the performed simulations.

Keywords: optomechanical scanners; Risley prisms; rotational wedges; scan patterns; mechanical
design program; simulations; angular deviations; linear displacements; multi-parameter analysis

1. Introduction

Risley prisms are optomechanical devices that have, in their most common con-
figuration, a pair of rotational optical wedges [1,2]. They are mostly utilized for laser
scanning [3–7], but also for optical pointing, by positioning for example the FOV of a
camera on an area of interest for machine vision applications [8,9]. Other Risley prism
devices may consist of a pair of tilting [10,11], rotational and tilting [12], or translational
prisms [13,14]. Rotational doublets have also been developed to minimize optical disper-
sion [15]. Other solutions include devices with two rotational gratings [16], with two pairs
of prisms to increase the FOV [17], or with three rotational prisms [18], the latter for a
supplemental degree of freedom in the design of the generated scan patterns.

Risley prisms are utilized in a large range of applications, including not only laser
scanning [3–7,10–12,15–18] and optical pointing [8,9], but also holography [19], interferom-
etry [13,20], polarimetry [21], light attenuation [14], optical metrology [22], and imaging—
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the latter for confocal microscopy [23]. The dimensions of the prisms vary from hundreds
of millimeters in diameter, for example for devices utilized in satellite positioning [24], to
millimeters in diameter for endoscopy [25].

Regardless of their type, dimensions, and applications, the characteristic of rotational
Risley prisms is that they generate complicated scan patterns. This major disadvantage
makes such scanning systems much less utilized than the most common GSs [26–28].
The advantage of 2D GSs, as well as of their alternatives, polygon mirror (PM) plus
GS systems [29–31] or MEMS with oscillatory mirrors [32–34], is that they provide the
(uniform/constant speed) raster scanning necessary, for example, for laser manufactur-
ing or for imaging [31,35–37]. The latter includes hot topics such as Optical Coherence
Tomography (OCT) [38–42] for biomedical investigations [32–42] or Non-Destructive Test-
ing [43–46], in which lateral electro-mechanical laser scanning is essential in most variants
of the technique.

However, such 2D scanners, with dual axis GSs, and even more those with PM plus GS,
have the disadvantage of large dimensions and weight. Even MEMS have an electronics
board surrounding the micro-mirror that adds to their effective dimensions. In contrast,
Risley prisms can be manufactured with (even) sub-millimeter diameters. In addition to
this possibility of miniaturization, they have, compared to raster or spiral scanning [47–49],
the advantage of speed—in competition with Lissajous scanning with resonant 2D GSs
or MEMS [50,51]. Scanning speed is especially important in imaging, where real-time,
in vivo investigations are the goal, but also for applications such as security and defense,
where the FOV must be covered as fast as possible to detect targets of certain sizes, without
necessarily going for a high value of the fill factor of the FOV.

To take full advantage of their capabilities, numerous studies have addressed the
two problems of Risley prism scanning. Thus, analytical approaches have solved the
direct problem, of angular laser pointing using pairs of rotational prisms [2–7], as well as
tilting ones [10,11] or their combination [12]. Issues of dispersion—when optical prisms,
not wedges are utilized [15]—as well as of distortion [52,53] have also been addressed,
including their limit angles [54]. Mechanical aspects, which include error correction [55],
driving [56,57], and mounting of (especially large) prisms [24] are also important. The
inverse problem, that of the necessary position of the prisms to produce a certain angular
position of the emerging laser beam or a position of the laser spot on a screen/target, has
been tackled analytically [7,11,58] or numerically [59].

In contrast to all these rather complex approaches, the seminal work carried out by
Marshall in [4] elegantly provided a comprehensive overview of the shape of scan patterns
that can be obtained with a pair of rotational prisms, albeit in an approximative approach,
i.e., by considering the first order approximation of Snell’s refraction law.

To overcome both the above issues, of exact but complicated analytical solutions
or of easier but approximate ones, we have proposed [49,60], for the first time to our
knowledge, a simple, easy-to-use graphical method that provides (and allows for the
analysis of) exact scan patterns of Risley prisms. This novel method utilizes only the most
elementary prism equations, as we present in this work, moving the stress on simulating
the patterns with a common, commercially-available mechanical design program. In our
preliminary studies [49,60,61], as well as in the present one, the program CATIA V5R20
(Dassault Systems, Paris, France) has been used, although other such programs specialized
in mechanical design can be considered, as well. Furthermore, in contrast to our previous
works, in the present study we approach not only one (as in [49]), but all four possible
configurations of a pair of rotational prisms, as detailed in Section 2.

The first aim of this work is to develop the necessary analytical background of our
method, by providing the system equations and by deducing the maximum and minimum,
angular, and linear deviations of the scanner. One can thus characterize the outer diame-
ter/FOV and the inner diameter (of the blind zone/untouched by the scan) of the (usually)
ring-shaped patterns, respectively.
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The second aim is to obtain with the proposed graphical method the simulated scan
patterns of a pair of Risley prisms and to fully characterize them by performing their
multi-parameter analysis, considering all the constructive and functional parameters of the
device. Both the shapes and the dimensions of the patterns are targeted by the analysis, the
latter using the theoretically deduced angular and linear deviations.

The third aim is to extract rules-of-thumb to design such optomechanical scanners
in order to obtain certain shapes and dimensions of their scan patterns. Examples of
experimental ascertainments of the patterns, to demonstrate how theory and simulations
can be validated, complete the study.

The remaining of this paper includes, in Section 2, the configurations and equations
(including for angular deviations) of scanners with a pair of rotational Risley prisms.
Linear deviations (maximum and minimum, with exact and approximate expressions) are
deduced in Section 3. In Section 4, the graphical method we have developed is presented,
as well as examples of its results, i.e., simulated scan patterns. A selection of relevant
examples is made with regard to all system parameters to allow for discussion of the shape
of patterns. A multi-parameter analysis, of both angular and linear deviations, is performed
in Section 5. It is correlated with the simulated scan patterns, extracting rules-of-thumb
to be able to optimally design such scanners. A brief experimental validation is made in
Section 7. Conclusions and directions of future work are provided in Section 8.

2. Scanners with Pairs of Rotational Risley Prisms

The principle scheme of a laser scanner with a pair of rotational Risley prisms is
presented in Figure 1a.

Figure 1 shows the principle of the modelling process of the rotation of prisms performed
using CATIA V5R20 and how this allows for the simulation of the scanning process, i.e.,
of the refraction of a laser beam (considered reduced to a single central ray) through the
prism system. A simplifying hypothesis (and characteristic) of this entire study is that
we perform it within the boundaries of geometrical optics. Thus, all the (Gaussian) laser
beams are considered reduced to their central rays, and the dependence of the refractive
indexes of the prisms materials with the laser wavelengths are not considered. As pointed
out in the Introduction, there are studies focused on dispersion issues that occur especially
when optical prisms are utilized, instead of wedges [15].
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Figure 1. (a) Pair of rotational Risley prisms, modelled with a commercially-available mechanical design program, CATIA
V5R20. (b,c) Two light bundles generated with CATIA V5R20 in the simulation of scanning with a pair of rotational Risley
prisms. As a color convention throughout the entire study, scan patterns obtained for prisms rotating in the same direction
are presented in blue, while patterns of prisms rotating in opposite directions are presented in red. Details are presented in
the text.

Figure 1b,c show the results of the simulation, with two ray bundles, generated for the
two prisms rotating in the same direction (Figure 1b) and in opposite directions (Figure 1c),
respectively. The ray bundles are intersected with a plane (the screen in Figure 1a) situated
at a certain distance from the scanner. The scan patterns thus obtained are shown in
dotted lines at the end of the light bundles. This simple procedure is utilized further on in
Section 4 to obtain different shapes of the scan patterns.

The characteristic parameters of the system are (Figure 2): θ1 and θ2, the angles of
the prisms; n1 and n2, the refractive indexes of the materials of Prism 1 and 2, respectively
(indexes that are considered constant, as we do not take into account dispersion in the
present work, as pointed out above); ω1 and ω2, the rotational speeds of the prisms; e, the
distance between the two prisms (measured between the diopters perpendicular on the
symmetry/optical axis (O.A.) of the components of the system); and L, the distance from
the (final diopter perpendicular on the O.A. of the) scanner to the screen. The analysis
of such scanners should also be based on Marshall’s synthetic and elegant parameters: k,
the ratio of the angles of the prisms (initially defined in [4] in a more particular way, as
ratio of the deviation angles D = (n−1) θ of each prism, obtained using the small angles
approximation); and M, the ratio of the rotational speeds [4]:

k = θ2/θ1 and M = ω2/ω1. (1)

In Figure 1b,c, the two ray bundles were obtained for a certain modulus of M, but (b)
for M > 0 (when the two prisms rotate in the same direction), and (c) for M < 0 (when the
two prisms rotate in opposite directions). As a color convention in all such figures in the
paper, bundles and patterns obtained for M > 0 are drawn in blue, while those obtained for
M < 0 are drawn in red.

Four possible combinations of the relative positions of the two prisms can be obtained
by considering all different possible orientations of the prism diopters [6]. By denoting
with ‘a’ a diopter perpendicular on the O.A. and with ‘b’ a tilted one, these configurations
are as follows (Figure 2): (a) ab-ab; (b) ab-ba; (c) ba-ba; and (d) ba-ab.
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Figure 2. The four possible configurations of a laser scanner with a pair of rotational Risley prisms: (a) ab-ab; (b) ab-ba; (c) 
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Figure 2. The four possible configurations of a laser scanner with a pair of rotational Risley prisms: (a) ab-ab; (b) ab-ba;
(c) ba-ba; (d) ba-ab. Notations: ‘a’ denotes a diopter perpendicular to the optical axis (O.A.) and ‘b’ a tilted one. Each
configuration is shown in two extreme characteristic positions of the device, namely with a relative rotation angle between
the two prisms ϕ = 0 (column 1) and ϕ = π (rad) (column 2).
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The extreme positions of the two rotational prisms are considered in Figure 2, namely
for a relative rotational angle ϕ between the two prisms equal to 0 (on column 1) and
equal to π (on column 2), respectively. The trajectories of the laser beam (considered
reduced to its center ray) are pointed out in Figure 2 for each scanner configuration.
From Snell’s refraction law, as well as from simple geometric considerations, the prism
equations for each of the four scanner configurations (considering the two relative positions
of the prisms in Figure 2) are provided in Table 1. They are necessary to proceed to
simulations, but also to deduce and analyze angular and linear deviations of the beam
through the system. As a necessary remark, these equations can be utilized in simulations
to trace the rays through the prism system—by ‘rotating’ each prism using the mechanical
design program into different positions. However, they do not provide analytically the
directions of the emerging rays to generate the scan patterns. For the latter, the (rather)
complex mathematical approaches pointed out in the Introduction, for example [5–7], must
be considered.

Table 1. Equations of the four possible configurations of scanners with a pair of rotational Risley prisms (Figure 2)—for the
cases of the maximum (1) and minimum (2) angular deviations.

Configuration (Figure 2) (a) Scanner ab-ab (b) Scanner ab-ba (c) Scanner ba-ba (d) Scanner ba-ab

Incidence angle ε1 = 0 ε1 = −θ1
Point I1 ε′1 = ε1 sinε1 = n1sinε′1
Prism 1 ε2 = θ1 −ε′1 + ε2 = θ1
Point I2 n1sinε2 = sinε′2

Inter-prisms ε′2 − ε3 = θ1 ε′2 − ε3 = θ1 ± θ2 ε′2 − ε3 = ±θ2 ε′2 = ε3
Point I3 sinε3 = n2sinε′3
Prism 2 ∓ε′3 ± ε4 = θ2 −ε′3 + ε4 = ±θ2
Point I4 n2sinε4 = sinε′4

Deviation angles
Dmax,min

j , j = a, b, c, d Dmax,min
a = ε′4 ∓ θ2 Dmax,min

b = ε′4 Dmax,min
c = ε′4 Dmax,min

d = ε′4 ∓ θ2

Remark: The first sign in each of these expressions refers to the case of the maximum deviation Dmax
j , j = a, b, c, d (for ϕ = 0), and the second

sign refers to the case of the minimum deviation Dmin
j , j = a, b, c, d (for ϕ = π).

The minimum and maximum deviation angles Dmax,min
j , j = a, b, c, d can be easily de-

duced by combining (on each of the four columns in Table 1) the equations of each
scanner configuration.

From Figure 2a, for scanner (a) ab-ab

Dmax,min
a = arcsin

{
n2sin

[
±θ2 + arcsin

sin[arcsin(n1sinθ1)− θ1]

n2

]}
∓ θ2. (2)

From Figure 2b, for scanner (b) ab-ba

Dmax,min
b = arcsin

{
n2sin

[
±θ2 + arcsin

sin[arcsin(n1sinθ1)− (θ1 ± θ2)]

n2

]}
. (3)

From Figure 2c, for scanner (c) ba-ba

Dmax,min
c = arcsin

n2sin

±θ2 + arcsin
sin
{

arcsin
[
n1sin

(
θ1 − arcsin sinθ1

n1

)]
∓ θ2

}
n2

. (4)

From Figure 2d, for scanner (d) ba-ab

Dmax,min
d = arcsin

{
n2sin

[
±θ2 + arcsin

(
n1

n2
sin
(

θ1 − arcsin
sinθ1

n1

))]}
∓ θ2. (5)
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By considering the first order/Gaussian approximation, from Equations (2)–(5) the
approximate (linearized) deviation angles have, for all four configurations, the following
general (and well-known) equation:

Dmax, min
lin = (n1 − 1)θ1 ± (n2 − 1)θ2. (6)

Therefore, for the particular case of identical wedges, when n1 = n2 = n and
θ1 = θ2 = θ,

Dmax
lin = 2(n− 1)θ and Dmin

lin = 0. (7)

3. Linear Deviations of the Four Scanner Configurations

From Figure 2, for each of the four scanner configurations, the maximum and mini-
mum linear deviations can be obtained, corresponding to the respective angular deviations
deduced above for the ϕ = 0 and for the ϕ = π case, respectively. Both these maximum and
minimum linear deviations consist of two components, one within the prism system, yP,
and the other one from the scanner to the screen, yS, as shown for example in Figure 2(a1),
but specific for each of the four configurations, (a) to (d):

ymax,min
j = ymax,min

jP + ymax,min
jS , j = a, b, c, d. (8)

From the minimum deviations, ymin
jP , one obtains, for identical prisms, with n1 = n2 = n

and θ1 = θ2 = θ (therefore for k = 1), the radius ∆j, j = a, b, c, d of the blind spot, i.e., of
the central disk of the scan patterns (Figure 2(a2,b2,c2,d2)). These blind spots are confirmed
further on for the k = 1 cases of the scan patterns in Section 4 and are analyzed in Section 5.
For the small angle approximation, simplified (i.e., linearized) expressions of these blind
spot radiuses, ∆lin

j , j = a, b, c, d, can be obtained.
All the maximum deviations, ymax

jP , have for the particular case above (with identical
prisms and the small angles approximation) the simple expression 2(n− 1)L. However,
this approximate expression can be utilized only if the distance L is very large, for example
in the order of km, as in satellite positioning, in Security and Defense, or in Remote Sensing.
In contrast, for biomedical imaging, for example, but also for other scanning applications
that utilize close range scanning, the exact expressions that are developed in the following
should be employed.

The discussions are carried out further on in this section using the above procedure
for each of the four scanner configuration, for the maximum deviations—column (1) in
Figure 2, as well as for the minimum deviations—column (2) in Figure 2.

3.1. Linear Deviations of the Scanner (a) ab-ab

(1) Using Figure 2(a1), from Appendix A.1, with Equations (A1) and (A5), the maxi-
mum linear deviation in the prisms system (obtained for the ϕ = 0 case) is

ymax
aP =

(e− b·tanθ1)·tanε3 + b·tanθ2·tanε′3
1− tanθ2·tanε′3

, (9)

where the angles ε3 and ε′3 are given by Equation (A6).
From Figure 2(a1), the maximum linear deviation from the second diopter perpendic-

ular on the O.A. to the screen (also for the ϕ = 0 case) is

ymax
aS = (L− I3Q)·tanDmax

a , (10)

therefore, using Equation (A3),

ymax
aS =

[
L− [b− (e− b·tanθ1)·tanε3]·tanθ2

1− tanθ2·tanε′3

]
·tanDmax

a , (11)
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where the angular deviation Dmax
a is given by Equation (2).

(2) Using Figure 2(a2), from Appendix A.2, with Equations (A2) and (A10), the mini-
mum linear deviation (obtained for the ϕ = π case) is

ymin
aP =

(e− b·tanθ1)·tanε3 + b·tanθ2·tanε′3
1 + tanθ2·tanε′3

, (12)

where the angles ε3 and ε′3 are given in this case by Equation (A6) as well.
From Figure 2(a2), the minimum linear deviation from the second diopter perpendic-

ular on the O.A. to the screen (also for the ϕ = π case) is

ymin
aS =

(
L− I3Q′

)
·tanDmin

a , (13)

therefore, using Equation (A8) and with the same angles,

ymin
aS =

[
L− [b− (e− b·tanθ1)·tanε3]·tanθ2

1 + tanθ2·tanε′3

]
·tanDmin

a , (14)

where the angular deviation Dmin
a is given by Equation (2).

For identical prisms, for which n1 = n2 = n and θ1 = θ2 = θ (therefore k = 1), the
radius of the blind spot/the central disk of the scan patterns (Figure 2(b2)) only comprises
the first segment in Equation (A7), which is the I3B segment given by Equation (A2). This
radius of the blind spot is therefore, from Equation (12),

∆a = (e− b·tanθ)tanε3 = (e− b·tanθ)
n·cosθ −

√
1− n2·sin2θ

n·sin2θ + cosθ·
√

1− n2·sin2θ
. (15)

In the particular case of the small angles approximation, this expression becomes

∆lin
a = (e− bθ)

n−
√

1− n2·θ2

n·θ2 +
√

1− n2·θ2
(16)

In all such equations, the boundary conditions, for example 1 − n2·sin2θ > 0 in
Equation (15), are equivalent with the conditions to avoid total reflections on the second
and fourth diopter of the prisms of the scanners in Figure 2—aspects to be discussed in
Section 5.1.

3.2. Linear Deviations of the Scanner (b) ab-ba

(1) Using Figure 2(b1), from Appendix B.1, with Equation (A17), using Equations
(A12) to (A14), the maximum linear deviation (obtained for the ϕ = 0 case) is

ymax
bP = [e− b(tanθ1 + tanθ2)]·

sin(ε3 + θ2)·cos(ε4 − θ2)

cosε3·cosε4
+ b·tanθ2·tanε4, (17)

where the angles ε4 and ε3 are given by Equation (A18).
From Figure 2(b1), the maximum linear deviation from the second diopter perpendic-

ular on the O.A. to the screen (also for the ϕ = 0 case) is

ymax
bS = L·tanDmax

b , (18)

where the angular deviation Dmax
b is given by Equation (3).

(2) Using Figure 2(b2), from Appendix B.2, with Equation (A21), the minimum linear
deviation (obtained for the ϕ = π case) is

ymin
bP = [e− b(tanθ1 + tanθ2)]·

sin(ε3 − θ2)·cos(ε4 + θ2)

cosε3·cosε4
+ b·tanθ2·tanε4, (19)
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where the angles ε3 and ε4 are given in this case by Equation (A22).
From Figure 2(a2), the minimum linear deviation from the second diopter perpendic-

ular on the O.A. to the screen (also for the ϕ = π case) is

ymin
bS = L·tanDmin

b , (20)

where the angular deviation Dmin
b is given by Equation (3).

As in Section 3.1, for identical prisms, the radius of the blind spot is the segment I3M′

from Equation (A19) (Figure 2(b2)), from Equation (19),

∆b = (e·cosθ − 2b·sinθ)

(
n·cosθ√

1− n2·sin2θ
− 1
)
·sinθ. (21)

In the particular case of the small angles approximation, this expression becomes

∆lin
b = (e− 2bθ)

(
n/
√

1− n2θ2 − 1
)

θ. (22)

3.3. Linear Deviations of the Scanner (c) ba-ba

(1) Using Figure 2(c1), from Appendix C.1, with Equations (A24) and (A31), the
maximum linear deviation (obtained for the ϕ = 0 case) is

ymax
cP = e · tanε4 + b·tanθ1·tanε2 +

tanε′2 − tanε4

1 + tanθ2·tanε′2
[e− b(1 + tanθ1·tanε2)tanθ2], (23)

where the angles ε2, ε′2, and ε4 are given by Equation (A23).
From Figure 2(c2), the maximum linear deviation from the second diopter perpendic-

ular on the O.A. to the screen (also for the ϕ = 0 case) is

ymax
cS = L·tanDmax

c , (24)

where the angular deviation Dmax
c is given by Equation (4).

(2) Using Figure 2(c2), from Appendix C.2, with Equations (A24) and (A38), the
minimum linear deviation (obtained for the ϕ = π case) is

ymin
cP = e · tanε4 + b·tanθ1·tanε2 +

tanε′2 − tanε4

1 + tanθ2·tanε′2
[e− b(1− tanθ1·tanε2)tanθ2], (25)

where the angles ε2 and ε′2 are given by Equation (A23), while ε4 is given by Equation (A39).
From Figure 2(c2), the minimum linear deviation from the second diopter perpendicu-

lar on the O.A. to the screen (for the ϕ = π case) is

ymin
cS = L·tanDmin

c , (26)

where the angular deviation Dmin
c is given by Equation (4).

For identical prisms, the radius of the blind spot is, from Equation (25),

∆c =
e− b(1− tanθ·tanε2/tanε′2)

1 + 1/tanε′2
, (27)

where the angles ε2 and ε′2 are given by Equation (A23) for the particular case of identical
prisms (i.e., of n1 = n2 = n and θ1 = θ2 = θ). In the particular case of the small angles
approximations, Equation (27) becomes

∆lin
c = [ne− (n− 1)b]/[1 + (n− 1)θ]. (28)



Appl. Sci. 2021, 11, 8451 10 of 32

3.4. Linear Deviations of the Scanner (d) ba-ab

(1) Using Figure 2(d1), from Appendix D.1, with Equations (A41), (A42), and (A45),
the maximum linear deviation (obtained for the ϕ = 0 case) is

ymax
dP =

(b·tanθ1 · tanε2 + e·tanε′2)·cosθ2·cosε′3 + b·sinθ2·sinε′3
cos
(
θ2 + ε′3

) , (29)

where the angles ε2, ε
′
2, and ε′3 are given by Equation (A46).

From Figure 2(d1), the maximum linear deviation from the second diopter perpendic-
ular on the O.A. to the screen (for the ϕ = 0 case) is

ymax
dS = (L− I3Q)·tanDmax

d , (30)

therefore, using Equation (A44),

ymax
dS =

[
L−

[
b(1 + tanθ1 · tanε2) + e·tanε′2

]
·
sinθ2·cosε′3

cosε4

]
·tanDmax

d . (31)

where the angular deviation Dmax
d is given by Equation (5).

(2) Using Figure 2(d2), from Appendix D.2, with Equations (A41), (A42) and (A50), the
minimum linear deviation (obtained for the ϕ = π case) is

ymin
dP = e

[
tanε′2 +

(
1− tanε′2

) sinθ2

cosε4

]
+ b·tanθ1 · tanε2·

(
1− sinθ2

cosε4

)
, (32)

where the angles ε
′
2 and ε′3 are given by Equation (A46), and ε4 is given by Equation (A51).

From Figure 2(d2), the minimum linear deviation from the second diopter perpendic-
ular on the O.A. to the screen (also for the ϕ = π case) is, with the same angles,

ymin
dS =

(
L− I3 I4·cosε′3

)
·tanDmin

d , (33)

therefore, using Equation (A48),

ymin
dS =

[
L +

[
b·tanθ1 · tanε2 − e

(
1− tanε′2

)] sinθ2·cosε′3
cosε4

]
·tanDmin

d , (34)

where the angular deviation Dmin
d is given by Equation (5).

For identical prisms, the radius of the blind spot is, from Equation (32),

∆d = b·tan θ·tanε2 + e·tan[arcsin(n·sinε2)]. (35)

In the particular case of the small angles approximations, this expression becomes

∆lin
d = (n− 1)(e− bθ/n)θ. (36)

4. Results of Modeling and Simulations: Shapes of the Scan Patterns

Using a commercially-available mechanical design program, CATIA5V20, by con-
sidering finite rotations of the two prisms shown in Figure 1a, the ray bundles can be
obtained, as demonstrated in Figure 1b,c. Therefore, by intersecting them with a certain
plane (i.e., the screen positioned at the distance L from the final diopter perpendicular on
the O.A.—Figure 2), the generated scan patterns can be obtained. In the following part
of the study, mostly the case of the scanner configuration in Figure 2d is considered to
carry out simulations, while a comparison of the scan patterns of all four configurations in
Figure 2a–d is also provided.

To better understand the kinematics of the laser spot, in Figure 3 the case when one
of the prisms is fixed and the other one is mobile is considered. Thus, for four different
positions rotated with 90◦ of the fixed prism, the rotation of the other prism produces
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four circles in the scanned plane—one for each position of the fixed prism. Because of
the different longitudinal position of the two prisms (i.e., along the O.A.), the circles
obtained when Prism 1 is mobile and Prism 2 is fixed are larger, as Prism 1 is situated
at a longer distance from the screen. By combining the two rotational movements of
the prisms, a Rhononea-type curve is obtained, albeit with different equations than such
classical curves [62], as shown initially in Figure 1 for the same |M|, but with an opposite
(Figure 1c) versus an identical (Figure 1b) rotational sense.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 32 
 

 
Figure 3. Circles obtained in the scanned plane when one of the prisms is fixed (positioned in four 
successive positions, at 0°, 90°, 180°, and 270°) and the other one is mobile. The four larger circles 
correspond to the situation when Prism 1 (positioned further away from the screen than Prism 2) is 
mobile. The values on the axes are in millimeters. The first number represents the rotational angle 
of Prism 1 and the second that of Prism 2, for example 0:0…360 means that Prism 1 is fixed (in the 
0° position) and that Prism 2 rotates from 0 to 360°; 0…360:90 means that Prism 1 performs a full 
rotation while Prism 2 is fixed at 90° from its 𝜑 = 0) position in Figure 2d1. 

Examples of such scan patterns, with a multi-parameter analysis carried out consid-
ering the M and k parameters in Equation (1), as well as the other constructive parameters 
of the scanners are provided in Figures 4-8. 

In Figure 4, the scan patterns are generated for the most common case of identical 
prisms, i.e., of k = 1 (obtained for D1 = D2 = 2°) and several values of M, positive on column 
1 and negative on column 2: (a) |M| = 2; (b) |M| = 4; (c) |M| = 6; (d) |M| = 8. The |M| = 
4 case corresponds to the constructions in Figure 1. 

One can remark that the number of loops of a pattern is μ = M−1 for M > 0 (e.g., μ = 1 
for M = 2, μ = 2 for M = 3, etc.). The difference between positive and negative values of M 
can be seen, as μ = |M|+1 for M < 0 (e.g., μ = 3 for M = 2, μ = 4 for M = 3, etc.). From this 
comparison, the number of loops is in general, as first observed in [4], μ = |M - 1|, (37) 

Another relevant, simple equation can be extracted from this discussion regarding 
the number of loops of a scan pattern, obtained for the same |M|: μ(M < 0) = μ(M > 0) + 2. (38) 

One can also observe (easier for smaller |M|), as a specificity of these Risley prism 
curves, the way inward loops are generated for M > 0, while outward loops are generated 
for M < 0. 

In Figure 5, scan patterns obtained for |M| = 6 are shown, for increasing values of k: 
from (a) k = 2/4 = 1/2 (obtained for D1 = 4° and D2 = 2°) to (b) k = 4/2 = 2 (for D1 = 2° and D2 
= 4°), (c) k = 6/2 = 3 (for D1 = 2° and D2 = 6°), and (d) k = 10/2 = 5 (for D1 = 2° and D2 = 10°). 
The intermediate k = 2/2 = 1 case for this |M| was already shown in Figure 4c. As a remark, 
these specific values have been chosen because such Risley prisms are commercially avail-
able, for example from Thorlabs [63]. 

-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20

0:0..360 90:0..360 180:0..360
270:0..360 0..360:0 0..360:90
0..360:180 0..360:270

Figure 3. Circles obtained in the scanned plane when one of the prisms is fixed (positioned in four
successive positions, at 0◦, 90◦, 180◦, and 270◦) and the other one is mobile. The four larger circles
correspond to the situation when Prism 1 (positioned further away from the screen than Prism 2) is
mobile. The values on the axes are in millimeters. The first number represents the rotational angle of
Prism 1 and the second that of Prism 2, for example 0:0 . . . 360 means that Prism 1 is fixed (in the
0◦ position) and that Prism 2 rotates from 0 to 360◦; 0 . . . 360:90 means that Prism 1 performs a full
rotation while Prism 2 is fixed at 90◦ from its ϕ = 0) position in Figure 2(d1).

Examples of such scan patterns, with a multi-parameter analysis carried out consider-
ing the M and k parameters in Equation (1), as well as the other constructive parameters of
the scanners are provided in Figures 4–8.

In Figure 4, the scan patterns are generated for the most common case of identical
prisms, i.e., of k = 1 (obtained for D1 = D2 = 2◦) and several values of M, positive on column
1 and negative on column 2: (a) |M| = 2; (b) |M| = 4; (c) |M| = 6; (d) |M| = 8. The
|M| = 4 case corresponds to the constructions in Figure 1.

One can remark that the number of loops of a pattern is µ = M−1 for M > 0 (e.g., µ = 1
for M = 2, µ = 2 for M = 3, etc.). The difference between positive and negative values of M
can be seen, as µ = |M|+1 for M < 0 (e.g., µ = 3 for M = 2, µ = 4 for M = 3, etc.). From this
comparison, the number of loops is in general, as first observed in [4],

µ = |M − 1|, (37)
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Figure 4. Study of the scan patterns produced by a pair of rotational Risley prisms (i.e., the configuration ba-ab in Figure 2d)
for L = 1 m, e = 25 mm and for: (a) |M| = 2; (b) |M| = 4; (c) |M| = 6; (d) |M| = 8. (1) Left column, M > 0; (2) right column,
M < 0. The k = 1 case was considered for identical prisms with an individual deviation angle D = (n−1)θ = 2◦. The values on
the axes are in millimeters.
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Figure 5. Study of the scan patterns produced by the configuration ba-ab of rotational Risley prisms (Figure 2d), for L = 1 m,
e = 25 mm, and |M|= 6, with: (a) k = 1/2; (b) k = 2; (c) k = 3; (d) k = 5. (1) Left column, M > 0; (2) right column, M < 0. The
values on the axes are in millimeters.
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Figure 6. Study of the scan patterns produced by the configuration ba-ab of rotational Risley prisms (Figure 2d), for L = 1 m,
e = 25 mm, and |M|= 6, with: (a) k = 1/2; (b) k = 2; (c) k = 3; (d) k = 5. (1) Left column, M > 0; (2) right column, M < 0. The
values on the axes are in millimeters.
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Figure 7. Scan patterns produced by the configuration ba-ab of Risley prisms (Figure 2d), for k = 1, M = 6, and (a) L = 10 m;
(b) L = 100 m. The values on the axes are in millimeters.
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Figure 8. Comparison between the scan patterns of the four scanner configurations presented in Figure 2, for |M| = 8 and
k = 1 (the latter obtained for D1 = D2 = 10◦). (a) Left column, M > 0; (b) right column, M < 0. The values on the axes are
in millimeters.

Another relevant, simple equation can be extracted from this discussion regarding the
number of loops of a scan pattern, obtained for the same |M|:

µ(M < 0) = µ(M > 0) + 2. (38)

One can also observe (easier for smaller |M|), as a specificity of these Risley prism
curves, the way inward loops are generated for M > 0, while outward loops are generated
for M < 0.

In Figure 5, scan patterns obtained for |M| = 6 are shown, for increasing values of
k: from (a) k = 2/4 = 1/2 (obtained for D1 = 4◦ and D2 = 2◦) to (b) k = 4/2 = 2 (for D1 = 2◦

and D2 = 4◦), (c) k = 6/2 = 3 (for D1 = 2◦ and D2 = 6◦), and (d) k = 10/2 = 5 (for D1 = 2◦

and D2 = 10◦). The intermediate k = 2/2 = 1 case for this |M| was already shown in
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Figure 4c. As a remark, these specific values have been chosen because such Risley prisms
are commercially available, for example from Thorlabs [63].

From Figure 5, by making a comparison along each of the two columns, one can
see that as k increases, the loops intersect more and more. This is due to the variation of
the minimum angular deviation that can be obtained as θ2 increases—in the case of the
scanner configuration in Figure 2d—from Equation (5). This discussion is made in detail in
Section 6.

Figure 6 shows the differences between the scan patterns, for four possible values
of the distance e between the two identical Risley prisms, and for M = 6 (column 1) and
M = −6 (column 2). These values of e are different for each pair of prisms, considering their
(individual) deviation angles: (a) D = 2◦, (b) D = 4◦, and (c) D = 6◦. The D = 10◦ case is not
shown here anymore, as it is similar to the latter, but the obtained values are analyzed in
Section 6 for such a case as well.

Specifically, the two values of e are considered starting from a small one which (barely)
avoids the situation when the prisms would touch, up to a maximum value emax specific to
each D. For the latter the condition to still have the refractions inside the prisms for their 2b
diameter was considered for each pair of prisms. The ascertainment of these values emax
was done purely graphically, using the mechanical design program (as an example of the
utility of this fast-to-operate method).

Figure 7 presents a study of the scan patterns when varying significantly the values of
the distance L from the scanner to the screen. Thus, a 10-times increase was considered
for L from one pattern to another, i.e., from L = 10 to 100 m. The L = 1 m case was already
considered in Figure 4c. These examples refer to scan patterns obtained for M = 6 and
k = 1. This confirms the remark made at the beginning of Section 3: the maximum linear
deviation (i.e., the radius of the FOV) can be considered proportional with the distance L
if this distance is large enough, so that the linear deviations inside the prisms system can
be neglected.

To conclude this presentation, in Figure 8 the differences between the scan patterns
of the four scanner configurations in Figure 2 are shown. The case of |M| = 8 and of
k = 1 (obtained this time for D1 = D2 = 10◦) was considered. The large angle prisms were
considered as an example to better distinguish between the scan patterns. The order of the
patterns with regard to their size/outer radius/FOV is, in all graphs of Figure 8, from the
smallest to the largest: (c), (b), (d), and (a).

The scan patterns are discussed further on from the point of view of their dimensions
in Section 6, in a multi-parameter analysis carried out in relationship with the one referring
to the angular and linear deviations in Section 5.

5. Multi-Parameter Analysis of Angular and Linear Deviations
5.1. Multi-Parameter Analysis of Angular Deviations

The first step of the analysis refers to the angular deviations of the four scanners
configurations presented in Figure 2, with expressions given by Equations (2) to (5).

Figure 9a shows the maximum angular deviations Dmax
j , j = a, b, c, d as functions of

the angle of the prisms—for the case of identical prisms, therefore with n1 = n2 = n and
θ1 = θ2 = θ (i.e., with k = 1). These exact values of deviations are compared with the
approximate/linearized one, Dmax

lin , given by Equation (7). One can remark that the latter is
the same regardless of the scanner configuration. Figure 9b provides the error between the
case when the maximum angular deviations are considered in their linear approximation,
instead of their exact values. One can see that this approximation can be roughly valid up
to a prism angle of 0.087 rad = 10◦, and therefore for optical wedges. For prisms with a
larger angle, one must consider the exact expressions of the deviations—angular as well
as linear.
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comparison to the approximate/linearized one, Dmax
lin , Equation (7); (b) the absolute error between the maximum angular

deviations and their linear approximation. A refractive index n = 1.517 was considered for both prisms.

Another conclusion that can be extracted from the study in Figure 9b is that, from
Figure 2, the configurations (a) and (d) have much higher non-linearities than configura-
tions (b) and (c). The strongest non-linearity refers to configuration (a), while the weakest
one characterizes configuration (c).

From Figure 9 one can see that a limit prism angle, θlim
j , j = a, b, c, d, can be determined

for each scanner configuration, as a function of the refractive index n of the prisms, as
remarked from Figure 10 as well.
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Figure 10. Maximum angular deviations, Dmax
j , j = a, b, c, d, as functions of the angle θ of identical prisms for two values of

the refractive index: n = 1.517 and n′ = 1.7. Each scanner configuration, (a–d) is considered separately, while the exact
angular deviations are compared with the approximate/linearized one for each refractive index.
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From Figure 2a this limit prism angle is obtained from the conditions to avoid total
reflections on the second and fourth diopter of the scanner. These conditions are

ε′2 < π/2 and ε′4 < π/2, respectively. (39)

By using each scanner equation in Table 1, these inequations can give limit values of
the angles of each prism, θ1 and θ2. For the particular case of identical prisms and using
the small angles approximation, these inequations can then provide an approximate limit
value of θlim

j , j = a, b, c, d. It is important to remark from Figures 9 and 10 that such limits
are higher than the exact ones, which are smaller when the Gaussian approximation is not
utilized. Using for the limit angles of each prism, the notations are

ε1l = arcsin1/n1 and ε2l = arcsin1/n2, (40)

respectively, and by applying the above procedure for each scanner, one has the following:

- From Figure 2a, for scanner (a) ab-ab, the conditions to have a beam emerging from
the scanner are

θ1 < ε1l and θ2 < ε2l − arcsin
sin[arcsin(n1sinθ1)− θ1]

n2
, (41)

from which, for identical prisms and for small angles,

θ < n/
(

n− 1 +
√

n2 − 1
)
= θlim

a . (42)

- From Figure 2b, for scanner (b) ab-ba, the conditions to have a beam emerging from
the scanner are

θ1 < ε1l and n2sin(θ2 − ε2l)− θ2 < θ1 − arcsin(n1sinθ1), (43)

from which, for identical prisms and for small angles,

θ < n/2(n− 1) = θlim
b . (44)

- From Figure 2c, for scanner (c) ba-ba, the conditions to have a beam emerging from
the scanner are

θ1 − arcsin
sinθ1

n1
< ε1l and n2sin(ε2l − θ2) > sin

{
arcsin

[
θ1 − arcsin

sinθ1

n1

]
− θ2

}
, (45)

from which, for identical prisms and for small angles, the condition (44) is valid in
this case, as well, therefore θlim

c = θlim
b . However, this is clearly not true for the exact

limit angles that refer to the non-linear curves of the maximum angular deviations in
Figure 9a.

- From Figure 2d, for scanner (d) ba-ab, the conditions to have a beam emerging from
the scanner are

θ1 − arcsin
sinθ1

n1
< ε1l and n2sin(ε2l − θ2) > n1sinθ1 − arcsin

sinθ1

n1
, (46)

from which, for identical prisms and for small angles,

θ < n/(2n− 1) = θlim
d . (47)

While the stress in this analysis was put on the variation of angular deviations, another
approach, entirely focused on the limit angles of Risley prisms, was done in [50].

The parameter the deviations depend upon is the refractive index of the prisms.
Therefore, the second part of this study of maximum angular deviations is presented in
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Figure 10, where the angles Dmax
j , j = a, b, c, d are shown as functions of the angle of the

prism θ1 = θ2 = θ, as well, but for two values of the refractive index of the two prisms
(when n1 = n2): for n = 1.517 (as in Figure 9) and for n′ = 1.7. One can see that the
maximum angular deviation, therefore the FOV, is slightly increased when using Risley
prisms with a higher refractive index, although the angle prism limit θlim

d that can be chosen
is smaller for a higher n. The latter aspect is in good agreement with Equation (47).

Values determined graphically for the limit angles, for both considered refractive
indexes, are extracted from Figure 10 in Table 2.

Table 2. Limit prism angle θlin
j (rad), j = a, b, c, d with regard to refractive index (the identical

prisms case, i.e., k = 1).

Scanner
Configurations

Refractive Index

n = 1.517 n’ = 1.7
Figure 2a θlim

a (n) = 0.523 = π/6 θlim
a (n′) ∼= 0.43

Figure 2b θlim
b (n) = 0.72 θlim

b (n′) ∼= 0.6
Figure 2c θlim

c (n) = 0.96 θlim
c (n′) ∼= 0.785 = π/4

Figure 2d θlim
d (n) = 0.53 θlim

d (n′) ∼= 0.45 ∼= π/7
Remark: One must highlight that these (exact) limit angles must be used in general, while the approximate values
obtained in Equation (42), (44), and (47) are restricted to the small angle domain (i.e., for θ < 10◦).

5.2. Multi-Parameter Analysis of Linear Deviations

Figure 11 shows a study of the minimum linear deviations/radiuses ∆j(θ), j = a, b, c, d
of the blind spot, i.e., of the central disk of the scan patterns. As discussed in Section 3,
these radiuses refer to the case of two identical prisms (with n1 = n2 = n and θ1 = θ2 = θ,
therefore k=1), when emergent beams are in this case parallel to the O.A., as marked
with dotted lines in Figure 2(a2,b2,c2,d2). For the four scanner configurations (Figure 2),
these radiuses are given by: (a) Equation (15), (b) Equation (21), (c) Equation (27), and
(d) Equation (35).

The characteristic parameters of this study are the prism angles θ, the distance e
between them, their refractive index n, and the radius b of each circular prism. In each
of the four steps of the following analysis, three of these parameters were kept constant,
while the other ones were considered with two or three values to determine the variance
of the ∆j(θ), j = a, b, c, d functions. A maximum limit of 45◦ for the prism angle θ
was considered, although considering a value of around 18◦9’ ≈ 0.314 rad for the optical
wedge angle (to produce an individual prism deviation D equal to 10◦) [60] is also useful
when referring to the most utilized devices. Considering Figure 11, on its columns are
the following:

(1) Exact radiuses ∆j(θ), j = a, b, c, d and approximate/linearized ones ∆lin
j (θ),

j = a, b, c, d, the latter given by (a) Equation (16), (b) Equation (22), (c) Equation (28), and
(d) Equation (36) were determined for the most common parameters n = 1.517, e = 25 mm,
and b = 12.7 mm (the latter corresponding to commercially-available prisms of 1” in
diameter [60]). The difference (∆j−∆lin

j )(θ) between these exact and approximate radiuses
for each scanner was also determined. One can see the differences between the four
configurations, with configuration (b) providing the smallest values of ∆, and configuration
(d) the largest ones. From the point of view of the linearity, the approximation ∆lin

j works
up to D = 10◦, and even up to θ = π/8. The limit angles calculated in Equations (40)–(47)
apply here as well.
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Figure 11. (a) Minimum linear deviations/radiuses ∆j(θ), j = a, b, c, d of the blind spot, i.e., of the central disk of the
scan patterns (Figure 2(a2,b2,c2,d2)): study carried out for identical prisms (with n1 = n2 = n and θ1 = θ2 = θ, therefore
for k = 1) for each of the four configurations, (a) Equation (15), (b) Equation (21), (c) Equation (27), (d) Equation (35).
Characteristics of the study on columns: (1) Exact radiuses ∆j(θ), j = a, b, c, d compared with the approximate/linearized
radius ∆lin

j (θ), j = a, b, c, d given by (a) Equation (16), (b) Equation (22), (c) Equation (28), and (d) Equation (36) for
n = 1.517, e = 25 mm, and b = 12.7 mm; (2) Exact radiuses for three values of the distance between the prisms e1 = 25, e2 = 50,
and e3 = 75 mm, for n = 1.517 and b = 12.7 mm; (3) exact radius for three values of the refractive index of the prisms n = 1.517,
n′ = 1.7, and n′′ = 1.9 mm, for e = 25 mm and b = 12.7 mm; (4) exact radius for two values of the radius of the prisms, b1 = 12.7
and b2 = 25.4 mm, for n = 1.517 and e = 25 mm.

(2) Exact radiuses ∆j(θ), j = a, b, c, d were studied for three values of the distance
between the prisms e1 = 25, e2 = 50, and e3 = 75 mm (with n = 1.517 and b = 12.7 mm), with
the remark that much larger values of e can be considered, as studied in Figure 6. The same
interval (of up to 20 mm) was set here for ∆, and the same conclusion can be reached for the
smallest value of e. For the two larger e, ∆ gets closer for the four configurations, (a) to (d);
therefore, if one aims to minimize ∆, going for the smallest possible e is the solution. As a
remark, the (minimum) value e equal to 25 mm was chosen to avoid the situation when the
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prisms were getting in contact even for commercially-available prisms with the maximum
common deviation D = 10◦, for a 1” diameter of the prisms. To increase ∆, increasing e is
the best solution for all configurations.

(3) Exact radiuses were obtained for three values of the refractive index of the prisms,
n = 1.517, n’ = 1.7, and n” = 1.9 mm (for e = 25 mm and b = 12.7 mm). For all configurations,
∆ increases with n, but this is a less effective solution. A useful remark is that a minimum
∆ is obtained for the first, most common n (corresponding to the BK7 optical glass).

(4) Exact radiuses were studied for two values of the radius of the circular prisms,
b1 = 12.7 and b2 = 25.4 mm (with n = 1.517 and e = 25 mm). For the smaller b, ∆ is
slightly higher for configurations (a) and (b), higher for configuration (c), and lower for
configuration (d). However, to be cost-effective, one must consider that prisms with
b = 12.7 mm (i.e., with 1” in diameter) are commercially-available and therefore less costly.

6. Analysis of Scan Patterns Dimensions: Rules-of-Thumb for Scanner Designs

A necessary correlation must be made between the scan patterns analyzed in Section 4
and the angular and linear deviations analyzed in Section 5. This allows for the multi-
parameter analysis of the dimensions of the scan patterns, to complete the multi-parameter
analysis of their shapes, performed on examples in Section 4. These two types of (correlated)
analyses allow one to extract rules-of-thumb for the design of Risley prism scanners to
satisfy the requirements of certain applications.

6.1. FOV of Scanners with a Pair of Rotational Risley Prisms
6.1.1. Study with Regard to the Prisms Angles

One of the most common requirement of applications is to have the largest possible
FOV. From Figure 9 one can see that the optimal choice of prism orientation in order to reach
this maximum FOV is in the (a) configuration in Figure 2, followed by the (d) configuration.
In contrast, configurations (b) and (c) produce, using the same pair of (identical) prisms, a
much smaller maximum angular deviation. The same inequality

Dmax
a > Dmax

d > Dmax
b > Dmax

c , ∀θ (48)

can be observed from the simulated scan patterns analysis in Figure 8. However, what
cannot be entirely obtained from simulations is the limit of the prism angle for which
the inequality (48) still holds. Thus, from Figure 9a one can see that this limit angle is
π/8 rad. This makes the above conclusion valid for optical wedges, which have prism
angles smaller than (roughly) π/18 rad (the deviation of a single prism is D = 10◦ for
θ = 18◦9′ for n = 1.517).

As θ = π/8 rad is the limit angle for Risley prisms scanners in the (a) and (d) configu-
rations, from Figure 9, if one aims to reach higher maximum deviation angles and therefore
a larger FOV, the (b) configuration could be used up to prism angles of θ ≈ 0.72 rad, or the
(c) configuration for up to θ ≈ 0.96 rad (both values evaluated for n = 1.517).

From the point of view of these limit prism angles, one should consider the analysis
in Section 5.1, based on the condition to avoid the total reflection on the second diopter of
each prism, and therefore Equation (41) for (a), Equation (43) for (b), Equation (45) for (c),
and Equation (46) for (d).

One could also consider a k 6= 1 case, therefore using different prisms, in order to
increase the FOV. Such an approach would give results that are in-between the above cases
of (a) to (d) configurations (with identical prisms), in a more complicated analysis that
could be subject of a future optimization but may be too complicated to be of interest in
practice. Therefore, one may consider a (simpler) scanner with identical prisms without
failing in an optimization process from the point of view of the FOV. The maximum angular
deviations, namely Equations (2)–(5), as well as the linear ones, namely Equation (6), give
the maximum FOV of the scan pattern for each configuration. From Figure 4 this radius is
identical for different values of M and from Figure 5 it increases with k, in agreement with
Equation (5) for configuration (d).
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As concluded in the previous section, one must also point out that, from Figure 9,
configurations (a) and (d) have the strongest non-linearities of the deviation versus prism
angle function, while configurations (b) and (c) have the lowest. One could use this
conclusion to build scanners with prism angles close to the values in Table 2, for example
(for a specific n), to maximize the angular deviation and therefore the FOV.

6.1.2. Study with Regard to the Refractive Index n of the Prisms

From Figure 10, by choosing a higher value for n (for both prisms, as the k = 1 case
was also considered here for simplicity), the same maximum deviation angle, and therefore
the same FOV can be reached, for a smaller prisms angle θ, although the non-linearity of
the Dmax

j curve is roughly the same. In the small angles domain, though, there is a clear
gain from choosing a higher n, as Dmax

lin is higher, both from the graphs in Figure 10 and
from Equation (7).

6.1.3. Study with Regard to the Distance e between the Two Prisms

From Figure 6, the most significant gain with regard to e from the point of view of
the FOV is for prisms with D = 2◦ and less for D = 4◦, while for D = 6◦ or 10◦ (the latter
not represented in Figure 6 as the latter two cases are too similar), this gain becomes less
important. In conclusion, one should go for an increase of e only for small angle optical
wedges, especially with D = 2◦ (for which θ = 3◦53′ for n = 1.517). The relevant aspect is
that for such a system e can be increased a lot (i.e., up to 350 mm in Figure 6a), although one
must also consider a trade-off between the gain in FOV and the dimensions of the system.
A folding of such a large distance e could be considered in this case, using supplemental
mirrors, as for other types of scanners [64].

6.1.4. Study with Regard to the Distance L from the Scanner to the Target

The solution to increase FOV by increasing L may be applicable only in some situa-
tions, as in general the magnitude of L is imposed by the application itself. For Remote
Sensing or for detection in Security and Defense, for example, L is large, and the simple
2LDmax

lin relationship can be applied for the radius of the FOV, neglecting the small terms of
ymax

jP , j = a, b, c, d deduced in Section 3 (Figure 7). For other applications, such as endoscopy
(but also for more common setups, with 1” diameter prisms), L can be comparable to the
diameter of the prisms, 2b, and the dimensions of the FOV must be calculated taking into
account the exact values of the maximum linear deviations (Equation (8)).

An interesting case is represented by applications that have intermediate values of
L, of up to (or around) 1 m, as considered in all the studies in Figures 4–6, as well as in
Figures 8–10. For such situations (in optical metrology, laser manufacturing, 3D printing,
etc.) and especially when the distance from the scanner to the target plane is kept constant,
L can be increased (as pointed out for the dimension e above) without increasing the
dimensions of the system by using three or even only two supplementary mirrors [64].
Thus, a supplemental increase of the FOV can be obtained.

6.1.5. Study with Regard to the Scanner Configuration

From the scan patterns of the four scanner configurations presented in Figure 8 (for
|M| = 8 and D1 = D2 = 10◦), the size/FOV of these patterns is larger for configuration (a)
than for (d), (b), and (c). This corresponds exactly to (and comes from) the order of the
maximum angular deviations from the analysis in Figure 9 (see Equation (48)). In addition,
one can see that the patterns are close, two by two, on the one hand for configurations (a)
with (d), and on the other hand for configurations (b) with (c), as highlighted in Figure 9a
as well.

6.2. Blind (Inner) Zone of the Scan Patterns

This aspect of the central blind spot is particularly important in practice, for appli-
cations such as laser processing. There are two methods to produce a blind spot in the
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center of the FOV. The first and most reliable one implies using identical Risley prisms, as
the expressions of the ∆j, j = a, b, c, d radiuses deduced in Section 3 are not functions
of the distance L to the target, as can also be observed from Figure 4. This is important
in applications where this distance L is variable and cannot be controlled (imaging, for
biomedical or industrial purposes, Remote Sensing, CAD/CAM with laser scanners, etc.).

From the study related to Figure 11 in Section 5.2, the ∆j, j = a, b, c, d radiuses
can be decreased by decreasing e, n, and b, the latter excepting configuration (d). One
can also see from Figure 11, column (1), that configuration (b) provides the smallest
values of ∆, then (in this order) configurations (a), (c), and (d). Thus, depending on the
application, one can chose between one or the other configuration, for example (b) for
laser manufacturing of contact lenses and (d) for scanning the entire FOV in biomedical
apparatuses or machine vision.

A second way of tackling the inner blind zone is by considering different k 6= 1
cases. For k = 2, 3, and 5 in Figure 5b–d, the minimum linear deviation given, according
to Equation (8), by the sum of Equations (29) and (31), becomes negative, as the tip of
the loops ‘passes’ beyond the O.A. A disc untouched by the laser beam of a radius that
increases with k is thus generated in the center of the pattern. This may look like a similar
effect, but it has completely different causes than in the k = 1 case. In laser manufacturing
or metrology, for example, the distance L between the scanner and the screen/plane of
work can be precisely adjusted; therefore, one could use a scanner with a certain k and use
the equations of the linear deviations in Section 3 to adjust the diameter of the blind inner
spot by adjusting L.

There are applications where the entire disc corresponding to Dmax
j (and ymax

j ) must be
covered in the most convenient way, for example with the inner part of the loops passing
through the O.A. to minimize the time of scan without increasing the fill factor in a non-
useful way for the application (e.g., Remote Sensing) for spotting targets of certain sizes in
a certain FOV. One can obtain easily using the graphical method a distance L for a certain
value of e for which this condition is fulfilled [49]. Reciprocal, for a certain distance L to
the scanned plane, distance e between the prisms can be considered in this respect. This
graphical procedure replaces for k 6= 1 cases the necessity to solve the equation ymin

j = 0,

where Equation (8) is utilized with the values of the two segments, ymin
jP and ymin

jS , deduced
in Section 3 for j = a, b, c, d. For k = 1, this would mean solving the equation ∆j = 0, where
∆j is provided in Section 3 for each of the four configurations. Although this may not
always give satisfactory results because of the scanner-specific parameters, one can see
from the examples in Figure 4 that a situation can be obtained when even for k = 1 the
patterns (i.e., the tips of the loops) are very close to the FOV center (in that case, at 1 mm
for a FOV with a radius of 71.2 mm obtained for L = 1 m). Thus, covering the entire FOV
can be efficiently done.

7. Experimental

A simple experimental setup was considered in [49,61] to validate results of the Risley
prisms simulations (Figure 12a).
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with regard to the simulated radius, of 𝑦 = 71.265 mm (for e = 25 mm, L = 1 m, and n = 
1.517). To complete this analysis, the experimental radiuses 𝑦  were measured for each 
of the μ loops of the patterns in Figure 12. 

Table 3. Error analysis of the experimental (𝒚𝒎𝒂𝒙𝒆 ) versus simulated (𝒚𝒎𝒂𝒙) maximum radius of the 
FOV/scan patterns in Figure 12. 

Ratio of the Rotational Speeds, Equation (1) M = 4 M = −4 M = 8 M = −8 
Mean value of the FOV radius: 𝑦 = 1𝜇 𝑦  

72.709 72.827 72,961 73.794 

Standard deviation of the FOV radius: 

σ = 1𝜇 𝒚𝒎𝒂𝒙𝒆 − 𝒚𝒎𝒂𝒙𝒆  

0.591 0.645 1.336 1.708 

Relative error: 𝜀% = (𝒚𝒎𝒂𝒙𝒆 − 𝒚𝒎𝒂𝒙) ∙ 100/𝒚𝒎𝒂𝒙 2.027 2.192 2.207 3.548 
 

HeNe Laser (HGP005), wavelength 

543 nm, power 0.5 mW  

Pair of Risley prisms 

(PS810), diameter 25.4 

mm, deviation angle 2° 

Mountings of the prisms with 

precision rotational devices 

AC-DC 

source 

(a)(a) 

(b1) (c1) 

(b2) (c2) 

Figure 12. Experimental study of the scan patterns of two rotational Risley prisms: (a) setup built with commercially-
available Thorlabs components. Superposed, but slightly rotated with regard to each other, simulated (blue and red) and
experimental (black) scan patterns, determined for (b) |M| = 4 and (c) |M| = 8, with (1) M > 0 and (2) M < 0.

All components are commercially available [63], with two Risley prisms that can be
rotated separately, with a minimum step of 2′. The collimated laser beam passes through
them and is projected on a screen (not shown in the figure). A certain ratio M, Equation
(1), is simulated by producing incremental angular movements ∆ϕ1 and ∆ϕ2 of the two
prisms (where Prism 2 is, as in the simulations, the one close to the screen); therefore,
M = ∆ϕ2/∆ϕ1.

In Figure 12 four examples were considered, two of them for |M| = 4 (b) and the other
two for |M| = 8 (c). Satisfactory agreement between simulations and experiments could
be observed, as we also concluded in [49,61]. A comparison between simulated (blue for
M > 0 and red for M < 0) and experimental (black) scan patterns can be made in Figure 12,
as well as the difference between the M > 0 case (1) and the M < 0 case (2), for the same
|M|. To better distinguish between simulations and experiments, the corresponding scan
patterns were presented slightly rotated with regard to one another.

The observed differences in size between experimental and simulated patterns are
caused by difficulties in aligning the components of the setup, as well as in precisely
adjusting the e and L distances (between the two prisms and from the second prism to
the screen—Figure 2), as well as in the difference from the refractive index of the prism
considered in simulations and the actual one, for the utilized laser wavelength. Current
work in our group includes the development of mechanized and compact setups for more
accurate experimental studies. Even within the limitations above, the relative errors related
to the experimental radius ye

max of the FOV/scan pattern (Figure 2) is 2 to 4% (Table 3), with
regard to the simulated radius, of ymax= 71.265 mm (for e = 25 mm, L = 1 m, and n = 1.517).
To complete this analysis, the experimental radiuses ye

max were measured for each of the µ
loops of the patterns in Figure 12.

In addition to this (approximate) match between simulations and experiments, a
perfect match can be obtained between simulations and theory (i.e., for the maximum and
minimum linear deviations deduced in Section 3) if the effective width of the prisms is
considered (by adjusting the radius b of each prism by considering the prism angle θ).
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Table 3. Error analysis of the experimental (ye
max) versus simulated (ymax) maximum radius of the

FOV/scan patterns in Figure 12.

Ratio of the Rotational Speeds, Equation (1) M = 4 M = −4 M = 8 M = −8

Mean value of the FOV radius:

ye
max = 1

µ

µ

∑
j=1

ye
max

72.709 72.827 72,961 73.794

Standard deviation of the FOV radius:

σ =

√
1
µ

µ

∑
j=1

(
ye

max − ye
max

)2 0.591 0.645 1.336 1.708

Relative error: ε% =
(

ye
max − ymax

)
·100/ymax 2.027 2.192 2.207 3.548

8. Conclusions

A multi-parameter study of the scan patterns of a pair of rotational Risley prisms was
performed. Theoretical aspects of the (minimum and maximum, exact and approximate)
angular and linear deviations were approached. Simulations of the scan patterns were
performed with the easy-to-use, exact graphical method that, to our knowledge, we have
introduced [60] and developed [49]. This multi-parameter analysis of both deviations and
scan patterns was carried out considering all the constructive parameters of the scanner, as
well as Marshall’s parameters [4]. A correlation between analytical aspects and simulations
was made, as pointed out with examples. Thus, it was demonstrated that theory and
simulations validate each other. An experimental validation of the performed simulation
was also made, as shown in this study, but also in (other) different examples in [49,61,65].
The multi-parameter analysis of the shapes and of the (outer and inner) dimensions
of the (ring-shaped) scan patterns allowed for extracting rules-of-thumb to support the
optimal design of optomechanical scanners with Risley prisms for the requirements of
different applications.

Future work in this direction of research comprises applying the newly-developed
graphical method for other types of scanners with Risley prisms, with tilting, rotational and
tilting, as well as with three prisms or doublets. In addition, the Gaussian profile of laser
beams must be considered to extend the present study beyond the simplifying hypothesis
of beams reduced to their central rays. The dependence of the refractive indexes of each
prism material with the laser wavelength, to account for dispersion issues, is another topic
of interest that can take advantage of the developed graphical method.

While to our knowledge no other approach has been made so far to develop a graphi-
cal method to study Risley prisms scanning, future work in our group includes graphical
approaches with dedicated, common ray-tracing programs such as Zemax to assess, for
example, ease-of-operation and analysis capabilities compared to mechanical design pro-
grams such as the one utilized in the present study.

Applications of Risley prisms are also considered in our group, especially for biomed-
ical imaging using confocal microscopy and OCT. However, the range of applications is
much larger, and the designing rules deduced here may serve for laser manufacturing,
industrial metrology, Remote Sensing, as well as Security and Defense scanners.
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Appendix A

Linear deviations of the scanner (a) ab-ab

Appendix A.1. Maximum Linear Deviation of the Scanner (a) ab-ab (for ϕ = 0)

From Figure 2(a1), the deviation in the prism system for the ϕ = 0 relative positions
of the prisms is

ymax
aP = I3B + I4Q. (A1)

The first segment in this expression is

I3B = I2B·tan
(
ε
′
2 − θ1

)
= I2B·tanε3, where I2B = e− b·tanθ1 (A2)

The second segment in Equation (A1) is

I4Q = I3Qtanε′3, where I3Q = (b + I3B + I4Q)tanθ2; (A3)

therefore,

I4Q =
(b + I3B)tanθ2·tanε′3

1− tanθ2·tanε′3
. (A4)

By replacing Equation (A4) in (A1), the linear deviation is in this case

ymax
aP =

I3B + b·tanθ2·tanε′3
1− tanθ2·tanε′3

, (A5)

where I3B is given by Equations (A2), while using Table 1 one has from n1sinε2 = sinε′2
and from sinε3 = n2sinε′3 the angles

ε3 = arcsin(n1sinθ1)− θ1, and ε′3 = arcsin
sin[arcsin(n1· sinθ1)− θ1]

n2
, respectively. (A6)

Appendix A.2. Minimum Linear Deviation of the Scanner (a) ab-ab (for ϕ = π)

From Figure 2(a2), the deviation in the prism system for the ϕ = π relative positions
of the prisms is

ymin
aP = I3B + I4Q′. (A7)

The first segment in Equation (A7) is given by Equation (A2), while the second
segment is

I4Q′ = I3Q′·tanε′3, where I3Q =
(
b− I3B− I4Q′

)
·tanθ2; (A8)

therefore,

I4Q′ =
(b− I3B)tanθ2·tanε′3

1 + tanθ2·tanε′3
. (A9)

By replacing Equation (A9) in (A7), the linear deviation is in this case

ymin
aP =

I3B + b·tanθ2·tanε′3
1 + tanθ2·tanε′3

, (A10)

https://doi.org/10.1117/12.2599186
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where I3B is given by Equations (A2), while the angles ε3 and ε′3 are given by Equations (A6),
as well.

Appendix B

Linear deviations of the scanner (b) ab-ba

Appendix B.1. Maximum Linear Deviation of the Scanner (b) ab-ba (for ϕ = 0)

From Figure 2(b1) the deviation in the prism system is

ymax
bP = I3M + I4Q. (A11)

From the triangle I2 I3B one has

I3B
sin
(
ε′2 − θ1

) =
I2B

sin(π/2− ε3)
, (A12)

while from the geometry of the prisms

I2B = e− b(tanθ1 + tanθ2). (A13)

The first segment in Equation (A11) can be obtained from the triangle MI3B:

I3M = I3B·cosθ2. (A14)

The second segment in Equation (A11) is, from the triangle I3QI4

I4Q = I3Qtan
(
θ2 + ε′3

)
, (A15)

where
I3Q = BM + b·tanθ2, with BM = I3B· sinθ2. (A16)

By replacing Equation (A16) in (A15), and using Equation (A14), one obtains from
Equation (A11) the deviation yP for this case:

ymax
bP = I3B·cosθ2 + (I3B·sinθ2 + b·tanθ2)·tan

(
θ2 + ε′3

)
. (A17)

By further replacing Equations (A12) and (A13) in (A14) to obtain I3B, the final ex-
pression of the deviation for this case can be obtained, taking into account that θ2 + ε

′
3 = ε4

and ε
′
2 − θ1 = ε3 + θ2. Additionally, from the second column in Table 1, i.e., for the scanner

(b), these angles are

ε4 = θ2 + arcsin
sin[arcsin(n1sinθ1)− (θ1 + θ2)]

n2
and ε3 + θ2 = arcsin(n1· sinθ1)− θ1. (A18)

Appendix B.2. Minimum Linear Deviation of the Scanner (b) ab-ba (for ϕ = π)

From Figure 2(b1) the deviation in the prism system is

ymin
bP = I3M + I4Q′. (A19)

One can see from Figure 2b2 that I3M is given by Equation (A14), while the second
segment in Equation (A19) is, from the triangle I3Q′ I4

I4Q′ = I3Q′·tanε4, where I3Q′ =
(
b− I3M′

)
·tanθ2. (A20)

By replacing Equation (A20) in (A19), one obtains the deviation for this case:

ymin
bP = b·tanθ2·tanε4 + I3M·(1− tanθ2·tanε4). (A21)
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By further replacing Equations (A12) to (A14) in (A21), the final expression of the
linear deviation for this case can be obtained, taking into account that −θ2 + ε

′
3 = ε4 and

ε
′
2 − θ1 = ε3 − θ2. From the second column in Table 1, i.e., for the scanner (b), these angles

are in this case

ε4 = arcsin
sin[arcsin(n1sinθ1)− (θ1 − θ2)]

n2
− θ2 and ε3 − θ2 = arcsin(n1· sinθ1)− θ1. (A22)

Appendix C

Linear deviations of the scanner (c) ba-ba

Appendix C.1. Maximum Linear Deviation of the Scanner (c) ba-ba (for ϕ = 0)

From Figure 2(c1), the deviation in the prism system is in this case

ymax
cP = I2 A + I3M + I4Q, (A23)

where in this case M ∈ I2N || I2z . The first segment in Equation (A23) is

I2 A = I1 A · tanε2, where I1 A = b · tanθ1. (A24)

The second segment in Equation (A23) is

I3M = MB/tanθ2, where MB = e− I2M− BN, (A25)

with
I2M = I3M/tanε′2 and BN = (b + I2 A)tanθ2. (A26)

By replacing Equations (A26) in (A25), this second segment results, with I2 A from
Equation (A24),

I3M =
e− (b + I2 A)tanθ2

tanθ2 + (tanε′2)
−1 . (A27)

The third segment in Equation (A23) is

I4Q = I3Q · tanε4, where I3Q = MN = MB + BM = e− I3M/tanε′2. (A28)

Therefore,
I4Q =

(
e− I3M/tanε′2

)
tanε4. (A29)

Using Equations (A27) and (A29), the expression (A23) becomes

ymax
cP = I2 A + e · tanε4 +

(
1− tanε4

tanε′2

)
· e− (b + I2 A)tanθ2

tanθ2 + (tanε′2)
−1 , (A30)

where I2 A is given by Equation (A24), while from the third column in Table 1, the angles in
Equation (A30) are

ε2 = θ1 − arcsin
sinθ1

n1
; ε′2 = arcsin(n1·sinε2); ε4 = θ2 + arcsin

sin(ε′2 − θ2)

n2
. (A31)

Appendix C.2. Minimum Linear Deviation of the Scanner (c) ba-ba (for ϕ = π)

From Figure 2(c2), the deviation in the prism system is in this case

ymin
cP = I2 A + I3M′ + I4Q′. (A32)

The first segment in Equation (A32) is given by Equation (A24). The second segment is

I3M′ = M′B′/tanθ2, where M′B′ = e− I2M′ − B′N′, (A33)
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with
I2M′ = I3M′/tanε′2 and B′N′ = (b− I2 A)tanθ2. (A34)

By replacing Equations (A34) in (A33), this second segment is, with I2 A from
Equation (A24),

I3M =
e− (b− I2 A)·tanθ2

tanθ2 + (tanε′2)
−1 . (A35)

The third segment in Equation (A32) is

I4Q′ = I3Q′ · tanε4, where I3Q′ = M′N′ = M′B′ + B′M′ = e− I3M′/tanε′2; (A36)

therefore,
I4Q′ =

(
e− I3M′/tanε′2

)
tanε4. (A37)

Using Equations (A37) and (A39), the expression (A32) becomes

ymin
cP = I2 A + e · tanε4 +

(
1− tanε4

tanε′2

)
· e− (b− I2 A)tanθ2

tanθ2 + (tanε′2)
−1 , (A38)

where I2 A is given by Equation (A24), while the angle ε
′
2 in Equation (A38) is given by

Equation (A31), as well, while from the third column in Table 1 the angle ε4 is in this case

ε4 = arcsin
sin
(
ε
′
2 + θ2

)
n2

− θ2. (A39)

Appendix D

Linear deviations of the scanner (d) ba-ab

Appendix D.1. Maximum Linear Deviation of the Scanner (d) ba-ab (for ϕ = 0)

From Figure 2(d1), the linear deviation in the prism system is in this case

ymax
dP = I2 A + I3B + I4Q. (A40)

The first segment in this expression is from the triangle I1 AI2:

I2 A = I1 A · tan
(
θ1 + ε′1

)
, where I1 A = b · tanθ1. (A41)

The second segment in Equation (A40) is

I3B = e · tanε′2. (A42)

To obtain the third segment in Equation (A40), from the triangle I3DI4 one has

I3D
sin(π/2− ε4)

=
I3 I4

sin
(
π/2− ε′3 + ε4

) , where I3D = (b + I2 A + I3B) · tanθ2; (A43)

therefore,

I4Q =
cos(ε′3 − ε4)

cosε4
(b + I2 A + I3B) · tanθ2 · sinε′3. (A44)

With Equations (A41), (A42) and (A44), the linear deviation is completely defined for
this case as well,

ymax
dP = I2 A + I3B +

cos(ε′3 − ε4)

cosε4
(b + I2 A + I3B) · tanθ2 · sinε′3, (A45)



Appl. Sci. 2021, 11, 8451 30 of 32

while from the fourth column in Table 1, one has for this scanner configuration

ε′3 = arcsin
{

1
n2

sin
(

θ1 − arcsin
sinθ1

n

)}
; ε
′
3 − ε4 = −θ2; ε′2 = arcsin(n1∆sinε2) (A46)

Appendix D.2. Minimum Linear Deviation of the Scanner (d) ba-ab (for ϕ = π)

From Figure 2(d2), with similar notations as in Figure 2(d1), the linear deviation in the
prism system is in this case

ymin
dP = I2 A + I3B + I4Q′, (A47)

where the first and the second segments of this expression are given by Equations (A41)
and (A42), respectively. To obtain the third segment, from the triangle I3D′ I4 ( I3D′|| I1z ,
with the point D’ on the final diopter), one has

I3D′

sin(π/2− ε4)
=

I3 I4

sin
(
π/2− ε′3 + ε4

) , where I3D′ = (b− I2 A− I3B) · tanθ2; (A48)

therefore,

I4Q′ =
cos(ε′3 − ε4)

cosε4
(b− I2 A− I3B) · tanθ2 · sinε′3. (A49)

With Equations (A49), (A41), and (A42), the linear deviation is completely defined for
this case as well,

ymin
dP = I2 A + I3B +

sinθ2 · sinε′3
cosε4

(b− I2 A− I3B), (A50)

while the angles ε
′
2 and ε′3 are given by Equations (A46), and from the fourth column in

Table 1 for this configuration,
ε
′
3 − ε4 = θ2. (A51)
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