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Abstract: The visual recognition and understanding of human actions remain an active research
domain of computer vision, being the scope of various research works over the last two decades. The
problem is challenging due to its many interpersonal variations in appearance and motion dynamics
between humans, without forgetting the environmental heterogeneity between different video images.
This complexity splits the problem into two major categories: action classification, recognising the
action being performed in the scene, and spatiotemporal action localisation, concerning recognising
multiple localised human actions present in the scene. Previous surveys mainly focus on the evolution
of this field, from handcrafted features to deep learning architectures. However, this survey presents
an overview of both categories and respective evolution within each one, the guidelines that should
be followed and the current benchmarks employed for performance comparison between the state-
of-the-art methods.
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1. Introduction

The advancements in computer technology have allowed the exponential growth of
the machine Learning domain. Particularly, the improvements in artificial neural networks
enabled diverse research for hard-coded knowledge, whereas the deep learning [1,2] field
became the current mainstream. Deep learning solves the main problem of extracting
high-level and abstract features, such as every individual pixel when analysing images of
persons, where the factors of variations become erratic. Those multiple processing layers
dramatically improved the state-of-the-art in solving these problems [3,4], resulting in its
increased use in various scientific research domains while bringing breakthroughs in deep
convolutional neural networks in processing images, video, speech and audio. The recog-
nition of human actions has become one of the most promising applications of computer
vision, due to the continuous advent of image capture equipment and surveillance systems
over the last two decades, producing massive video content. In biometrics, in contrast to
gait recognition, action recognition should be generalised over small variations within the
person’s appearance, background clutter, viewpoints and action execution.

The sophistication in behaviour analysis led to the hierarchical arrangement regard-
ing different levels of abstraction, introduced and used by several early reviews in this
field [5–7] and also by recent ones [8,9], with the following taxonomy: action primitive,
action and activity, ordered in accordance to its complexity. Reporting the atomic move-
ment that can describe the limb level as an action primitive (left leg forward, right arm
folding), and describing the whole-body movement as a juncture of action primitives an
action (running, jumping). Furthermore, at the highest level of abstraction, composed of
several subsequent actions, an activity (jumping hurdles, throwing a football, catching keys
from the ground), giving an interpretation of all the movements that are being performed
within the image.

The extraction of human dynamics information from image sequences can be further
divided into two major image representation categories: local and global representations.
In a bottom-up fashion, local representations are based on the detection of spatio-temporal
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interest points first and local patches are encoded around these points, combining all the
patches into a final representation, alike to the current 3-dimensional convolutional neural
networks approaches (I3D [10], C3D [11] and R(2+1)D [12]). Despite being less sensitive
to noise and partial occlusion (without requiring background subtraction or tracking of
humans), they depend on the extraction of a sufficient amount of relevant interest points,
and despite its high accuracy they also lose the global view of the present humans within
an image, as they tend to generalise over the several possible different actions being
performed. Within the action classification paradigm, most methods applying only local
representations will fail when observing multiple actions at the same time. On the other
hand, in a top-down fashion, global representations consist of first localising a person in
the image and encoding the region of interest (ROI) as the image descriptor, similar to
object detectors and tracking methods to localise humans and keep track of its localisation
through the image sequences. Despite being powerful representations, they rely on accurate
localisation, and consequently, are more sensitive to viewpoint, noise and occlusions.
Within the spatiotemporal action localisation paradigm, global representation approaches
can discriminate better over different actions performed at the same time over the captured
scene. However, those methods are slightly more complex, taking into account its difficulty
in distinguishing coexisting human actions.

Early reviews within the area of vision-based human behaviour analysis and recog-
nition, such as Moeslund et al. [5], Turaga et al. [7] and Poppe [6], give a solid overview
regarding the a priori deep learning methods over the recognition of human actions and
activities, describing the fundamental concepts, techniques and models that were the
foundation of the human activity analysis challenges.

After the early stages of the exponential growth of deep learning, Zhu et al. [9] pre-
sented one of the first comprehensive surveys which explored the advancements of human
behaviour analysis representations, distinguishing the image representations into hand-
crafted features and learning-based representations (which included deep learning archi-
tectures). With the same approach to the action recognition challenge, Herath et al. [8] also
discussed a distinction between pioneering handcrafted representations and deep learning
techniques, and presented a difference between local representations and global/holistic
representations. More recently, Kong et al. [13] presented an extensive and complete survey
regarding not only action recognition, but also action prediction, presenting the state-of-
the-art evolution on both problems. Table 1 represents an overview of well-known surveys
based on topologies, taxonomies and applications.

Table 1. Previous surveys on human behaviour analysis.

Topologies Taxonomies Applications

References

Ye
ar

H
an

dc
ra

ft
ed

D
at

a-
D

ri
ve

n

A
ct

io
ns

A
ct

iv
iti

es

R
ec

og
nt

io
n

Pr
ed

ic
tio

n

D
ee

p
Le

ar
ni

ng

Po
st

er
io

r
Pr

io
r

Moeslund et al. [5] 2006 3 7 3 3 3 7

Turaga et al. [7] 2008 3 7 3 7 3 7

Poppe [6] 2010 3 7 3 7 3 7

Zhu et al. [9] 2016 3 3 3 7 3 7

Herath et al. [8] 2017 3 3 3 7 3 7

Kong et al. [13] 2018 3 3 3 7 3 3

This survey - 3 3 3 7 3 7

The purpose of this work is to provide a comprehensive review of human action
recognition by emphasising two major categories (local and global representations), their
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evolution on each one and the current state-of-the-art methods employed to achieve a
high-level understanding of video image data in each category (Section 2). Additionally, we
present the reported results of several must-know methods in Section 4 with corresponding
datasets description (Section 3). Some insights about future directions are addressed in
Section 5, and finally a conclusion about the topic is given in Section 6.

2. Human Action Recognition

Video data have been in the scope of the computer vision community for decades,
resulting in multiple problems such as abnormal event detection [14], person re-identification [15],
action recognition [16], video retrieval [17] and many others have been proposed regarding
video representations. Human action recognition consists of the extraction of concise
features, from video image data, to achieve a high-level understanding allowing computers
to recognise human behaviour. Over the last decade, significant improvements were accom-
plished through the emerging deep learning models, distinguishing two categorizations in
terms of feature descriptors, local and global representations.

2.1. Local Representations

As previously discussed, local representations are composed of a collection of local
descriptors, which are sampled from space-time interest points, as observed in Figure 1.
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Figure 1. Extraction of local space-time cuboids at interest points in image sequences.

Inspired by the deep learning breakthroughs in the image domain, it is proposed
by Tran et al. [11] a spatio-temporal feature learning by using deep convolutional 3-
dimensional networks (3D ConvNets). Justified by its better extraction to model temporal
information [11,18–20] in comparison to the conventional deep 2-dimensional convolu-
tional networks (2D ConvNets), Tran et al. [11] also employed a deconvolution method [21]
to understand and visualise what C3D was learning internally. The difference between
those convolutional operations are illustrated in Figure 2, where the application of 2D con-
volution over an image and over multiple images (video image data) will output an image.
Therefore, using 2D ConvNets, most of the networks lose their input’s temporal signal after
every convolution operation. On the other hand, 3D convolution will better preserve the
temporal information, as it does not operate only spatially, but also temporarily, obtaining
an output volume as a result. 2D and 3D pooling operations employ the same phenomena.
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Figure 2. 2D and 3D convolution operations (adapted from the work in [11]).

As 3D ConvNets are being increasingly used for the extraction of human dynamics,
several variants have been introduced [22–26]. With the application of 3-dimensional con-
volutional networks, recent approaches had a general focus on combining multiple features,
apart from only images. Exploiting the use of optical flow, Carreira and Zisserman [10]
employed the Inception-v1 architecture [27] (CNN architecture with multiple size filters
operating at the same level) with ImageNet [28] as their backbone network. They improved
the 3D ConvNets performance by including an optical-flow stream. Moreover, also using
the Inception module [27], but this time only with RGB information, Wang et al. [25] ap-
plied an LSTM network [29] analysing the output features from the Inception 3D ConvNet
(I3D) to better model the temporal information. Due to the importance of the holistic view
in action recognition, Diba et al. [30] applied 3D ConvNets to extract temporal information
and merged a second stream of 2D ConvNets, also in order to extract its spatial structure in
the frame.

Despite the 3D ConvNets performance, there are still some competitive approaches
extracting the spatial and temporal information separately. Zhu et al. [31] proposed an
end-to-end trainable two-stage approach, where one stream is responsible for estimating
the well-known and powerful technique of optical flow, projecting its motion information
to a second network and analysing its temporal information to predict the action label.
Then, with a second stream, they extract the spatial information also to predict the action
label and applying a late fusion over the weighted average of the predictions scores from
both streams. Moreover, also achieving similar performance to 3D ConvNets, Lin et al. [32]
on top of a 2D ConvNet, proposed a temporal shift module (TSM), which shifts some parts
of the temporal channels in order to exchange information among adjacent frames (shifting
one-quarter of the channels due to the low performance and efficiency of a full shifting).
They introduced the unidirectional (online) shift that exchange temporal information from
the previous frames to the future frames, and also the bidirectional (offline) shift where
the mixing is applied in both past frames and future frames. Using ResNet-50 [33] as their
backbone network, they apply the temporal shift, from T frames, inside the residual block
and before the convolution operation, not affecting the spatial feature learning capability
as the activation information is the original.

Recently, motivated by 2D ConvNets, which remain solid performers in action recog-
nition, Tran et al. [12] factorised the 3D convolutional filters into separate spatial and
temporal components. This spatiotemporal decomposition, shown in Figure 3, splits the
computation into a spatial 2D convolution with a temporal 1D convolution afterwards.
In a simplified manner, this new convolution can be interpreted as the analysis of the
temporal information from t frames sequence with a kernel size of 1, after a conventional
2D convolution from one image. Moreover, also in the kernel factorisation paradigm,
Xie et al. [34] factorised, in some convolution filters, the Inception module [27] similar
to the (2 + 1)D block in Figure 3. This spatiotemporal kernel factorisation improved the
performance significantly over regular 3D ConvNets and inspired further developments
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on (2 + 1)D convolutions. Likewise, using the ResNet-50 [33] as the backbone network,
Qiu et al. [35] proposed three architecture variants, denominated as P3D, applying the
(2 + 1)D convolution inside the residual blocks: The first one in a cascade manner, sim-
ilar to Figure 3, where the two kinds of filters influence each other over the same path.
A second architecture, where the spatial and temporal filters are operated in a parallel
fashion, being directly accumulated at the end. Additionally, a third design is proposed,
where the spatial 2D filters are directly accumulated to the output of the block, and the
spatial filters influence the temporal 1D filters being also accumulated to the output. De-
spite the first proposal achieving higher accuracy, they also presented a complete version,
mixing all the three variants, achieving even higher accuracy. Furthermore, Qiu et al. [35]
applied DeepDraw [36], inside the P3D ResNet model, to visualise the class knowledge of
some categories.
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convolution followed by temporal 1D convolutions.

Under the local representation fashion, Qiu et al. [24] operated over local and global
diffusion (LGD) blocks, defined as a local and global path of feature extraction interacting
with each other, to capture better large-range dependencies. Their local path exploits the
P3D [35] as the local transformation, and the global path is obtained from a global average
pooling (GAP) of the local feature. Then, in the subsequent local layer, the global feature is
upsampled to formulate the global priority. Consequently, they are not only able to classify
the action in frame-wise manner, but also in a pixel-wise one by taking into account the
global view of the video clip, extracting the ROIs from the local feature, and performing
spatiotemporal action localisation.

The temporal global average pooling (TGAP) layer used at the end of almost all 3D
CNNs [11,12], extract the final temporal information’s richness. However, the prior features
from TGAP represent the different temporal regions of a clip, where some parts of the
temporal feature might be more important and beneficial than others, and taking its simple
averaging may not be the best choice. Therefore, Kalfaoglu et al. [37] proposed an attention
mechanism denoted as bidirectional encoder representations from transformers (BERT) [38],
which provided unprecedented success on natural language processing (NLP), here applied
for better temporal modelling. Composed of a positional encoding from the temporal
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features to preserve positional information, and applying a position-wise feedforward
network to learn a better subspace for the attention mechanism and classification. Their
BERT attention employing R(2+1)D [12] architecture is the current state-of-the-art in local
representations for action recognition (Section 4).

2.2. Global Representations

Taking into account the holistic view of the scene, which may include different ac-
tions simultaneously, the image representation is described as a global representation.
By capturing the motion information of the entire human subject, global representations
are richer and express better and more concise motion information. Although they are sus-
ceptible to noise, the current advances in human detector [39–42], human tracker [43–46],
and multi-person tracker [47–50] algorithms, make it easier to achieve high accuracy even
with occlusions, different viewpoints, or noise, as shown in Figure 4. Despite the object
detectors and trackers accuracy, they capture the information in a certain rectangle region,
which may introduce some noise and irrelevant information, not only from the human
appearance but also the cluttered background. Therefore, in order to take advantage of
those powerful algorithms, usually, some earlier feature extraction is required, rather than
using a raw input of person’s localisation for the extraction of human dynamics.

Figure 4. Multi-person tracking example employing the FAIRMOT tracker [50].

Following a region proposal network (RPN), Peng et al. [51] proposed a spatial RPN
analysing one frame and a motion RPN analysing the optical flow of its neighbouring
frames (flow of 5 frames). Their architecture was based on faster R-CNN [52] for region
proposals, and all the regions from both streams are fused before the ROI pooling layer.
Resorting to the single-shot multibox detector (SSD) framework [40], Kalogeiton et al. [53]
extend the anchor boxes to anchor cuboids over subsequent frames, extracting the 2D
convolutional features with shared weights between frames. Engaging 3D ConvNets,
Gu et al. [54] extract motion information through the analysis of two-streams, RGB frames
and optical flow of the clip with an Inception 3D ConvNet. They employed faster R-
CNN [52] for region proposals, applying ROI pooling on both branches of their network,
and average pooling is used at the feature map level to fuse them. Recognising human
dynamics as a regression problem, Köpüklü et al. [55] employed a 3D ResNext-101 [56]
to extract temporal information from a clip video and use a 2D-CNN branch on the most
recent frame of the clip to address the spatial localisation, stacking both resulting features
from the networks and following the same guidelines as YOLOv2 [57] for the bounding
box regression. Employing a progressive learning framework, Yang et al. [58], in order
to refine the cuboid proposals towards spatiotemporal action localisation, proposed a
multi-step optimisation process to refine initial proposals progressively. They used a two-
stream architecture for spatial refinement and temporal extent, where the spatial branch
performs bounding box regression at each frame, taking into account the temporal extent
in order to update the proposals regarding the cuboids extension through a 3D ConvNet.
Moreover, also analysing cuboids, Li et al. [59] presented an action tubelet (cuboid) detector,
denoted as a moving centre detector. Treating an action tubelet instance as a trajectory of
moving points, they employed a three-branch framework, where the centre branch detects
the action instance centre and classification. The movement branch estimates the offset
estimation in the current frame concerning its centre, and finally, the box branch predicts
the bounding box size over the predicted centre point. Feichtenhofer et al. [60] exploited
both spatial and temporal information through different frame rates over a two-stream
architecture. A fast and a slow pathway, where the fast one (high frame rate) will extract
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temporal information through a 3D ConvNet, and the slow one (at low frame rate) will
analyse only spatial information taking into account the temporal dynamics. Its slow
pathway is able to localise an action based on the fast pathway.

Nevertheless, commonly using object detectors and trackers as its foundation, one of
the most promising human representations is the extraction of multi-person pose estima-
tion [61–66], as shown in Figure 5. Human skeleton sequences have three distinguishing
characteristics: Starting with the existence of strong correlations between each node and
adjacent nodes, consequently, skeleton frames are rich in body structural information.
Second, its temporal continuity exists across frames within the same joints and also in the
body structure, and, last but not least, a co-occurrence relationship between spatial and
temporal domains is present in that kind of data. Furthermore, this technique overcomes all
appearance noises that human region proposals can contain, being modular, semantically
rich and very descriptive, and consequently, driving the learning process of the model
exclusively on human behaviour.
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work [64].

One of the earliest methods that explored skeleton data for action recognition was the
work by Junejo et al. [67], where they explored the self-similarity matrix (SSM), which is
computed by the distances between action representations of all pairs of time frames. They
claimed that the SSMs are approximately invariant under viewpoint changes, as illustrated
in Figure 6. Applying different types of features to compute the SSM, they concluded that
between the same feature type, the pattern similarity was effectively similar.
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provides the corresponding SSM yielding from the corresponding skeleton sequences (adapted from
the work in [68]).
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As a structured data type, some methods employed LSTM networks [29] to model the
time-series. Exploring this algorithm, Liu et al. [69] proposed to convert the pose estimated
to a tree structure in order to be unfolded as a sequence. Then, each LSTM unit is fed with
a skeletal joint, which also takes into account the neighbouring joints and previous frames
of the same joint. When analysing the human pose performing some actions in the real
world, usually some skeleton joints have more importance than others, paying different
attention to different regions of the scene [70]. Song et al. [71], in the same field of LSTM
networks, proposed to model skeleton joints in a selective way as an attention mechanism.
Composed of two attention networks, the spatial one assumes the weight of a joint (its
importance) as the resulting activations from the network, and the temporal attention one
uses the input gate of the LSTM network for learning to control the amount of information
(its importance) to be used, in each frame, for the final classification decision. In a similar
way, Zhang et al. [72] also proposed a recurrent neural network [73] with LSTM, but this
time they take into account the translation from global body movement (the whole body
dynamics in the scene) to local body posture (skeleton configuration upon the body centre
in the first frame). This way, it is possible to adapt its viewpoint in order to be a more
suitable observation for orientation alignment normalisation.

Even though skeleton pose estimation is a structured data type, several methods
approached the problem with 2D ConvNets [74–77]. Li et al. [77] proposed a two-stream
2D ConvNet: one to extract features from spatial coordinates of the pose in a 3D man-
ner (position, joints and frames) through a skeleton transformer module, which extracts
weighted interpolated joints matrix. On the other stream, they extract the skeleton motion
through computed distances between frames. Ke et al. [75] presented a new representation
for skeleton data, employing cylindrical coordinates generating a collection of clips which
are used as input to a CNN.

More recently, as an emerging topic in deep learning research, generalising neu-
ral networks towards structured graph data resulted in graph convolutional networks
(GCNs) [78–82]. Justified by its better extraction of concise features among graph struc-
tured data, GCNs have been in the scope of several works towards action recognition with
skeleton data [68,83–86]. Usually, a spatiotemporal graph convolution is defined as a set of
nodes and edges, where the nodes represent the skeleton joints and the edges denote the
connectivity between those joints intra-frame and inter-frame. Figure 7 illustrates a GCN
architecture example using skeleton data.

One of the first methods to develop a spatiotemporal GCN, for human behaviour
understanding, was the work by Yan et al. [86] where they presented three partition
strategies (neighboring). Uni-labelling gives the same vector weight to all neighbour
joints; however, they can lose the local differential over the skeleton sequence. Distance
Partitioning yields two weight vectors for the root node and the remaining neighbours,
extracting local differential properties. At last, spatial configuration partitioning, which
labels the nodes according to their distance from the gravity centre of the skeleton. Instead
of using undirected graphs, where the GCN will learn its connections by itself, Shi et al. [87]
proposed a directed GCN in order to model the dependencies of joints and bones in the
human body to extract local information better. Despite the effectiveness of considering
the skeleton joints dependencies, there must have flexibility, in order to the network extract
its own relevant dependencies from the skeleton features. Si et al. [88] proposed an LSTM
aggregated to a GCN with the purpose of better extracting its temporal information, which
they use for the selection of key joints in order to produce a soft attention mechanism.
Tang et al. [85] proposed a reinforcement learning [89] strategy combined with a GCN for
action recognition. Their agent is responsible for extracting the most informative frames
(keyframes) in order to feed the GCN more efficiently. With the applicability of the recent
technique of neural architecture search (NAS) [90], Peng et al. [91] proposed a dynamic
GCN, where its connectivity is built upon a search space based on node correlations,
achieving competitive results with its state-of-the-art approaches (Section 4).
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Figure 7. A spatiotemporal graph of a skeleton sequence. Light green dots represent the body joints
(graph nodes). Light blue edges illustrate the intra-body edges. The spatial graph convolution
receives as input a skeleton graph with its corresponding adjacency matrix to control the intra-
frame (spatial) convolution (red dotted line) from the root node (red joint) neighbourhood. Then,
1-dimensional convolution is performed on the same positional joints across consecutive frames,
resulting in the temporal (inter-frame) convolution.
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Figure 7. A spatiotemporal graph of a skeleton sequence. Light green dots represent the body joints
(graph nodes). Light blue edges illustrate the intra-body edges. The spatial graph convolution
receives as input a skeleton graph with its corresponding adjacency matrix to control the intra-
frame (spatial) convolution (red dotted line) from the root node (red joint) neighbourhood. Then,
1-dimensional convolution is performed on the same positional joints across consecutive frames,
resulting in the temporal (inter-frame) convolution.

Considering the evolution of deep convolutional neural networks, Hinton et al. [92]
introduced capsule networks as a new representation method that successfully overcame
the state-of-the-art in some problems. A set of neurons composes a capsule, where its
activity vector represents different features of a specific type of entity. A capsule network
follows a level hierarchy, where higher-level capsules will cover more extensive regions
of the image (more complex representations with more degrees of freedom) while in the
counterpart, the lower-level capsules will make predictions for smaller regions of the
image, with the rationale that when multiple low-level capsules achieve a prediction
consensus, a higher-level capsule will become active. Inspired by the advances in capsule
networks [93], Duarte et al. [94] proposed a capsule network analysing the 3-dimensional
data in order to achieve spatiotemporal action localisation. Following a masking procedure,
the capsule activations are set to 0, except for the capsule representing the ground truth
class, predicting the action localisation through the largest activation and feeding a fully-
connected network in order to extract a feature map for better localisation.

3. Datasets

The current benchmarks present a wide diversity of different controlled sequences,
environments and feature extraction exploration. This section will present the most popular
ones among their respective categories, where most of the popular state-of-the-art methods
(reported here) are competing. We divided the datasets corresponding to their respec-
tive evaluation protocol, such as frame-level (mostly employed by local representation
approaches) and pixel-level (mostly employed by global representation approaches).

3.1. Frame-Level Benchmarks

UCF-101 [95] consists of 13,320 realistic videos widely collected from Youtube, con-
taining 101 action classes with a wide diversity in intra-class and inter-class, and large
variations of camera motion, object scale, object appearance, cluttered backgrounds, view-
points, different illuminations. This dataset provides the frame-level ground-truth of the
actions from all videos and is one of the most popular benchmarks among the action
recognition methods at the frame-level.
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HMDB-51 [96] with 51 action categories, is composed of 7000 clips from Youtube
videos to digitised movies, where each class contains at least 101 videos, providing a great
diversity between action classes. This dataset provides the frame-level ground-truth of
the actions from all videos and is also one of the most popular datasets for evaluation at
the frame-level.

Kinetics-400 [97] has 400 human action classes, where each action has at least 400 video
samples from Youtube, and each video clip has a duration of 10 seconds. With great het-
erogeneity, this dataset provides the frame-level ground-truth of all videos’ actions. Being
a well-known dataset, the authors released two extended versions, the Kinetics-600 [98]
with 600 action categories, where each action has at least 600 clips, and very recently,
the Kinetics-700 [99] with 700 action classes, where each class has at least 700 videos.
However, the 400 version is currently the most popular one of these three versions.

The Sports-1M dataset [19] is currently the largest video dataset composed of 1,133,158
videos, which have been annotated automatically with 487 action categories at the video-
level, presenting an extreme diversity of sports videos. However, its availability is only
provided through individual video URLs, making it difficult to access the videos.

THUMOS’14 [100] consists of approximately 18,000 videos widely collected contain-
ing 101 action classes, providing its ground-truth labels at the frame-level. This dataset
has the peculiarity of providing only trimmed videos for the training phase, and methods
should be evaluated on untrimmed data over the validation and test set.

3.2. Pixel-Level Benchmarks

UCF-101-24 [95] is the second version of ground-truth labels from the original UCF-
101, where they provide the bounding box annotations of the humans present in the videos.
Although there are 101 classes, these pixel-level labels only represent 24 classes of them.
This dataset is one of the most popular benchmarks among action recognition methods at
the pixel-level.

J-HMDB-21 [101] is the second version of ground-truth annotations from the original
HMDB-51, where they provide the bounding box labels of the humans present in the
videos. These labels at the pixel-level represent 21 action categories from the original 51.
This benchmark is also one of the most popular datasets for evaluation at the pixel-level.

AVA [54] (atomic visual actions) is composed of 430 video clips (15 minutes each) from
different movies, containing 80 atomic visual actions. Following the same activity hierarchy
as previously mentioned (Section 1), the ground-truth labels (provided at the pixel-level)
of this dataset represent the atomic body movements or object manipulations at its lowest
possible level of natural descriptions, such as the pose action (sit, stand, run, etc.), object
interaction (if applicable, carry, write, ride etc.), and person-to-person (if applicable, talk to,
listen to, watch, etc.).

NTU RGB+D [102] consists of 56,880 video samples with 60 action classes. This
dataset was captured from highly restricted camera views providing 3D skeleton and
RGB-D data for each video sample. This benchmark was built for the purpose of exploring
the skeleton dynamics of the human body, not only for its estimation but also to recognise
the action performed, being one of the most popular for evaluation of skeleton-based action
recognition methods. A second version of this dataset was recently released, NTU RGB+D
120 [103], adding 60 classes and 57,600 video clips to the original version.

Kinetics-Skeleton [97] was introduced by skeleton-based action recognition methods,
ignited by the challenging diversity of the Kinetics-400 dataset, action recognition methods
based on skeleton data started employing multi-person pose estimators [61–63,65] in order
to extract its skeleton data to feed their models.

4. Evaluation Protocols and Quantitative Analysis for Action Recognition

In this section, we provide a performance comparison in Table 2 over a comprehensive
list of 18 must-know methods in each category addressed in this survey, which each
method was explained in Sections 2.1 and 2.2. The results are reported on six challenging
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benchmarks, being the most popular datasets for evaluation comparison among each
category. Likewise, the performance measures reported are the most typical ones for each
category approach. The accuracies are directly reported from the original works.

The evaluation protocol for local representation approaches is frame-level recognition,
reporting the Top-1 accuracy as the performance measure (the average accuracy regard-
ing the Top-1 class predicted by the model). For the global representation approaches,
the evaluation protocol performed for action recognition is pixel-wise, adopting as the
performance measure the mean average precision (mAP), which approximates the area
under the precision–recall curve for each individual action class. Additionally, we also
indicate the year of the method regarding when it was published.

Aside from the intra-representations performance evolution, we can observe a sig-
nificant difference between performances of local and global representations regarding
RGB-based datasets (UCF-101 [95], HMDB-51 [96], UCF-101 24 [95] and J-HMDB-21 [101]).
This is justified by the difficulty of the problem being solved. As described in Section 1
local representations are performing action recognition at the frame level, while global
representations are performing at the pixel level, which becomes far more challenging.
Despite skeleton-based methods working at the pixel level and achieving great perfor-
mance on NTU RGB-D [102], this dataset was obtained from highly restricted settings.
When applied to a more wild and challenging dataset, such as Kinetics-Skeleton [97],
a notable drop in performance is observed, which indicates an important limitation of
skeleton-based methods.

Table 2. Performance summary of some reference action recognition methods from both categories,
local and global representation approaches over their respective benchmarks in terms of accuracy
and mean average precision.

Method Year Top-1 Top-1

Lo
ca

lR
ep

re
se

nt
at

io
ns

UCF-101 HMDB-51

Slow Fusion [19] 2014 0.654 -

C3D [11] 2015 0.823 † -

TS-LSTM [104] 2019 0.943 0.690

H Two-stream I3D [31] 2018 0.971 0.787

R(2+1)D [12] 2018 0.973 † 0.787 †

HTNet [30] 2019 0.978 0.765

Two-stream I3D [10] 2017 0.979 0.802

R(2+1)D - BERT [37] 2020 0.987 0.851

Method Year mAP50 mAP50

G
lo

ba
lR

ep
re

se
nt

at
io

ns

UCF-101 24 J-HMDB-21

STEP [58] 2019 0.750 -

Faster R-CNN + I3D [54] 2018 0.763 0.733

MOC [59] 2020 0.780 † 0.708 †

VideoCapsuleNet [94] 2018 0.786 † 0.646 †

YOWO [55] 2019 0.804 † 0.757 †

NTU RGB-D Kinetics-S

ST-LSTM [69] 2016 0.755 -

ST-GCN [86] 2018 0.883 † 0.307 †

GCN-NAS [91] 2020 0.957 0.371

DGNN [87] 2019 0.961 0.369
† Reproduced applying the original’s author configuration to confirm the results reported. “-” Result is not
reported.
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5. Current Challenges, Trends, and Further Directions

Human understanding through video image data has been exponentially improved
since temporal information extraction through the emerging of 3-dimensional convolutional
networks. However, most of the current approaches employ multiple branches, analysing
different features to produce richer and more robust information. On the other hand, some
methods employ backbone networks for the initial feature extraction (temporal or regional),
dividing both training and inference process into a two-stage process each. Despite its
high effectiveness, the inference time its sacrificed, and most of the methods do not even
achieve a ten frame rate. This problem is relatively more serious for global representation
approaches, as they tend to predict multiple actions simultaneously. Therefore, some future
breakthroughs are required in order to develop unified architectures for action recognition,
which will significantly reduce the inference time, increase its speed, and make it easier for
embedded devices.

As previously discussed, the current benchmarks are very extensive, such as the
Sports-1M dataset, the AVA dataset, among others. Consequently, the video annotation pro-
cess becomes an extremely exhausting task concerning the unpredictable number of video
hours needed to successfully train a model. Therefore, there is a need for semi-supervised
and unsupervised learning algorithms towards the recognition of human actions. The prob-
lem resides in the high complexity of this family of algorithms, and without forgetting,
the increasing number of action classes becomes even more challenging due to the higher
overlapping between classes. This problem could be tackled by recognising simple basic
actions at first, such as walking, running, and jumping, not achieving a high-level of human
behaviour understanding as existing supervised methods, but it could be a starting point
to be improved in the future.

The human’s surrounding contextualization is regarded as the Achilles’ heel in under-
standing human behaviour. Considering the presence of objects in the scene (alongside
or being manipulated by humans), the extraction of spatial information concerning the
background clutter, and the interpretability of human interactions between multiple hu-
mans. There is a lack of focus in this direction as the complexity of the problem increases,
and current approaches are still improving the individual action recognition. However,
as a future direction, once a method achieves reasonable performance, those contextu-
alizations could be encoded through knowledge-based approaches or statistical models,
such as finite-state automatons and Markov models, where nodes or states would contain
information about the observed human behaviour and verification of detected objects
or background identification. Moreover, they could also be encoded through syntactic
approaches, such as grammars and dictionary algorithms, where activities (junction of
subsequent actions) are treated in a cascade manner. Therefore, achieving the highest level
of abstraction, as previously mentioned, identifying activities.

6. Conclusions

Over the last decade, deep learning had an evident impact on the improvements
towards action recognition. However, several conceptual breakthroughs would be needed
in order to achieve another exponential growth and overcome the current limitations.
In this paper, we provided an overview concerning human behaviour analysis, presenting
state-of-the-art techniques and must-know methods in this field. The explained concepts
and methods were divided into local and global representations to clarify their distinction
in solving similar challenges. Over the last years, those image representation approaches
were merged to extract even more concise features from video image data and achieve a
higher level of understanding from the observed scene’s behaviour.

Despite the maturity of visual recognition and perception of human actions, effective
deployment of this kind of technology in fully unconstrained scenarios is still far away.
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