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Abstract: One of the complexities of social systems is the emergence of behavior norms that are costly
for individuals. Study of such complexities is of interest in diverse fields ranging from marketing
to sustainability. In this study we built a conceptual Agent-Based Model to simulate interactions
between a group of agents and a governing agent, where the governing agent encourages other
agents to perform, in exchange for recognition, an action that is beneficial for the governing agent
but costly for the individual agents. We equipped the governing agent with six Temporal Difference
Reinforcement Learning algorithms to find sequences of decisions that successfully encourage the
group of agents to perform the desired action. Our results show that if the individual agents’
perceived cost of the action is low, then the desired action can become a trend in the society without
the use of learning algorithms by the governing agent. If the perceived cost to individual agents is
high, then the desired output may become rare in the space of all possible outcomes but can be found
by appropriate algorithms. We found that Double Learning algorithms perform better than other
algorithms we used. Through comparison with a baseline, we showed that our algorithms made a
substantial difference in the rewards that can be obtained in the simulations.

Keywords: complex systems; emergence; reinforcement learning; temporal difference learning;
social status

1. Introduction

One of the challenges of management in general, and sustainable development man-
agement in particular, is to gain the support of the individuals who are being managed. The
use of incentives can be costly to managers and governments, and the use of authority is not
always successful [1–4]. These problems, where a Principal (or several Principals) wishes to
make an Agent (or several Agents) behave in a certain way are known as Principal–Agent
problems [5].

In this study, we are interested in learning if the Principal can use recognition and the
offer of good reputation to promote a new behavioral norm among the Agents. We are
particularly interested in the complexities that emerge with the new norm, as the norm
influences and is influenced by the decisions of the Agents. In this regard, social science
literature describes a focus theory of normative conduct [6], which suggests that in making
decisions, individuals consider what others do and what others approve of. We illustrate
an implication of this theory in a Principal–Agent setting. We would like to see if the
Agents’ regard for their image in their society can lead to the emergence of a behavior
norm that the Principal desires. Specifically, it is interesting for us to learn if, in absence
of social sanctions and other forms of enforcement, good reputation can be a sufficient
motivation for Agents to cooperate with the Principal. We would also like to see if the
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Principal’s intervention can hasten the emergence of this norm. This study is an effort to
gain insight into the complexities that arise in an abstract Principal–Agent setting with the
added consideration of normative conduct. We are curious about and intrigued by the
complexities related to the abstract structure of entities, motivations, and interactions in
the above setting.

Norms have been defined in various studies. For example, according to Ross [7], in a
society, norms are cultural rules guiding people’s behavior. Savarimuthu and Cranefield [8]
consider norms as social rules that govern how certain behaviors are encouraged or con-
demned. In the context of institutions, Ostrom [9] writes that norms show the valuations
of the actions of individuals in a society, regardless of the immediate consequences of those
actions. In Crawford and Ostrom’s view [10], norms are part of institutions, and deviating
from them has unknown or undefined consequences. North [11] states that institutions are
able to formalize norms into laws, and enforce them legally. Literature reviews report that
many of the previous studies associate norms with social sanctions, or with the punishment
of individuals who do not follow norms [8,12]. However, the term ‘norms’ has also been
used in studies of the emergence of behavior expectations that do not involve sanctions [8].
Cialdini et al. [6] distinguish two types of norms, which they refer to as ‘descriptive’ and
‘injunctive’. Descriptive norms inform the individual of what others in the society do.
Injunctive norms urge the individual to do what others in the society approve of, and to
avoid things of which others disapprove. According to Cialdini et al. these two types of
norms come from different concepts and different motivations. Therefore, although what
people do and what people approve of are often the same, separating these two norms
is important in the study of normative influence. In order to avoid confusion regarding
social sanctions, we follow the recommendation of Cialdini et al. Injunctive norms are
associated with social sanctions, whereas descriptive norms are not. In this study, our
interest is in a setting without social sanctions. Therefore, in the rest of this paper we focus
on descriptive norms.

We take a complex systems approach to analyze the above problem. Complex sys-
tems are structures composed of elements, interactions and dynamics in such a way that
they produce novel configurations and demonstrate surprising emerging behavior [13].
Some characteristics for complex systems are nonlinearity, self-organization, going beyond
equilibrium, and existence of attractors other than a state of equilibrium, such that the
combination of these characteristics can cause the emergence of new patterns in complex
systems [14]. Complex systems literature uses the expression ‘aggregate complexity’ to
refer to the interaction of system components that results in holism and synergy, with key
attributes of such aggregate complexity being internal relationships, internal structure
(subsystems), relationships with the environment, learning and memory, emergence, and
change and evolution [15].

One of the approaches used in the study of complex systems is Agent-Based Modeling.
An Agent-Based Model (ABM) consists of multiple agents acting upon their individual
objectives [16]. ABMs are constructed in a bottom-up manner and allow us to compute
the aggregate and large scale results of the interactions of agents with each other and with
their environment [17]. As such, ABMs have been used in a wide variety of disciplines.
Some examples of these applications include innovation diffusion [18], theory of cooper-
ation [19], automated negotiation [20], recommender systems [21], migration [22], urban
segregation [23–25] epidemiology [26], forest ecology [27], and species distribution [28].
ABMs have also been applied in sustainable development studies, such as in urban plan-
ning [29], sustainable transportation [30], circular economy [31], and in problems related to
the tragedy of the commons [6,32].

ABMs have been extensively used in studies of social norms [8]. Some models apply
the Belief–Desire–Intention (BDI) framework in the decisions of their agents [33,34]. In
the BDI framework, agents have mental attributes of belief, desire, and intention, which
indicate their state in terms of information, motivation, and deliberation for action, respec-
tively [35,36]. Some of the mechanisms employed in agent-based normative simulations
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are leadership [37], learning by imitation [38], machine learning and reinforcement learn-
ing [39], norm recognition [40], and reputation [41]. In a review of the literature, Hollander
and Wu [12] identify areas for research and improvement. Some of those areas are norm
creation and ideation, alternatives for social sanction, and the verification and validation of
models [12].

Given the above context, our focus in this study is on the creation and emergence
of a new descriptive norm in a setting with central leadership, where there are rewards
for performing the behavior that the leadership promotes, but there are no sanctions
or punishments for the non-performers. The reward in this setting is reputation and
recognition as a responsible member of the society. We take an agent-based simulation
approach to explore the possibility of norm emergence in such a setting.

Our conceptual framework is as follows: several user agents act upon self-interest,
while a governing agent requests the user agents to take a costly action. There is no force
in the governing agent’s request. If the user agents cooperate with the governing agent,
then the governing agent acknowledges them by giving them a ‘responsible user’ label.
The governing agent can choose what action it shall request users to do—an action that
is easy for all users but useless for the governing agent, or an action that is difficult for
users and desirable for the governing agent. In the former case, the governing agent gives
free ‘responsible user’ labels to all users. In the latter case, the user agents estimate the
benefit of having the label. They do so by considering if the label makes them unique in
their group, and if being unique in owning the label has any value. Such value is zero at
first and increases with the exposure of the group to the label over time. Ultimately, user
agents compare their estimated benefit of gaining the label with their own perception of
the cost of the action they are asked to do. This way, they decide if they will cooperate
with the governing agent. These actions and interactions occur in each time step. The
definition of our conceptual framework was inspired by a work of Bone and Dragićević [42],
wherein user agents are logging companies in a forest, and in each time-step they consider
cooperating with a conservationist agent, though with different interactions and algorithms
from our model.

In terms of the Belief–Desire–Intention (BDI) framework [35], our model’s user agents’
belief is composed of two parts: the information they have about the last known percentage
of the users that participated in the costly behavior, and the information they have concern-
ing the number of responsible user labels awarded since the beginning of the run. The user
agents’ desire is to have a good reputation while avoiding costly decisions. The user agents’
intentions are the decisions they make in response to the governing agent’s requests.

Reinforcement Learning (RL) algorithms are a group of Machine Learning algorithms
that are based on self-evaluation. RL algorithms do not know the correct answer to the
problem at hand, but they can learn to improve themselves from the differences between
the results of their own efforts [43]. An RL algorithm has a policy that prescribes an
action for each state. In this sense the policy is a function. With each action, there comes
a reward and a subsequent state. RL algorithms take note of rewards that are gained
from various (state, action) pairs, and update their policies in such a way that the sum
of rewards weighted by their time-values is maximized [44]. RL algorithms are suitable
for the problem of our study, as our model’s governing agent searches for a sequence of
decisions to maximize a reward, which in our model is the proportion of user agents that
cooperate with the governing agent. Because of their relevance to problems involving
repeated decision making, RL algorithms have been used in a variety of simulations of
social systems [45–47] as well as social–ecological systems [42,48,49]. In a similar fashion,
we used RL algorithms in our model.

Within the above framework, our objectives are to answer the following questions:

1. Can the actions of agents in the above setting result in the emergence of a behavior
norm in the user agents, such that the user agents compete for social status and
cooperate with the governing agent despite the costly action they are asked to do?
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2. How can the governing agent find a sequence of choices that facilitates or hastens the
emergence of the above behavior norm?

2. Materials and Methods

To answer the questions of this study we adopted an agent-based simulation approach.
First, we built a model of interactions of user agents and the governing agent. In the model,
we included algorithms for a governing agent to guide the user agents towards the desired
norm of behavior. Next, we performed tests on the model, with and without the governing
agent’s algorithms. To gain insight about the emergence of the intended norm of behavior,
we planned model runs without a purposeful intervention from the governing agent. This
allowed us to become familiar with the state of possible outcomes of repeated actions of
the user agents. Then, we tested the model with purposeful interventions with a governing
agent that was equipped with several algorithms. This allowed us to compare different
algorithms against each other and identify algorithms and parameters that lead to the
emergence of the desired behavior norms faster than other algorithms and parameters.
Finally, we ran the model several times with random interventions by the governing agent
to construct a baseline for comparison with the best simulations. In this section we describe
the design of the model, the algorithms, and the tests of performance of the simulations.

2.1. Overview, Design Principles, Details

The model description follows the ODD (Overview, Design concepts, Details) proto-
col [50–52], which serves as a standard for communication of information about Agent-
Based Models. In addition, the model description is inspired by the ODD + D protocol [53],
which is an adaptation of the ODD protocol for describing human decisions in Agent-
Based Models.

2.1.1. Purpose

This ABM is an abstract model of interactions of entities and emergence of a particular
social behavior among them. Using this model, we intend to, firstly, obtain an insight into
the emergence of social behavior that is costly for individuals, and secondly, examine if
such emergence can be facilitated with appropriate learning algorithms.

2.1.2. Entities, State Variables, and Scales

Entities of this model are three classes of agents: several user agents, a governing
agent, and a registrar agent. State variables of user agents are named threshold and decision.
Each user agent’s threshold is a real number between 0 and 1, which is predefined at the
beginning of each simulation, remains constant throughout the simulation, and is visible to
that user agent alone. User agents’ decisions are binary variables that change throughout the
simulation and are visible to all agent classes upon request. State variables of the governing
agent are named signal, state, Q, and policy, which change throughout the simulation.
Except for signal, all other variables of the governing agent are known to itself only. Signal
is a binary variable. State is a two-dimensional variable with non-negative integer values.
Q is a table with a real value for each state and signal combination. Policy is a table with a
real number between 0 and 1 for each state. The registrar’s state variables are named nLast
and nSum, which are non-zero integers that change throughout the simulation and are
visible to all agent classes upon request. User agents and the governing agent are the main
entities of the model. Registrar is an auxiliary agent that is meant to make the model easier
to understand and serves as a mediator of information. This abstract model does not have
a spatial dimension, and time in the model is measured with dimensionless time steps.

2.1.3. Process Overview and Scheduling

Each simulation run consists of a number of episodes. Each episode consists of
a number of time-steps. Time in this ABM is modeled as discrete time-steps. In each
time-step, the agents act as described in Figure 1.
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Figure 1. Interactions between three classes of agents in one time-step. Class names are highlighted.
Variable names are shown in italics.

At the beginning of each new episode of time-steps, the variables nLast and nSum are
set to zero, and user agents forget their memory.

2.1.4. Design Concepts
Basic Principles

In this ABM the governing agent does not enforce its authority over user agents.
Rather, it offers them ‘responsible user’ labels in return for cooperation with the governing
agent. User agents see improved social status as the benefit of being recognized as a ‘re-
sponsible user’. The basis for this idea is the assumption that individuals have a motivation
for better social status, and that they may take actions that cost them money if their peers
and neighbors do so [54–57].

Emergence

Decisions of user agents are made individually. Emergence of a pattern of such
decisions that is costly to the individuals will be an unexpected phenomenon.

Adaptation

The governing agent adapts its Q based on results of each step, and accordingly
calculates a new policy for its actions.

Objectives

The objective of the governing agent is to increase the ratio of cooperating users when
it makes signals of 1. The target cooperation ratio is 0.5 in this model. The governing
agent aims to reach a state with target cooperation ratio as soon as possible. The reward
for the target state is defined as 0, and the reward for all other states is defined as unity
minus the ratio of cooperating users. Therefore, the governing agent’s reward at each step
is between −1 and 0. User agents react to their perceived conditions by comparing the
benefit of the said cooperation against their thresholds, which represent the cost to each user
of cooperation with the governing agent.
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Learning

The governing agent learns to adjust its behavior based on responses that it observes
in the user agents. To this end, the governing agent uses RL algorithms. For each RL
algorithm there is a separate model. In the RL algorithms, the governing agent stores
the value of each action taken at each state in its table, Q. From Q it extracts policy. Policy
recommends an action at each state. Actions of the governing agent are the signals it
produces. In the next time-step, based on the outcome of its action, which is the observed
ratio of cooperation of user agents, the governing agent updates its Q and repeats this loop.

Prediction

In each time-step, the governing agent predicts the present value of the sequence of
future rewards of the actions that it may take. This prediction is made based on the results
of previous time-steps, and it is stored in Q. As such, Q is the basis for both learning and
prediction in the governing agent.

Sensing

The governing agent and user agents read nLast and nSum from the registrar. The
registrar reads signal from the governing agent and decisions from user agents.

Interaction

The interaction of the governing agent with user agents is through signal. If the
governing agent produces a signal of 0, it is asking for a task that has no cost to the users,
hence giving ‘responsible user’ labels to all users at no cost. If it produces a signal of 1, it is
asking the users to cooperate in a task that is costly to them. In this case, the response of
each user is its decision. If the user produces a decision of 0, it is not cooperating with the
governing agent. If the user produces a decision of 1, it is cooperating with the governing
agent despite the costly demand of the governing agent.

Stochasticity

The governing agent produces its signals using its policy, which is stochastic. In the
governing agent’s policy, the probability of recommendation of each action is the ratio
of its estimated value to the sum of estimated values of all possible actions. In addition,
thresholds of user agents are defined at the beginning of the simulation as random numbers
with given mean and standard deviation.

Collectives

Individual decisions of each user agent affect future decisions of itself and other user
agents. Other than that, there is no connection between the user agents.

Observation

Throughout each episode, the governing agent stores in its temporary memory the
sequence of rewards that it receives in each time-step. At the beginning of the next episode,
this part of its temporary memory is erased. At the end of the final episode of each run, the
sequence of rewards is stored in a file as output. The reason for choosing the final episode
is that as learning happens throughout the simulation, the governing agent’s performance
improves in each episode. Therefore, the final episode represents the outcome of learning
in the model.

Heterogeneity

User agents are heterogenous in their decision thresholds.

Individual Decision Making

All agents make decisions in the model. In each iteration, the object of decision of the
governing agent is to choose between (i) requesting a costly behavior from user agents, and
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(ii) requesting an easy behavior from user agents. The governing agent gives recognition
labels to cooperating user agents. In iterations where the governing agent requests the
easy behavior, all user agents unconditionally cooperate with the governing agent and
receive the ‘responsible user’ labels. In iterations where the governing agent requests the
costly behavior, the object of decision of the user agents is to choose between accepting
and rejecting the governing agent’s request. The objective of the governing agent is to
encourage at least half of user agents to perform the costly behavior. Decisions of the
governing agent affect decisions of user agents and vice versa. Moreover, decisions of
each user agent affect future decisions of itself and other user agents. Within the same
time-step, the decision of one user agent does not affect decisions of other user agents. The
governing agent’s decision policy is probabilistic, and in each state recommends an action.
The governing agent is equipped with RL algorithms. User agents do not have learning
or optimization capabilities. Instead, the basis of decision making of each user agent is
a simple if-statement. User agents calculate the utility of the ‘responsible user’ label by
considering (i) the uniqueness that the label will give them, and (ii) the value of the label in
their agent society. They calculate uniqueness based on last known cooperation ratio of user
agents with the governing agent; and they calculate value based on the number of times
the ‘responsible user’ label has been presented in their agent society since the beginning of
the run. When some user agents begin performing the costly action, that behavior might
become a norm. This emerging norm influences future decisions of user agents. User
agents value being recognized with a ‘responsible user’ label. There are no social sanctions
or other punishments for user agents who do not follow the emerging norm.

2.1.5. Initialization

At the beginning of each run, the registrar’s nLast and nSum are zero. Additionally,
the governing agent’s Q table is filled with random values.

2.1.6. Input Data

The model does not use input data to represent time-varying processes.

2.1.7. Submodels

In RL algorithms, in order to assess policies and find a pathway to improving them,
a function is used that allocates a value to each (state, action) pair. In RL literature this
function is known as Q [58,59]. In turn, Q is used to update the policy. Different RL
algorithms are distinguished in their timing and method of updating Q. We used a class of
RL algorithms known as Temporal Difference (TD) learning algorithms. In TD algorithms,
learning occurs at each time step. That is, with every action that is taken, its reward and its
subsequent state are used to update Q and policy, so that the next action is prescribed with
improved knowledge of the behavior of the system [59]. Below, we describe six different
TD algorithms which we used. Each of these algorithms defined a submodel in our work.
In these descriptions we assume that in state S, the algorithm’s policy p prescribes action A.
Taking this action results in reward R and subsequent state S′. The next action will be A′.
In all cases, the present value of a future earning is calculated using a future discounting
rate, γ. Moreover, a learning rate, α, is applied to the correction term before updating Q.
All the descriptions and formulas are from Sutton and Barto [59]. For flowcharts of these
algorithms, see the Data Availability section.

SARSA

In SARSA, the next action A′ is identified as p(S′). Then, assuming that Q leads the
system from pair (S, A) to (S′, A′), the previous assessment of Q is corrected. This correction
accounts for the reward R as well as the value of the future pair (S′, A′). Future discounting
rate γ is used to calculate the present value of that future pair. Equation (1) summarizes
this description:

Q(S, A) = Q(S, A) + α
[
R + γ×Q

(
S′, A′

)
−Q(S, A)

]
(1)



Appl. Sci. 2021, 11, 8368 8 of 24

Q-Learning

Another TD algorithm, known as Q-Learning, looks at Q after taking action A and
identifying subsequent state S′. Then, among all pairs (S′, a) that are registered in Q for
the new state S′ and all possible actions, the algorithm selects the one with the maximum
value, and uses it to correct Q. These operations are summarized in Equation (2):

Q(S, A) = Q(S, A) + α
[
R + γ×maxa

{
Q
(

S′, a
)}
−Q(S, A)

]
(2)

Expected SARSA

Another TD algorithm, known as Expected SARSA, proceeds similar to Q-Learning
up to the correction of Q. In that stage, Expected SARSA considers all (S′, a) pairs and
calculates their average value. Equation (3) describes this update process:

Q(S, A) = Q(S, A) + α[R + γ×∑
a

p(a|S′)×Q
(

S′, a
)
−Q(S, A)] (3)

where the summation is performed over all actions a.

Double Learning Methods

Corresponding to the above three methods, there are more complicated methods
that are called Double Learning algorithms, because they involve two Q tables. In each
time-step, one of the Q tables is selected randomly and updated using the other one. The
following formulas describe this concept. In each set, only one of the two formulas is
performed in each time-step. The formulas for update of Q tables of the Double SARSA,
Double Q-Learning, and Double Expected SARSA algorithms are as shown in Equation
pairs (4) and (5), (6) and (7), (8) and (9), respectively.

Double SARSA:

Q1(S, A) = Q1(S, A) + α
[
R + γ×Q2

(
S′, A′

)
−Q1(S, A)

]
(4)

Q2(S, A) = Q2(S, A) + α
[
R + γ×Q1

(
S′, A′

)
−Q2(S, A)

]
(5)

Double Q-Learning:

Q1(S, A) = Q1(S, A) + α
[
R + γ×maxa

{
Q2

(
S′, a

)}
−Q1(S, A)

]
(6)

Q2(S, A) = Q2(S, A) + α
[
R + γ×maxa

{
Q1

(
S′, a

)}
−Q2(S, A)

]
(7)

Double Expected SARSA:

Q1(S, A) = Q1(S, A) + α[R + γ×∑
a

p(a|S′)×Q2
(

S′, a
)
−Q1(S, A)] (8)

Q2(S, A) = Q2(S, A) + α[R + γ×∑
a

p(a|S′)×Q1
(

S′, a
)
−Q2(S, A)] (9)

2.2. Model Parameters

The model includes several parameters, which we have divided into two groups:
those that are parameters of the problem, and those that are parameters of the algorithm.
Parameters of the problem are the number of agents (n), mean (µ) and standard deviation
(σ) of the decision thresholds of the population from which user agents are selected, and
future discounting rate (γ). Parameters of the algorithm are the rate of exploration vs.
exploitation (ε) and learning rate (α). Appendix A lists these parameters and their values
in the simulations. These parameters and values produce 810 different combinations for
each of the 6 algorithms. Therefore, a total of 4860 distinct problem and solution/algorithm
settings are possible. We produced simulations for each of these settings. In the analysis
of the results, we separated the two parameter groups, taking note of 54 combinations of
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problem parameters and 15 combinations of ε and α for each of the 6 algorithms, which
produced 90 combinations of solution/algorithm parameters.

Among the problem parameters, n, µ and σ are used in the making of user agents.
There are 18 possible combinations of values of these parameters. For each of those combi-
nations, we made 50 sets of user agents. Each set was defined by selecting n thresholds
from a normally distributed population with mean µ and standard deviation σ. These sets
of thresholds were saved and used in all simulations that shared their respective values of
n, µ and σ.

In addition to the above parameters, the model has some parameters that we did not
vary in simulations. Specifically, the number of training episodes for each run, which was
set to 4000; the number of time steps per episode, which was set to 17; and the number of
levels of the two-dimensional state variable, which was set to d n/2e, or integer ceiling
of half of user agents, for each dimension. The rational for this choice was to enable the
governing agent to distinguish states with different levels of cooperating user agents. The
target state is when the number of cooperating user agents reaches or exceeds n/2.

2.3. Simulation Experiments
2.3.1. Quantifying Model Performance

In each simulation and for each set of parameters, the model trained itself in 4000 episodes.
In the final episode of each run, after long sequences of updates and improvements, the
model policy and Q were at their best. Therefore, results of the final episode of each run
were used to assess that run. We used two measures to quantify model performance.
In most of our analyses we calculated the mean of the rewards of the time steps of an
episode as the score of that episode. Our rationale for this choice was that it is a measure of
cumulative rewards. In another part of our analyses we used the rewards of the final time
step as the score of the episode. The rationale for this choice was that it shows the state of
the system at the end of the simulation and allows us to answer questions such as to what
extent the desired state was achieved.

2.3.2. Space of Outputs

The user agents in our model react to the signals produced by the governing agent. In
order to better understand the process of the study, we produced the space of all possible
outputs of the model, by producing all possible sequences of decisions of the governing
agent and feeding those sequences to the user agents. This way, we constructed a large
binary tree of all binary strings of length 16. The length of these strings is one less than the
length of the episode because in episodes of length 17 the algorithm makes 16 decisions.
We kept the size of episodes to this level because for larger episode lengths, the scope of
outputs would become exponentially larger and more difficult to manage, from the point
of view of computation. Taking note of the score of each of the produced 216 chains, we
obtained insight about the space of outputs, which allowed us to realize which scores are
rare and what conditions favor higher scores.

2.3.3. Comparison of Simulations with Each Other

The combination of 54 problem parameters and 90 algorithm/solution parameters
produced 4860 unique combinations of parameters and algorithms to run the model in. We
ran the model 50 times in each of these combinations of parameters and algorithms. We
then took note of scores of runs as the mean reward per time-step of the 50 simulations
in each run. This produced a dataset that we organized as a matrix with 54 columns
and 90 rows. Based on recorded scores, rows and columns of the scores’ matrix were
analyzed and ordered with hierarchical clustering. We then identified the ranks of the
values within each column of the matrix. The ranked matrix showed a comparison of
the 90 algorithm/solution parameters against one another. Both matrices were plotted as
heatmaps. Using these visualizations enabled us to find groups of simulations with higher
scores. This visual finding was confirmed by marginal sums of the matrices. Through this
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process we were able to select algorithms that performed better than the others in most of
the problem parameter settings.

2.3.4. Comparison of Simulations with a Reference Baseline

In addition to comparing algorithms with each other, we compared the selected algo-
rithms against a baseline. The reason for this comparison was to note what would happen
without the algorithms, and so assess the role of the RL algorithms in the achievement of
results. To make this basis for comparison, we ran another series of simulations with the
same problem settings and the same thresholds for user agents but without RL algorithms
for the governing agent. Instead, in these simulations the governing agent produced signals
randomly in each time-step. We then compared the results of this new model, which we
call the baseline, with the selected RL algorithms.

2.4. Implementation

The model was developed and run using Java Repast Simphony 2.7 [60]. Simulation
results were analyzed and visualized using R statistical software [61] and its packages
ggplot2 [62], scales [63], and signs [64]. For model code and results, see the Data Availabil-
ity section.

3. Results
3.1. Simulations without RL

Figure 2 shows histograms obtained by simulating the actions of various sets of user
agents given all possible sequences of signals by the governing agent. In these simulations,
no RL algorithm was used for the governing agent. Rather, all binary sequences of length
16 were generated and tried on the user agents. As such, the results of these simulations
depict the space of outcomes of all possible policies. Each sequence of decisions was tried
on 100 sets of user agents with similar characteristics. Therefore, each histogram shows the
distribution of scores of 6,553,600 episodes. The score of each episode is calculated as the
mean reward per time-step of that episode.

Figure 2. Histograms of overall scores of episodes in reference dataset, ordered by number and mean
decision threshold of user agents. Each histogram summarizes 6,553,600 data points. Each data point
is an episode of 17 time-steps. The score of each episode is its mean reward per time-step. Rewards
are real numbers between −1 and 0, and they are calculated based on the ratio of user agents that
cooperate with the governing agent in each time-step.
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As shown in Figure 2, the emergence of the desired norm of behavior is highly
dependent on the mean cost–benefit decision threshold of the user agents. In simple terms,
the more costly the behavior, the less likely it is to become a trend in the society. This is
especially evident in the simulations with a mean decision threshold of 0.7 for the user
agents, where nearly all episodes ended with the minimum score, and cooperation of the
user agents with the governing agent was a rarity. To a lesser extent, this happened in
the simulations with a mean decision threshold of 0.5 as well. The histograms of these
runs show lower peaks and more dispersed distributions of scores, though their modes are
still at the minimum score. On the other hand, in the simulations with a mean decision
threshold of 0.3, the scores are distributed more evenly. In two of the three histograms of
these simulations, the mode is not at the minimum score. In fact, these histograms show
that the number of user agents has an inverse effect on the mode of scores.

3.2. Simulations with RL

Figure 3 shows a heatmap of scores of 4860 sets of simulations. This heatmap is
composed of 54 columns and 90 rows. The columns and rows of this figure correspond to
problem parameters and algorithm/solution parameters, respectively. Specifically, each
column is for one unique combination of number of user agents, mean and standard
deviation of decision threshold of the population of user agents, as well as the future
discounting rate. Each row is for a unique combination of the RL algorithm, its rate of
exploration vs. exploitation, and its learning rate. As such, each column represents a
problem, and each row is a solution to that problem. Appendix B includes parameter
combinations and their respective codes, which are assigned to columns and rows of the
heatmap figures. Each pixel in the heatmap represents the mean score of 50 simulations
with the same problem parameters and algorithm/solution parameters. The score of each
simulation is the mean reward per time-step of that simulation. Column numbers and row
numbers are printed on the margins of the heatmap. The order of columns and rows was
determined through hierarchical clustering, using column sums and row sums, respectively.
Dendrograms of the hierarchical clustering of columns and of rows are shown in the figure.
Larger copies of these dendrograms as well as lists of parameters of rows and columns are
available in the Data Availability section.

Figure 3. Heatmap of mean scores of simulations. Each row is a unique combination of algorithm
settings. Each column is a unique combination of problem parameters. Rows and columns are ordered
using hierarchical clustering, as shown in their respective dendrograms. Each pixel represents the
mean score of 50 simulations with its respective row and column settings. Simulation scores are
mean rewards per time-step.
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There are three distinct vertical bands in the heatmap of Figure 3. These correspond to
the three tested values for mean decision thresholds of user agents. The left-most vertical
band, shown in deep red, corresponds to mean decision threshold of 0.7. The middle band,
which shows a variety of red and orange colors, corresponds to mean decision threshold
of 0.5, and the right-most band, with the highest variety of colors from orange to white,
corresponds to mean threshold of 0.3. The dendrogram of the columns shows that the
scores of the two bands on the left are more similar to each other, while the scores of the
right-most band are in a different cluster, which is confirmed by the colors of the heatmap.

The colors of the heatmap of Figure 3 are proportional to the values of the pixels of
the heatmap, with the lowest value colored red, and the highest value colored white. The
visualization in this figure shows that problem parameters have a strong influence in the
results. However, our goal is to identify the best solutions to the problems, and from this
figure it seems that the differences between the results of various solutions are smaller than
the differences between problems. As such, it is not easy to distinguish between different
solutions in this figure.

In order to compare different solutions, we prepared Figure 4. This figure is the result
of column-ranking of the heatmap of Figure 3. As such, the values in each column of the
heatmap of Figure 4 range from 1 to 90, with 1 corresponding to the lowest score and 90
to the highest score in the respective column in the heatmap of Figure 3. In this way, the
difference between problem settings is eliminated from Figure 4 and it is only the difference
between row values, that is, algorithm/solution parameters, that causes variations in this
heatmap. Each of the 54 columns is a test problem. For each test problem, 90 solutions are
given, and they are ranked according to their scores. An ideal solution is one that has high
ranks in all or most of the tests. In order to more easily understand the figure, the orders of
rows and columns are the same as those of Figure 3.

Figure 4. Heatmap of ranks of simulations. Each row is a unique combination of algorithm settings.
Each column is a unique combination of problem parameters. For each column, the row with the
highest mean score of simulations is given the highest rank. The order of rows and columns in the
ranks heatmap is the same as that of the mean scores heatmap.

It can be seen that the heatmap of Figure 4 is divided into three horizontal zones,
with the lowest zone having the lowest ranks, and the middle zone having the highest
ranks. The lower zone, with lowest ranks, corresponds to the RL algorithms Q-Learning
and Expected SARSA. The middle zone, with the highest ranks, corresponds to the RL
algorithms Double SARSA and Double Expected SARSA. The upper zone of the figure,
which contains solutions with middle ranks, corresponds to the RL algorithms SARSA and
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Double Q-Learning. As shown in the dendrograms and confirmed by the colors of the
pixels, the scores of the two upper zones are more similar to each other, whereas the lowest
zone is in a different cluster.

It is noticeable that within the upper zone of the figure, there is an accumulation of
magenta pixels in the bottom-right and in the top-left. We mentioned that the left side of
the figure corresponds to problems with mean user agent decision threshold of 0.3, and
the right side corresponds to the mean decision threshold of 0.7. We also noted that the
latter is a tougher challenge for the RL algorithms because in its space of decisions, rewards
are rare. It may seem reasonable to assume that the solutions with higher ranks in the
tougher problems are more successful than others. The row numbers of the two groups of
solutions show that in this zone, the Double Q-Learning algorithm performs better than
the SARSA algorithm.

In all, in Figure 4 the Double Learning algorithms showed superior performance. We
looked at the row sums of the heatmap in order to identify the best algorithms with their
parameters. The highest-ranking algorithms in the 54 problems were: (1) Double Expected
SARSA, with an exploration rate of 0.1 and a learning rate of 0.2; (2) Double Expected
SARSA, with an exploration rate of 0.2 and a learning rate of 1.0; and (3) Double SARSA,
with an exploration rate of 0.01 and a learning rate of 1.0.

Figure 5 shows the spread of the rewards obtained in various simulations with the
RL algorithms Double SARSA and Double Expected SARSA. Each curve in this figure
represents the mean rewards of 50 simulations with similar parameters. For each algorithm,
810 different parameter settings were tested. As seen in the figure, the two algorithms
show similar variations in results. There are no areas of the plot that are particularly filled
with curves of only one of the two algorithms. In this sense, we cannot visually distinguish
between the two algorithms. Appendix C includes flowcharts of these two algorithms.

Figure 5. Rewards versus time-steps for Double SARSA and Double Expected SARSA algorithms.
For each of the two algorithms, 810 curves are shown. Each curve represents a parameter setting for
its respective algorithm. For each parameter setting, 50 simulations were run, their mean score was
plotted at each time-step, and a line segment was drawn between the score points of consecutive
time steps to produce a curve.

Three strands of curves are visible in the plots of rewards of simulations in time
steps. These correspond to the three thresholds for decisions of user agents: the lower
the thresholds, the higher the rewards. It is noticeable that in simulations with the mean
decision threshold of 0.3, higher rewards emerge between the 5th and 10th time steps. Such
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time of emergence of higher rewards is delayed to between the 10th and 15th time steps in
simulations with mean decision threshold of 0.5. The rewards of simulations with mean
decision threshold of 0.7 emerge later, after the 15th time step. This shows that as the users
agents’ decision threshold increases, it takes longer times for the RL algorithms to cause
the user agents to cooperate with the governing agent.

In Figure 6 we compared the scores of the selected RL algorithms against a baseline.
The scores in these histograms are rewards of the 17th time step of 40,500 episodes for each
of the RL algorithms and the baseline. In the baseline run, signals were produced by the
random decisions of the governing agent, and they were given to the user agents. This
represents a case where the governing agent does not have an algorithm. Therefore, this
case serves as a basis for comparison against the cases where the governing agent does
have an algorithm. Recall that the rewards were defined as unity minus cooperation ratio
if cooperation ratio is below 0.5, and zero otherwise. The histograms below show this
matter, as they include no rewards between −0.5 and 0. The histograms show two peaks of
frequencies at the highest and lowest ends of score range. Clearly, in comparison with the
baseline, the RL algorithms have lower frequencies of low scores and higher frequencies of
high scores.

Figure 6. Histograms of scores at the final time step for RL algorithms Double SARSA and Double
Expected SARSA as well as a random baseline. Each histogram summarizes 40,500 data points.

The choice of rewards of the 17th step as the score in Figure 6 was in order to show
what happens to the group of user agents at the end of the simulation. It indicates to what
extent the target state was achieved throughout simulations. The histograms show that
compared to the baseline, the RL algorithms were more successful in encouraging the
cooperation of the user agents with the governing agent.

Figure 7 shows another comparison of the selected algorithms with the baseline. This
figure uses the same simulation and baseline scores as Figure 6, but it separates data
according to the mean value of user agents’ decision threshold. The boxplots of Figure 7
show the spread of rewards gained at the final time-step of the runs, for three values of the
mean threshold (µ).
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Figure 7. Boxplots of scores at the final time step for RL algorithms Double SARSA and Double
Expected SARSA as well as a random baseline, classified by mean value of user agents’ decision
threshold. Each boxplot shows quartile ranges of scores of 13,500 data points.

Figure 7 reveals several points. Firstly, it is evident in the figure that the results are
dependent on the mean decision threshold of the user agents. Secondly, it is noteworthy
that at the lower threshold value (µ = 0.3) half of the runs with RL algorithms, as well as
the random baseline, reach the target state and obtain full reward at the final time-step.
Lastly, at other threshold values (µ = 0.5 and µ = 0.7) the RL algorithms scored distinctly
higher than the baseline. The observation that the median of the baseline dataset is the
highest possible score when µ = 0.3 indicates that at the lower threshold, the existence
of the mechanism of recognition of ‘responsible users’ leads to emergence of a norm of
behavior in which the user agents cooperate with the governing agent. Conversely, the
observation that the median of the baseline dataset is the lowest possible score when
µ = 0.5 and µ = 0.7 shows that in these cases it is a challenge for the RL algorithms to find
a sequence of decisions for the governing agent to create the desired norm of behavior
among user agents. These cases show the superior performance of the RL algorithms in
comparison with the baseline.

4. Discussion

We started our work with a curiosity about the ability of the governing agent to use
reputation as a mechanism for guiding user agents to perform the desired behavior. To that
end, we explored the space of possible outcomes of interactions of user agents that consider
their reputation. We also equipped the governing agent with a learning algorithm to find a
successful policy for its actions. In our abstract study, we consider a policy successful if it
leads to the participation of user agents in the desired behavior, such that the percentage of
participating users is higher than what could be achieved by random actions. Our criterion
for success was inspired by the definition of descriptive norms by Cialdini et al. [6], which
inform us of what others do in the society. This is also in accordance with an interpretation
of norms mentioned by Therborn [65], in which norms inform us about the distribution of
things (in our case: behaviors) and indicate what is ‘normal’.

Our simulation of the space of all possible decisions of the governing agent (Figure 2)
showed that the emergence of the desired norm of behavior among user agents is pos-
sible, though it can be rare, depending on the parameters of the problem. We chose the
length of the simulation episodes considering computation hardware limits. Substantial
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computational power and memory are required in the processing and internal verification
of this stage, as the space of decisions grows exponentially with the number of time steps.
Nevertheless, through the simulations we were able to identify information about the
process being studied.

Moreover, we showed that RL algorithms could hasten and facilitate the emergence of
norms of group behavior that are costly to the individuals. In particular, comparison of
the results of RL algorithms with the baseline (Figure 7) showed that in some cases, the
algorithms were able to reach results that were rare in their problem settings. On the other
hand, the comparison with baseline also showed that in problem settings where the chance
of the emergence of the desired behavior is high, a random baseline could reach results
comparable with RL algorithms. As such, we can say that if the user agents perceive a
low cost for the requested behavior, then having in place a structure in which user agents
who performed that behavior are recognized and introduced to the group as ‘responsible
users’ can lead to the diffusion of that behavior in the group and emergence of a new
behavior norm. If, on the other hand, the perceived cost of performing that behavior is
high for the user agents, then the mere existence of the recognition structure is not enough
for diffusion of that behavior in the group. In these cases, a governing agent equipped
with an appropriate algorithm may be able to guide the group of user agents towards the
desired behavior.

Our initial inspiration for this study comes from our field of work—sustainability—
where governments are interested in encouraging individuals to adopt environmentally
responsible behavior [66]. The research presented in this paper is part of a larger project
aimed at understanding the complexities of a system that is composed of social and
ecological parts. Such social-ecological systems involve interactions of subsystems that are,
in turn, complex [67,68]. In the present study, we were able to select algorithms to use in
the construction of a social-ecological model in future. We also identified parameters to
use for those algorithms.

In abstraction, our model’s governing agent aims to encourage our model’s user
agents to do something that the user agents perceive is costly for them. This is as if the
governing agent was trying to sell something—in our model’s case, a ‘responsible user’
label—to the user agents, where the user agents are not initially convinced that it is worth
the price. A field of study that deals with similar problems is marketing. In fact, ABMs
are applied in marketing research and are known to be useful because of their cross-scale
capabilities: they build individual agents and capture results that emerge in the scale
of the society [69]. A similar point has been mentioned in the literature of innovation
diffusion [18,70]. In addition, it has been noted that an individual’s decision to purchase
a product depends on the quality of the product and the social influence the individual
receives from their peers [70]. Similarly, our user agents are influenced by their society.
Our model’s user agents each perform a cost–benefit analysis. They assess the benefit of
performing a task that is costly for them. Such a benefit is social respect. Then, the agents
compare that benefit with a threshold, which represents their perception of the cost of the
task. Our model’s agents, however, do not receive a product in return for the cost that they
pay. As such, they compare the cost only with their estimate of the value of the social status
that they may gain if they pay the price for it. In a related work, Antinyan et al. [71] built
an ABM in which each agent compares its status with the mean status of others in their
social network, and decides accordingly to spend a budget to improve its own status. In a
similar fashion, our user agents consider the mean status of their group in their decision to
take a costly action for improving their own status. In a different study, Shafiei et al. [72]
built an ABM of market share of electric vehicles and stated that visibility of a new subject
can help it become a trend in the society. Similarly, our user agents consider a measure
of visibility of the new trend in their group, and the governing agent’s actions increase
visibility of the ‘responsible user’ label. In another ABM study about promotional activities
in marketing and sales of products, Delre et al. [73] concluded that timing of promotional
activities has an important role in the success of a sales campaign, and inappropriate timing
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may cause the sales of the product to fail. In our study, decisions of the governing agent
are indeed about giving free promotional ‘responsible user’ labels to all user agents. The
RL algorithms give the governing agent a policy that prescribes when promotional labels
should be given for free. The comparison of the performance of the RL algorithms with
the random baseline showed that the timing of promotional offers of the label, which the
algorithms prescribed, was influential in achieving results.

Our model is an abstract model that simulates interaction of agents in a hypothetical
setting. There is always a concern about such abstract models and whether they are useful,
as they are not connected to the real world. Moreover, without connection to the real world,
questions arise about the validity of the model and the relevance of its results. Below, we
address these issues.

Depending on the model’s purpose, ABMs can be classified in two different types:
predictive and explanatory [74]. The aim of predictive models is to extrapolate trends, eval-
uate scenarios and predict future states, whereas the aim of explanatory models, in terms
of Castle and Crooks, is ‘to explore theory and generate hypotheses’ [74]. These different
purposes justify different approaches. Predictive models try to be detailed enough to make
a precise enough replicate of the real world, while explanatory models often involve simpli-
fying assumptions that reduce the real world to abstractions [74,75]. There have been many
cases where abstract models have led to better understanding of phenomena and theories.
For example, Adam Smith developed a theory in which markets emerge as the result of
actions of individuals pursuing their own interest [76]. Centuries later, Gavin analyzed
an abstract ABM based on Smith’s work and put Smith’s theory to test with it, to find
whether self-interest actions of individuals will result in increased utility overall [77]. For
another example, Axelrod developed an abstract ABM of hypothetical agents interacting
with each other in a game of repeated Prisoner’s Dilemma [78] and based on that abstract
model he made substantial contributions to the theory of cooperation. Another example is
Schelling’s segregation model [79] in which he simulated spatial patterns of distribution of
ethnic groups in a hypothetical urban environment. Our model, too, is abstract and aims
to provide insights about emergence of certain behaviors in groups of agents. Our model
is not intended to represent a real-world system. Rather, it is meant to show whether it
is possible that behaviors that are costly to individuals emerge and become a norm in a
group, given a mechanism of recognition of agents who perform such a behavior.

In addition to verifying our model at several stages of development, we compared
several algorithms with each other in our model assessment effort (Figure 4). These
comparisons shed light on the simulations and allowed us to distinguish more powerful
algorithms and identify some sets of parameters with which the algorithms perform well
in various tests. We also assessed our algorithms against a baseline (Figures 6 and 7) and
showed that the identified algorithms make a difference in comparison to a case where
those algorithms are not used. Moreover, by constructing the space of outputs of all
possible sequences of actions (Figure 2) we gained an insight into the results that can be
reached, and the rarity of our desired state. Through this integrated approach we put our
hypothetical ABM to test, verified it, and learned about its power and its limits.

In two literature reviews, Savarimuthu and Cranefield [8] and Hollander and Wu [12]
noted that many authors associate norms with social sanctions and enforcement. Axel-
rod [80] states that in simulations, sanctions facilitate the emergence of norms because
an agent’s calculation of its utility is affected by the negative score of the sanctions that
it might face, if it does not follow the norm. Therefore, it seems that in a setting without
sanctions, norms are less likely to emerge than in a similar setting with sanctions. Our study
involved a setting without sanctions, and the desired behavior still emerged among the user
agents. This indicates two points: firstly, the offer of good reputation is a mechanism that
contributes to the emergence of a new norm, even in the absence of sanctions; and secondly,
the governing agent’s RL algorithm allows it to effectively use the reputation mechanism
and promote the desired behavior. These points address a question that Hollander and
Wu [12] raise in their literature review, about possible alternatives to social sanctions.
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Our governing agent performs the role of centralized leadership [37] in the emergence
of a new norm in its society. The new norm is the manifestation of decisions of user agents
to cooperate with the governing agent. These decisions are dependent on the user agents’
thresholds for assessment of the utility of their choices. In principle, if the governing agent
knew the mean value of decision thresholds of user agents, then the governing agent could
adjust its actions accordingly and have an efficient policy. The governing agent could do
this by repeatedly giving promotional labels to all user agents and increasing their utility,
until their utility reached their decision thresholds. Then, the governing agent could ask
for the costly behavior, and the user agents would find that the utility of being recognized
as a responsible user is worth more than the cost of the requested behavior, so they would
cooperate with the governing agent. This is in accordance with Axelrod’s [80] explanation
of how the desire for good reputation can lead to the emergence of a norm. However,
the challenge for our governing agent is that it does not know the decision thresholds
of user agents. To better understand this challenge, suppose that the governing agent
underestimates the mean decision threshold of user agents. In this case, before giving
sufficient promotional labels and increasing the utility of the desired behavior in the user
agents, the governing agent asks for the costly behavior. As a result, the unprepared user
agents do not cooperate with the governing agent. As another result, the promotional
activity of the governing agent is delayed by its untimely request, and the emergence
of the norm will be postponed. Now suppose another case, where the governing agent
overestimates the mean decision threshold of user agents. In this case, the governing agent
continues increasing the utility of the desired behavior in the user agents, without realizing
when they are ready to cooperate with the governing agent. As such, the governing agent
loses time in unnecessary promotional activity and does not ask user agents to perform
the desired behavior. This case, as well, results in postponed emergence of the norm. The
success of the governing agent, therefore, depends on the proper timing of its activities.
Our governing agent’s RL algorithm adjusted itself by occasionally making costly requests
and checking the response of the user agents. In this way, the RL algorithm achieved higher
user agent cooperation rates than a random baseline, as evident in Figure 7.

The scope of this study is the evolution of the simulated society of the governing and
user agents, from a situation where no user agents cooperate with the governing agent
till a situation where the desired proportion of user agents voluntarily cooperate with the
governing agent and perform the costly behavior that the governing agent requests. As
such, our work addresses another question raised by Hollander and Wu [12] regarding
the early stages of norm creation and ideation. What happens afterwards is beyond the
scope of this study. Nevertheless, it is worth noting as an implication that when many user
agents voluntarily perform the behavior that the governing agent requests, the society of
user agents may develop a tendency to take that behavior for granted and sanction those
who do not participate in that behavior [80]. As another implication, the governing agent
may introduce new laws to enforce the newly emerged norm [8]. These can be subjects of
future works.

As another idea for future work, our model can be used in the study of complex
systems that involve our case of Principal–Agent setting in conjunction with another
phenomenon. For example, in environmental management there is typically a governing
agent or entity with demands from users of an environmental resource. Such social
interactions can be simulated in our model. The environmental resource, in turn, is subject
to the laws of nature. If there exists a model of natural changes in the environmental
resource, then by coupling that model with the model described in the present study, it is
possible to simulate the changes in that social-ecological system.

5. Conclusions

In this study we developed an abstract ABM of the interactions of a principal and
several agents in a hypothetical context where the principal offers the agents recognition
and good reputation in return for their cooperation in a behavior that is costly to the agents.
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Our simulation results showed that in such a setting, the emergence of the desired behavior
as a norm is possible. If the agents perceive that the cost of the behavior is low, then
emergence of that norm is possible even without guidance of the agents by the principal.
If the perceived cost of the behavior is not low, then cases of emergence of that norm are
rare. However, we demonstrated through comparison with a random baseline that RL
algorithms can effectively guide the agents towards adopting the said behavior. Among
the six TD RL algorithms that we tried—namely, SARSA, Q-Learning, Expected SARSA,
Double SARSA, Double Q-Learning, and Double Expected SARSA—we noted that Double
Learning algorithms obtained better results in the setting of this study. We conclude that
with a proper learning algorithm it is possible to create norms of costly behaviors, by using
recognition as a reward for participation in the behavior, even in the absence of social
sanction and enforcement.
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Appendix A. Model Parameters

Table A1. Model parameters.

Parameter Group Parameter Symbol Values

Problem parameters

Number of user agents n 5, 9, 13
User agents mean threshold µ 0.3, 0.5, 0.7

User agents’ threshold standard
deviation σ 0.06, 0.08

Future discounting rate γ 0.1, 0.5, 0.9

Algorithm
parameters

Exploration rate ε 0.01, 0.1, 0.2
Learning rate α 0.2, 0.4, 0.6, 0.8, 1

https://github.com/s-harati/model-Cooperation
https://github.com/s-harati/model-Cooperation
https://osf.io/jyqu7/
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Appendix B. Parameter Combination Codes

Table A2. Codes and combinations of problem parameters. These codes correspond to column
numbers of the heatmap figures in the text. µ and σ are the mean and standard deviation of User
agent thresholds, respectively. n is the number of user agents. γ is the future discount rate.

Code µ σ n γ Code µ σ n γ Code µ σ n γ

1 0.3 0.06 5 0.1 19 0.5 0.06 5 0.1 37 0.7 0.06 5 0.1
2 0.3 0.06 5 0.5 20 0.5 0.06 5 0.5 38 0.7 0.06 5 0.5
3 0.3 0.06 5 0.9 21 0.5 0.06 5 0.9 39 0.7 0.06 5 0.9
4 0.3 0.06 9 0.1 22 0.5 0.06 9 0.1 40 0.7 0.06 9 0.1
5 0.3 0.06 9 0.5 23 0.5 0.06 9 0.5 41 0.7 0.06 9 0.5
6 0.3 0.06 9 0.9 24 0.5 0.06 9 0.9 42 0.7 0.06 9 0.9
7 0.3 0.06 13 0.1 25 0.5 0.06 13 0.1 43 0.7 0.06 13 0.1
8 0.3 0.06 13 0.5 26 0.5 0.06 13 0.5 44 0.7 0.06 13 0.5
9 0.3 0.06 13 0.9 27 0.5 0.06 13 0.9 45 0.7 0.06 13 0.9
10 0.3 0.08 5 0.1 28 0.5 0.08 5 0.1 46 0.7 0.08 5 0.1
11 0.3 0.08 5 0.5 29 0.5 0.08 5 0.5 47 0.7 0.08 5 0.5
12 0.3 0.08 5 0.9 30 0.5 0.08 5 0.9 48 0.7 0.08 5 0.9
13 0.3 0.08 9 0.1 31 0.5 0.08 9 0.1 49 0.7 0.08 9 0.1
14 0.3 0.08 9 0.5 32 0.5 0.08 9 0.5 50 0.7 0.08 9 0.5
15 0.3 0.08 9 0.9 33 0.5 0.08 9 0.9 51 0.7 0.08 9 0.9
16 0.3 0.08 13 0.1 34 0.5 0.08 13 0.1 52 0.7 0.08 13 0.1
17 0.3 0.08 13 0.5 35 0.5 0.08 13 0.5 53 0.7 0.08 13 0.5
18 0.3 0.08 13 0.9 36 0.5 0.08 13 0.9 54 0.7 0.08 13 0.9

Table A3. Codes and combinations of algorithm settings. These codes correspond to row numbers of
the heatmap figures in the text. Algorithms are Double Expected SARSA (DXS), Double Q-Learning
(DQ), Double SARSA (DS), Expected SARSA (ES), Q-Learning (Q), and SARSA (S). ε is the exploration
rate. α is the learning rate.

Code Algorithm ε α Code Algorithm ε α Code Algorithm ε α

1 DXS 0.01 0.2 31 DS 0.01 0.2 61 Q 0.01 0.2
2 DXS 0.01 0.4 32 DS 0.01 0.4 62 Q 0.01 0.4
3 DXS 0.01 0.6 33 DS 0.01 0.6 63 Q 0.01 0.6
4 DXS 0.01 0.8 34 DS 0.01 0.8 64 Q 0.01 0.8
5 DXS 0.01 1.0 35 DS 0.01 1.0 65 Q 0.01 1.0
6 DXS 0.10 0.2 36 DS 0.10 0.2 66 Q 0.10 0.2
7 DXS 0.10 0.4 37 DS 0.10 0.4 67 Q 0.10 0.4
8 DXS 0.10 0.6 38 DS 0.10 0.6 68 Q 0.10 0.6
9 DXS 0.10 0.8 39 DS 0.10 0.8 69 Q 0.10 0.8

10 DXS 0.10 1.0 40 DS 0.10 1.0 70 Q 0.10 1.0
11 DXS 0.20 0.2 41 DS 0.20 0.2 71 Q 0.20 0.2
12 DXS 0.20 0.4 42 DS 0.20 0.4 72 Q 0.20 0.4
13 DXS 0.20 0.6 43 DS 0.20 0.6 73 Q 0.20 0.6
14 DXS 0.20 0.8 44 DS 0.20 0.8 74 Q 0.20 0.8
15 DXS 0.20 1.0 45 DS 0.20 1.0 75 Q 0.20 1.0
16 DQ 0.01 0.2 46 ES 0.01 0.2 76 S 0.01 0.2
17 DQ 0.01 0.4 47 ES 0.01 0.4 77 S 0.01 0.4
18 DQ 0.01 0.6 48 ES 0.01 0.6 78 S 0.01 0.6
19 DQ 0.01 0.8 49 ES 0.01 0.8 79 S 0.01 0.8
20 DQ 0.01 1.0 50 ES 0.01 1.0 80 S 0.01 1.0
21 DQ 0.10 0.2 51 ES 0.10 0.2 81 S 0.10 0.2
22 DQ 0.10 0.4 52 ES 0.10 0.4 82 S 0.10 0.4
23 DQ 0.10 0.6 53 ES 0.10 0.6 83 S 0.10 0.6
24 DQ 0.10 0.8 54 ES 0.10 0.8 84 S 0.10 0.8
25 DQ 0.10 1.0 55 ES 0.10 1.0 85 S 0.10 1.0
26 DQ 0.20 0.2 56 ES 0.20 0.2 86 S 0.20 0.2
27 DQ 0.20 0.4 57 ES 0.20 0.4 87 S 0.20 0.4
28 DQ 0.20 0.6 58 ES 0.20 0.6 88 S 0.20 0.6
29 DQ 0.20 0.8 59 ES 0.20 0.8 89 S 0.20 0.8
30 DQ 0.20 1.0 60 ES 0.20 1.0 90 S 0.20 1.0
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Appendix C. Flowcharts of Selected Algorithms

Among the algorithms used in this study, Double SARSA and Double Expected
SARSA performed better than the others. Their flowcharts are shown in Figures A1 and A2,
respectively. For larger images of these flowcharts and the flowcharts of other algorithms
used in the study, see the Data Availability section.

Figure A1. Double SARSA flowchart.

Figure A2. Double Expected SARSA flowchart.
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42. Bone, C.; Dragićević, S. Simulation and validation of a reinforcement learning agent-based model for multi-stakeholder forest

management. Comput. Environ. Urban Syst. 2010, 34, 162–174. [CrossRef]
43. Alpaydin, E. Reinforcement Learning. In Introduction to Machine Learning; MIT Press: Cambridge, MA, USA, 2014; pp. 517–545.
44. Canese, L.; Cardarilli, G.C.; Di Nunzio, L.; Fazzolari, R.; Giardino, D.; Re, M.; Spanò, S. Multi-Agent Reinforcement Learning: A

Review of Challenges and Applications. Appl. Sci. 2021, 11, 4948. [CrossRef]
45. Angourakis, A.; Santos, J.I.; Galán, J.M.; Balbo, A.L. Food for all: An agent-based model to explore the emergence and implications

of cooperation for food storage. Environ. Archaeol. 2015, 20, 349–363. [CrossRef]
46. Okdinawati, L.; Simatupang, T.M.; Sunitiyoso, Y. Multi-agent Reinforcement Learning for Collaborative Transportation Manage-

ment (CTM). In Agent-Based Approaches in Economics and Social Complex Systems IX; Springer: Singapore, 2017; pp. 123–136.
47. Chan, C.K.; Steiglitz, K. An Agent-Based Model of a Minimal Economy; Princeton University: Princeton, NJ, USA, 2008.
48. Rasch, S.; Heckelei, T.; Oomen, R.; Naumann, C. Cooperation and collapse in a communal livestock production SES model – A

case from South Africa. Environ. Model. Softw. 2016, 75, 402–413. [CrossRef]
49. Bohensky, E. Learning Dilemmas in a Social-Ecological System: An Agent-Based Modeling Exploration. J. Artif. Soc. Soc. Simul.

2014, 17, 1–2. [CrossRef]
50. Grimm, V.; Berger, U.; DeAngelis, D.L.; Polhill, J.G.; Giske, J.; Railsback, S.F. The ODD protocol: A review and first update. Ecol.

Modell. 2010, 221, 2760–2768. [CrossRef]
51. Grimm, V.; Berger, U.; Bastiansen, F.; Eliassen, S.; Ginot, V.; Giske, J.; Goss-Custard, J.; Grand, T.; Heinz, S.K.; Huse, G.; et al. A

standard protocol for describing individual-based and agent-based models. Ecol. Modell. 2006, 198, 115–126. [CrossRef]
52. Grimm, V.; Railsback, S.F.; Vincenot, C.E.; Berger, U.; Gallagher, C.; DeAngelis, D.L.; Edmonds, B.; Ge, J.; Giske, J.; Groeneveld,

J.; et al. The ODD Protocol for Describing Agent-Based and Other Simulation Models: A Second Update to Improve Clarity,
Replication, and Structural Realism. J. Artif. Soc. Soc. Simul. 2020, 23, 1–7. [CrossRef]

53. Müller, B.; Bohn, F.; Dreßler, G.; Groeneveld, J.; Klassert, C.; Martin, R.; Schlüter, M.; Schulze, J.; Weise, H.; Schwarz, N. Describing
human decisions in agent-based models – ODD + D, an extension of the ODD protocol. Environ. Model. Softw. 2013, 48, 37–48.
[CrossRef]

54. Anderson, C.; Hildreth, J.A.D.; Howland, L. Is the desire for status a fundamental human motive? A review of the empirical
literature. Psychol. Bull. 2015, 141, 574–601. [CrossRef]

55. Tascioglu, M.; Eastman, J.K.; Iyer, R. The impact of the motivation for status on consumers’ perceptions of retailer sustainability:
The moderating impact of collectivism and materialism. J. Consum. Mark. 2017, 34, 292–305. [CrossRef]

56. Nolan, J.M.; Schultz, P.W.; Cialdini, R.B.; Goldstein, N.J.; Griskevicius, V. Normative Social Influence is Underdetected. Personal.
Soc. Psychol. Bull. 2008, 34, 913–923. [CrossRef] [PubMed]

57. Lazaric, N.; Le Guel, F.; Belin, J.; Oltra, V.; Lavaud, S.; Douai, A. Determinants of sustainable consumption in France: The
importance of social influence and environmental values. J. Evol. Econ. 2020, 30, 1337–1366. [CrossRef]

58. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement Learning: A Survey. J. Artif. Intell. Res. 1996, 237–285. [CrossRef]
59. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; MIT Press: Cambridge, MA, USA, 2018; ISBN

9780262039246.
60. North, M.J.; Collier, N.T.; Ozik, J.; Tatara, E.R.; Macal, C.M.; Bragen, M.; Sydelko, P. Complex adaptive systems modeling with

Repast Simphony. Complex Adapt. Syst. Model. 2013, 1, 3. [CrossRef]
61. R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2019.
62. Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24-277-4.
63. Wickham, H.; Seidel, D. R Package “Scales”: Scale Functions for Visualization; R Core Team: Vienna, Austria, 2020.
64. Wolfe, B.E. R Package “Signs”: Insert Proper Minus Signs; R Core Team: Vienna, Austria, 2020.
65. Therborn, G. Back to Norms! on the Scope and Dynamics of Norms and Normative Action. Curr. Sociol. 2002, 50, 863–880.

[CrossRef]
66. Barr, S. Strategies for sustainability: Citizens and responsible environmental behaviour. Area 2003, 35, 227–240. [CrossRef]
67. Liu, J.; Dietz, T.; Carpenter, S.R.; Alberti, M.; Folke, C.; Moran, E.; Pell, A.N.; Deadman, P.; Kratz, T.; Lubchenco, J.; et al.

Complexity of Coupled Human and Natural Systems. Science 2007, 317, 1513–1516. [CrossRef]
68. Ostrom, E. A General Framework for Analyzing Sustainability of Social-Ecological Systems. Science 2009, 325, 419–422. [CrossRef]
69. Rand, W.; Rust, R.T. Agent-based modeling in marketing: Guidelines for rigor. Int. J. Res. Mark. 2011, 28, 181–193. [CrossRef]
70. Delre, S.A.; Jager, W.; Bijmolt, T.H.A.; Janssen, M.A. Will it spread or not? the effects of social influences and network topology on

innovation diffusion. J. Prod. Innov. Manag. 2010, 27, 267–282. [CrossRef]

http://doi.org/10.1037/xge0000365
http://doi.org/10.1016/j.compenvurbsys.2009.10.001
http://doi.org/10.3390/app11114948
http://doi.org/10.1179/1749631414Y.0000000041
http://doi.org/10.1016/j.envsoft.2014.12.008
http://doi.org/10.18564/jasss.2448
http://doi.org/10.1016/j.ecolmodel.2010.08.019
http://doi.org/10.1016/j.ecolmodel.2006.04.023
http://doi.org/10.18564/jasss.4259
http://doi.org/10.1016/j.envsoft.2013.06.003
http://doi.org/10.1037/a0038781
http://doi.org/10.1108/JCM-03-2015-1351
http://doi.org/10.1177/0146167208316691
http://www.ncbi.nlm.nih.gov/pubmed/18550863
http://doi.org/10.1007/s00191-019-00654-7
http://doi.org/10.1613/jair.301
http://doi.org/10.1186/2194-3206-1-3
http://doi.org/10.1177/0011392102050006006
http://doi.org/10.1111/1475-4762.00172
http://doi.org/10.1126/science.1144004
http://doi.org/10.1126/science.1172133
http://doi.org/10.1016/j.ijresmar.2011.04.002
http://doi.org/10.1111/j.1540-5885.2010.00714.x


Appl. Sci. 2021, 11, 8368 24 of 24

71. Antinyan, A.; Horváth, G.; Jia, M. Social status competition and the impact of income inequality in evolving social networks: An
agent-based model. J. Behav. Exp. Econ. 2019, 79, 53–69. [CrossRef]

72. Shafiei, E.; Thorkelsson, H.; Ásgeirsson, E.I.; Davidsdottir, B.; Raberto, M.; Stefansson, H. An agent-based modeling approach
to predict the evolution of market share of electric vehicles: A case study from Iceland. Technol. Forecast. Soc. Change 2012, 79,
1638–1653. [CrossRef]

73. Delre, S.A.; Jager, W.; Bijmolt, T.H.A.; Janssen, M.A. Targeting and timing promotional activities: An agent-based model for the
takeoff of new products. J. Bus. Res. 2007, 60, 826–835. [CrossRef]

74. Castle, C.; Crooks, A. Principles and Concepts of Agent-Based Modelling for Developing Geospatial Simulations; Centre for Advanced
Spatial Analysis (UCL): London, UK, 2006.

75. Livet, P.; Phan, D.; Sanders, L. Diversité et complémentarité des modèles multi-agents en sciences sociales. Rev. Fr. Sociol. 2014,
55, 689. [CrossRef]

76. Smith, A. An Inquiry Into the Nature and Causes of the Wealth of Nations; Campbell, R.H., Skinner, A.S., Eds.; Liberty Fund:
Indianapolis, IN, USA. (first published 1776); 1982; ISBN 978-0-86597-008-3.

77. Gavin, M. An agent-based computational approach to “the Adam Smith problem”. Hist. Soc. Res. 2018, 43, 308–336. [CrossRef]
78. Axelrod, R. The Emergence of Cooperation among Egoists. Am. Polit. Sci. Rev. 1981, 75, 306–318. [CrossRef]
79. Schelling, T.C. Dynamic models of segregation. J. Math. Sociol. 1971, 1, 143–186. [CrossRef]
80. Axelrod, R. An evolutionary approach to norms. Am. Polit. Sci. Rev. 1986, 80, 1095–1111. [CrossRef]

http://doi.org/10.1016/j.socec.2018.12.008
http://doi.org/10.1016/j.techfore.2012.05.011
http://doi.org/10.1016/j.jbusres.2007.02.002
http://doi.org/10.3917/rfs.554.0689
http://doi.org/10.12759/hsr.43.2018.1.308-336
http://doi.org/10.2307/1961366
http://doi.org/10.1080/0022250X.1971.9989794
http://doi.org/10.1017/S0003055400185016

	Introduction 
	Materials and Methods 
	Overview, Design Principles, Details 
	Purpose 
	Entities, State Variables, and Scales 
	Process Overview and Scheduling 
	Design Concepts 
	Initialization 
	Input Data 
	Submodels 

	Model Parameters 
	Simulation Experiments 
	Quantifying Model Performance 
	Space of Outputs 
	Comparison of Simulations with Each Other 
	Comparison of Simulations with a Reference Baseline 

	Implementation 

	Results 
	Simulations without RL 
	Simulations with RL 

	Discussion 
	Conclusions 
	Model Parameters 
	Parameter Combination Codes 
	Flowcharts of Selected Algorithms 
	References

