
applied
sciences

Article

Design and Verification of Multi-Agent Systems with the Use
of Bigraphs

Piotr Cybulski * and Zbigniew Zieliński

����������
�������

Citation: Cybulski, P.; Zieliński, Z.

Design and Verification of Multi-

Agent Systems with the Use of

Bigraphs. Appl. Sci. 2021, 11, 8291.

https://doi.org/10.3390/app11188291

Academic Editors: Paola Pellegrini,

António Paulo Moreira, Pedro Neto

and Félix Vilariño

Received: 2 August 2021

Accepted: 2 September 2021

Published: 7 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Cybernetics, Military University of Technology, ul. gen. S. Kaliskiego 2, 00-908 Warsaw, Poland;
zbigniew.zielinski@wat.edu.pl
* Correspondence: piotr.cybulski@wat.edu.pl

Featured Application: Rapid development of behavior policies for agents in a controlled envi-
ronment.

Abstract: Widespread access to low-cost, high computing power allows for increased computeri-
zation of everyday life. However, high-performance computers alone cannot meet the demands
of systems such as the Internet of Things or multi-agent robotic systems. For this reason, modern
design methods are needed to develop new and extend existing projects. Because of high interest
in this subject, many methodologies for designing the aforementioned systems have been devel-
oped. None of them, however, can be considered the default one to which others are compared to.
Any useful methodology must provide some tools, versatility, and capability to verify its results.
This paper presents an algorithm for verifying the correctness of multi-agent systems modeled as
tracking bigraphical reactive systems and checking whether a behavior policy for the agents meets
non-functional requirements. Memory complexity of methods used to construct behavior policies
is also discussed, and a few ways to reduce it are proposed. Detailed examples of algorithm usage
have been presented involving non-functional requirements regarding time and safety of behavior
policy execution.

Keywords: multi-agent systems; bigraphs; design; verification; modeling; non-functional requirements

1. Introduction

With the increase of computational power and its availability comes the desire to
incorporate it more into our daily life. Current ideas on how to do this include the Internet
of Things, multi-agent systems (in which particular cases are swarms of robots), or smart
objects and places (e.g., cities, homes, cars). All of them require new ways to design
large-scale (i.e., consisting of a significant number of elements) software and physical
systems that consider both how individual components interact and how a system as a
whole works. There are various unresolved problems related to this. There is no consensus
on what elements of the real world should be modeled and which of their capabilities
should be taken into account in general. What is worse, among different design methods
elements of the real world are used differently. Finally, the results of these methods are
often incomparable, or at least, there is no common way to evaluate multi-agent system
design methods. Regardless, any method for designing complex systems must offer a
specific range of capabilities to be considered useful.

The concept of agent is applied to entities that have autonomy and are placed in a
changing environment. Multi-agent systems [1,2] are structures within which agents can
be identified. One of the advantages of designs using agents is that they can be represented
at different levels of detail, from abstract entities (like mathematical structures) to actual
robots. For this reason, among others, the concept of multi-agent system is used in various
contexts. This term may be used to characterize a group of machine learning methods [3,4].

Appl. Sci. 2021, 11, 8291. https://doi.org/10.3390/app11188291 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9465-2373
https://orcid.org/0000-0001-5129-0448
https://doi.org/10.3390/app11188291
https://doi.org/10.3390/app11188291
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11188291
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11188291?type=check_update&version=2

Appl. Sci. 2021, 11, 8291 2 of 35

It can also be used to highlight attributes of certain models and simulation approaches [5–7].
The term also refers to a subgroup of robotics solutions [8–11] that make use of widely
understood autonomous robots to perform assigned tasks. In this work, we will focus
on multi-agent robotic systems (MARS). The literature [12–16] is replete with examples
of various applications of multi-agent robotic systems. There are also methodologies
and tools [10,17] to design such systems. There is no consensus on how to design such
systems in general and current solutions come from different areas of science. The most
common paradigms used to design MARS include software design patterns [16], control
theory [12,13], optimization theory or combinations of the above [15]. Some examples are
utilizing mathematical logic in MARS design [18], but they are much less common. Due
to the lack of agreement on how to design MARS and the fact that results produced by
different methodologies are difficult to compare, we will try to evaluate them based on
their capabilities. In this paper, we will be interested not so much in how to design MARS
but rather how the following questions can be answered about an existing project:

• Is the project correctly designed? We want to assure the syntactic correctness, i.e.,
the correct use of formal tools such as mathematical logic, differential equations, or
pi-calculus. We also care about semantic correctness, i.e., the ability to transform a
formal model into a real solution (implementable on robots).

• How does one perform a simulation illustrating MAS operation?
• Have non-functional requirements been met? Those regarding safety and speed of

task execution in particular.

Verifying the correctness of a model is the simplest and most solutions can be verified
using the tools they were made with. Verifying whether a designed system accomplishes a
given task is much more difficult. The vast majority of methodologies in the literature use
simulation for this purpose. Exceptions can be found among models that highly formalize
the internals of agents, how they operate, and the course of a task itself. Verification
by simulation also gets complicated as the model becomes more abstract. The simplest
designs in this regard are those based on methods commonly used in other areas of science
(such as differential equations or graph theory) or made using tools integrated with a
simulator. Verification of non-functional requirements is a difficult part of the design.
Methodologies commonly found in the literature such as RE4Gaia [19], TROPOS [20],
DIAMOND [21], or Adelfe [22] take into account non-functional requirements during
design process. They usually aim to enable design of multi-agent systems in general (not
just multi-agent robotic systems). Successive stages in most of these methodologies are
not closely coupled together. By loosely coupled process, we understand a design process
where a designer’s interpretation of how the system works plays a significant role the
whole time. In other words, one cannot treat the results of one stage as an input that the
next stage will automatically transform into a form acceptable by yet another stage. When
it comes to verification of system requirements, it should be noted that none of the above
methodologies offer formal guarantees regarding the system’s functionality as the methods
dedicated to specific tasks do. An example of a such method can be found in [13] where a
formal guarantee is given for robots to move keeping at least a specified distance from each
other (an example of a non-functional requirement). In [12] a guarantee of fulfillment of
functional requirements is presented where a task is guaranteed to be carried out if certain
conditions are satisfied.

Using bigraphs [23] to design multi-agent systems is a relatively new approach to modeling
this kind of system. The bigraph theory was published by Robin Milner in 2008 but has already
been extended with a notion of overlapping locations [24] and probability [25]. Bigraphs are
currently found useful in areas such as system of systems design [26], IoT [27], and wireless
network modeling [28]. Currently, there are a few tools that support modeling systems with
bigraphs, the most notable of them are Bigraphical Model Checker [29] (discontinued), Bigraph
Framework for Java [30], and BigraphER [31]. The first two of them focus on checking the
reachability of certain states of a system [29,31]. At the same time, the last one provides
means to analyze various aspects of a modeled system (especially useful in this regard is

Appl. Sci. 2021, 11, 8291 3 of 35

underlying OCaml library bigraph). We believe that BigprahER [31] provides the most advanced
set of utilities to model systems with bigraphs available at the moment. Multi-agent systems
design methodologies [32,33] involving bigraphs are scarce, and most of them do not consider
generating behavior policies based on a constructed model. As an exception to this, one may
point out BigActor methodology described in [34] that uses bigraphs mixed with the notion of
actors [35] or our methodology [36] based on bigraphs with tracking.

In [36] we have proposed a methodology based on bigraphs with tracking [23] that
enables design of multi-agent systems. We have chosen tracking bigraphs primarily be-
cause they allow for analysis of objects’ activities over time without introducing another
layer of abstraction (as it was done, for example, in [34]). Our methodology is devoid of
some of the drawbacks we mentioned earlier, such as loose coupling between design stages
or the designer’s interpretation of systems internals on all stages of the design process.
Moreover, successive stages of the methodology are module-like which means their im-
plementations can be adjusted to project needs. The methodology’s main disadvantages
are high computational complexity, limitation of system’s agents to entities that can be
fully controlled, and the fact that the operation of a designed system is determined before
it is started. It also does not offer universal guarantees of task successful completion as
presented in [12,13,18]. Putting our work in a broader context, we can place our method-
ology in a group of bottom-up [37] methods of MAS design with a note that it focuses
on global goals rather than individual ones. In fact, agents in our approach do not have
preferences that can affect their actions. A distinguishing feature of our proposition is the
lack of abstractions outside the bigraphs framework, typically agents’ internal mechanics
are modeled with BDI (Belief, Desire, and Intention) [32,38] or actors [34].

This work is an extension of the methodology proposed in [36]. This paper aims
to demonstrate how to verify the correctness of a design, check the fulfillment of non-
functional requirements, and visualize behavior policies. We have developed an algorithm
to automatically verify the correctness of a model and construct successive simulation
states. We also described how to verify whether non-functional requirements are satisfied
by a behavior policy for agents in the system. An example implementation [39] of the
algorithm has been prepared. We also addressed the memory complexity of operations
performed during behavior policy generation. We discussed how it influences the feasibility
of projects and suggested a few ways to reduce the memory complexity. Finally, a tool [40]
has been implemented that incorporates all of the mentioned memory complexity reduction
strategies and a tool [41] to illustrate constructed behavior policies.

2. Methods and Materials

In this section, we will introduce all terms and definitions that are necessary to
understand examples presented in Section 3. Section 2.1 is devoted to basic informal
definitions that will be used throughout the rest of this article. Sections 2.2–2.4 aim to
quickly acquaint the reader with the methodology described in detail in [36] and for that
reason micro-examples are included at the end of each of these subsections. Section 2.5 is
dedicated to an algorithm for verification and visualization of behavior policies. Since the
algorithm is the key of this article, examples of its usage are presented in Section 3.

2.1. Basic Concepts

Before formal definitions, we will introduce the following concepts:

• Task—A collection of objects from the real world along with the actions they can
perform, the initial state, and the target-desired (final) state(s). An example of a task
might be:
“In an area that is a 3 × 3 grid, there are two robots in opposite (diagonally) cells. Each
robot can move to vertically and horizontally adjacent cells and connect to a second
robot if both are in the same cell. The goal of the task is for both robots to connect
with each other.”

• Mission—a realization of a task.

Appl. Sci. 2021, 11, 8291 4 of 35

• Task element—a real-world entity that is relevant to the subject matter being modeled.
Elements can be people, robots, areas, data sources, and receivers, etc.

• Passive object—a task element that can participate in activities without initializing
them. It may contain other passive objects. We are not interested in their behavior, but
we take into account the passage of time for them. The number of passive objects is
constant during a mission.

• Active object (agent)—a task element that can participate in activities by initializing
them. It can contain other active and passive objects. We are interested in their
behavior, and we take into account the passage of time for them. We can control them.
It is assumed that the number of agents during a mission is constant.

• Environment—a task element that can participate in activities without initializing
them. It can contain passive and active objects and be owned by at most one other
object. We are not interested in its behavior, and do not consider the passage of time
for it.

• Behavior Policy—A set of planned actions for all agents that meets the
following requirements:

– Implementing a behavioral policy solves a given task;
– All agents start the mission at the same time;
– Agents can complete a mission at different points in time;
– All agent activities must be performed continuously (without time gaps);
– All agents that participate in a cooperative activity must start performing it at

the same moment.

• Scenario—Mission using a specific behavioral policy.

2.2. Bigraphs

Through this article we will extensively use bigraphs, concrete bigraphs to be precise.
Concrete bigraphs allow identifying its nodes and edges with support (more about that
later). In contrast, abstract bigraphs lack the mentioned identifiers. In the rest of this article,
whenever we refer to a bigraph, we will have a concrete bigraph in mind. A bigraph
consists of two graphs: a place graph and a link graph. Place graph is intended to model
spatial relations between system elements. A link graph is a hypergraph that can be used
to model interlinking between the elements.

Formally a bigraph is defined as:

B = (VB, EB, ctrlB, GP
B , GL

B) : I → O

• VB—a set of vertices identifiers;
• EB—a set of hyperedges identifiers. A union of both of these sets makes the

bigraph support;
• ctrlB : VB → K—a function assigning a control type to vertices. K denotes a set of

control types and is called a signature of the bigraph;
• GP

B = 〈VB, ctrlB, prntB〉 : m → n and GL
B = 〈VB, EB, ctrlB, linkB〉 : X → Y denote a

place and a link graph respectively. A prntB function defines hierarchical relations
between vertices, roots, and sites. A linkB function defines linking between vertices
and hyperedges in the link graph;

• I = 〈m, X〉 and O = 〈n, Y〉 denotes the inner face and outer face of the bigraph B. By
m, n we will denote sets of preceding ordinals of the form: m = {0, . . . , m− 1}. Sets X
and Y represent inner and outer names respectively. When any of the elements of an
interface is omitted it means it is either equal to 0 (when interface lacks an ordinal) or
it is empty (when there is no set of names). For example, interface I = m means it has
no inner names.

An example of graphical representation of a bigraph is presented in Figure 1.

Appl. Sci. 2021, 11, 8291 5 of 35

(a)

(b)
Figure 1. An example of a bigraph and its constituents. The right part represents a place graph (the
upper part of the figure) and a link graph (the lower part of the figure). They share a signature which
defines control types (letters in nodes) and arity of each control (number of unique links that can be
connected to a node with specified control). Ports and inner names can be attached to either edges or
outer names, that is why there are only three edge identifiers in the link graph. On the left there is the
bigraph made from the superposition of them both. (a) A bigraph. (b) A place graph and a link graph.

Reaction rules are used to model dynamics in bigraphical systems. In this paper, we
will use (simplified) tracking reaction rules. Reaction rule consists of a pattern (redex) to be
found in an input bigraph that shall be replaced with another bigraph (reactum).

Formally, a tracking reaction rule is a quadruple:

(Bredex : m→ O, Breactum : m′ → O, η, τ)

where:

• Bredex—a bigraph called redex;
• Breactum—a bigraph called reactum;
• η : m′ → m—a map between sites from reactum to sites in redex;
• τ : Vreactum → Vredex—a map of reactum’s node identifiers onto redex’s node identi-

fiers. It allows one to indicate which elements of an input bigraph are “residues” in
an output bigraph.

Bigraphical Reactive System (BRS) is a tuple (B,R) where B denotes a set of bigraphs
with empty inner face andR is a set of reaction rules defined over B. IfR consists of rules
with tracking then a pair (B,R) makes a Tracking Bigraphical Reactive System (TBRS).

Having a TBRS we can generate a Tracking Transition System (TTS). A Tracking
Transition System is a 7-tuple: LT = (Agt, Red, Lab, Apl, Par, Res, Tra) where:

• Agt—a set of bigraphs;

Appl. Sci. 2021, 11, 8291 6 of 35

• Red—a set of redexes used to construct the TTS;
• Lab—a set of labels;
• Apl ⊆ Agt× Lab—an applicability relation;
• Par : VVb

r r ∈ Red, b ∈ Agt—a participation function. It indicates which vertices in
an input bigraph correspond to elements in the redex of a transition;

• Res : V
Vb2
b1

b1, b2 ∈ Agt—a residue function. It maps vertices in an output bigraph
that are residue of an input bigraph to the vertices in the input bigraph;

• Tra ⊆ Apl × Agt× Par× Res—a transition relation.

As we said at the beginning of this section, we will use a simple example to illustrate
how the formal definitions can be used in practice. The system for our example consists
of two areas and two agents (we do not care whether they are humans, robots, or other
autonomous entities). Areas will be denoted by controls A and B while agents will be
represented with controls U. We assume that agents can move from an area of type A to an
area of type B in two ways, which differ in execution speed. Thus Tracking Bigraphical
Reactive System of the system above consists of three bigraphs and two reaction rules. The
elements of B set are described in Table 1 and the reaction rules are defined in Table 2. The
Tracking Transition System of this TBRS is defined in Table 3.

Table 1. Elements of the B set for the introductory example.

Graphical Representation Name Description

s0 The initial state of the system.

s1 The state where only one of the
agents has moved to the B area.

s2 The state where both agents has
moved to the B area.

Table 2. Elements of the R set for the introductory example. The η function for the first rule and
both τ functions are identities. The first rule represents an action that allows a single agent to move
between areas. The second rule is for an action where two agents move both at once. The second rule
is only reasonable if underlying mechanism differs to that of the first rule.

Graphical Representation Name

r1

r2

Appl. Sci. 2021, 11, 8291 7 of 35

Table 3. The Tracking Transition System for the introductory example. Each row defines a single
transition in the system.

Apl Agt Par Res

〈s0, r1〉 s1 {(0, 0), (1, 1), (3, 2)} {(0, 0), (1, 2), (2, 3), (3, 1)}
〈s0, r1〉 s1 {(0, 0), (2, 1), (3, 2)} {(0, 0), (1, 1), (2, 3), (3, 2)}
〈s0, r2〉 s2 {(0, 0), (1, 1), (2, 2), (3, 3)} {(0, 0), (1, 3), (2, 1), (3, 2)}
〈s1, r1〉 s2 {(0, 0), (1, 1), (2, 2)} {(0, 0), (1, 2), (2, 3), (3, 1)}

2.3. State Space

Having a Tracking Transition System we can transform it into a state space of the
modeled system. A state space can be later used to generate a behavior policy for agents
(as defined in Section 2.1) in the system.

We assume the following about modeled systems:

1. A number of passive and active objects is constant during whole mission;
2. A system cannot change its state without an explicit action of an agent (alone or in

cooperation with other agents);
3. No actions performed by agents are subject to uncertainty;
4. A mission can end for each agent separately in different moments. In other words,

agents do not have to finish their part of the mission all at the same time;
5. In case of actions involving multiple objects (whether these are active or passive), it is

required of all participants to start cooperation at the same moment.

A state space SS of a system consisting of no objects and ns states is defined as:

SS = (S, E, L, I, C, T, M f)

where:

• S ⊂ N—a set of states in the state space. It corresponds to bigraphs in the Tracking
Transition System;

• E ⊆ S× S—a multiset of ordered pairs of states. Elements in this set are directed
edges representing transition relations between states;

• L—a set of labels of changes in the system. It will usually consist of reaction rule names
from the Tracking Transition System the state space originated from. To determine
what changes, in what order, have led to a specific state we will additionally introduce
set H = {lt|l ∈ L, t ∈ N}. Elements of the H set indicate what action (label) took place
in what order (index value).

• I = {N2
1 × · · · × N2

na}—a set of possible state-at-time (SAT) configurations. The
interpretation of elements in such a set is as follows. The first element in each of inner
tuples denotes id of an object (either passive or active) in the system. The second
element in each inner tuple is meant to represent time at which the object specified
by the id is at. For example, for no = 2 the element ix = 〈(1, 777), (2, 123)〉 denotes a
situation where the object with id 1 is at the moment 777 while the object with id 2 is
at the moment 123.

• C = (I × 2H) ∪ {0}—a set of possible mission courses. 0 denotes the neutral element,
i.e., ∀x∈Cx + 0 = 0 + x = x. For the rest of the elements of C set the + symbol serves
only as an associative conjunction operator and does not denote any meaningful
operation. In other words for the rest of the elements the following formula is true:
∀x,y∈C\{0}x + y = y + x.

• T = { fi : C × N → C|i ∈ N} ∪ { fnull}—a set of functions defining progress of a
mission. The fnull function returns 0 regardless of input. Additionally, we will denote
by Ti,j ⊂ T a set of all mission progress functions from the i state to the j state.

• M f : E→ T—a bijective mapping of edges to mission progress functions.

Appl. Sci. 2021, 11, 8291 8 of 35

Going back to our introductory example, we will now convert the Tracking Transition
System from Table 3 into a state space of the system. We will not define all of the formal
elements and rather focus on the key ones. The S consists of three elements S = {0, 1, 2}
that correspond to bigraphs s0,s1 and s2 respectively. The L consists of two elements that
correspond to reaction rules in TBRS i.e., L = {r1, r2}. Knowing that there are only two
agents in the system (so there are two objects in total) elements of the set I will be of
the form 〈〈i1, x〉, 〈i2, y〉〉. The elements i1, i2 of a tuple correspond to identifiers of objects
(in this case i1, i2 ∈ {1, 2}) and x and y elements indicate a moment of time at which
each object is at. We will clarify how to utilize the C set in the next subsection. As it
was mentioned earlier, the action represented by the r1 reaction rule takes 2 units of time
while the r2 reaction takes only 1 unit of time. How these values are obtained depends
on a project and may be subject to many factors such as resolution of time need to be
considered (whether these are minutes, seconds or hours) or variability (or lack thereof) of
time needed to execute actions represented by reaction rules. Knowing this, the elements
of the T set are listed in Table 4. Subsequent elements of this set correspond to transitions
in TTS. The permutation being a result of application of a transition function corresponds
to permutation of vertices corresponding to objects in res function. It is also worth noting
that f3 function requires both agents to be at the same time (variable z) in order to return
something other than 0.

Table 4. Mission progress function definitions for the state space presented in Figure 2. The action
represented by r1 reaction rule is assumed to take 2 units of time while the action r2 takes only 1 unit
of time.

Function Function Definition

f1 f1(c, t) =

{
[〈(b, y), (a, x + 2)〉, H′ ∪ {r1t+1}] : c = [〈(a, x), (b, y)〉, H′]

0 : c = 0

f2 f2(c, t) =

{
[〈(a, x), (b, y + 2)〉, H′ ∪ {r1t+1}] : c = [〈(a, x), (b, y)〉, H′]

0 : c = 0

f3 f3(c, t) =

{
[〈(a, z + 1), (b, z + 1)〉, H′ ∪ {r2t+1}] : c = [〈(a, z), (b, z)〉, H′]

0 : c 6= [〈(a, z), (b, z)〉, H′]

f4 f4(c, t) =

{
[〈(b, y), (a, x + 2)〉, H′ ∪ {r1t+1}] : c = [〈(a, x), (b, y)〉, H′]

0 : c = 0

Figure 2. The state space generated from Tracking Transition System defined in Table 3. Mission
progress functions definitions are defined in Table 4.

2.4. Behavior Policy

We define a behavior policy as a schedule of actions for each object from the beginning
of a mission to its end that meets all the requirements listed in Section 2.1.

Appl. Sci. 2021, 11, 8291 9 of 35

Having a state space, we can view a behavior policy as a walk (in graph theory sense)
indicating what changes (and who did them) are required in order to reach a desired state.

To construct a proper policy behavior based on a state space, we need to define the
following elements. Please note that by series we will understand a finite sum of elements.

• Kt
s = c1 + · · ·+ cm = ∑i=1···m ci ci ∈ C, s ∈ {0, · · · , ns − 1}, t ∈ N—a series, where

summands are mission courses leading to the state s;
• NK(Kt

s) ∈ N—a function returning a number of elements in a given series. According
to the earlier definition, for any series Kt

s this function returns a value of m (the greatest
index of ci);

• Fi,j(x, t) = ∑k∈Ti,j
fk(x, t) i, j ∈ {0, · · · , ns − 1}, t ∈ N—a series, whose summands

are mission progress functions from the i to the j state;
• Mt

K =
[
Kt

0 · · · Kt
ns−1

]
, t ∈ N—a matrix whose elements are series indicating pos-

sible walks leading to each state. Index t denotes a number of steps made in a state
space. By a step we understand a transition between vertices (including the situation
where traversal does not change the vertex);

• Mt
F =

F0,0(x, t) · · · F0,ns−1(x, t)
· · · · · · · · ·

Fns ,0(x, t) · · · Fns−1,ns−1(x, t)

—a matrix of transitions between states.

Furthermore, we define two operations:

• Kt
s ◦ Fi,j(x, t) = ∑k∈Ti,j ∑l=1···NK(Kt

s)
fk(cl , t)—a convolution of the series defined above;

• Mt+1
K = Mt

K ·Mt
F—a multiplication of the matrices defined above. Elements of the

new matrix are defined by the formula:

Kt+1
s =

ns−1

∑
k=0

Kt
k ◦ Fk,s(x, t)

In order to generate all walks consisting of a specified number of steps from an
initial state to a final state one must define the initial state, as a M0

K matrix and multiply
subsequent results by Mi

F the specified number of times. The result will be a Mx
K matrix,

whose summands in the ith column will indicate all possible walks with x steps that end in
the ith state of the state space. If the element in the specified column is equal to 0, it means
there is no such walk.

Summarizing our introductory example, we will demonstrate how to use the state
space from Figure 2 with transition functions definitions listed in Table 4 to determine all
sequences of actions that lead to the state denoted as s2. Each sequence is equivalent to
behavior policy that, when applied, results in moving both agents to the area of type B.

To determine such sequences, we create two matrices, a matrix of transitions Mt
F and

matrix of initial state M0
K. Having both of them, we can multiply subsequent Mt

K matrices
by corresponding Mt

F matrices and check whether the third state (recall that numbering
starts from 0) is reachable. By reachable, we understand having a value other than 0 in the
specified column of the Mt

K matrix.
Definitions of both matrices are listed below:

Mt
F =

fnull f1 + f2 f3
fnull fnull f4
fnull fnull fnull

M0
K =

[
[〈(1, 0), (2, 0)〉, ∅] 0 0

]

The 〈(1, 0), (2, 0)〉 tuple in the first column of M0
K matrix denotes that we have two ob-

jects. The zeros in both tuples indicate that each object starts the mission at the same moment.
Subsequent Mt

K matrices allow us to determine how a system changes when a specified
number of actions occur. For example, M1

K gives us information about how the system
evolves when one action occurs (analogously M2

K for two actions etc.).

Appl. Sci. 2021, 11, 8291 10 of 35

In our example M1
K and M2

K are of the form:

M1
K = M0

K ·M0
F =

[
[〈(1, 0), (2, 0)〉, ∅] 0 0

]
·

fnull(c, 0) f1(c, 0) + f2(c, 0) f3(c, 0)
fnull(c, 0) fnull(c, 0) f4(c, 0)
fnull(c, 0) fnull(c, 0) fnull(c, 0)

M1
K =

[
0 [〈(2, 0), (1, 2)〉, {r11}] + [〈(1, 0), (2, 2)〉, {r11}] [〈(1, 1), (2, 1)〉, {r21}]

]

M2
K = M1

K ·M1
F = M1

K ·

fnull(c, 1) f1(c, 1) + f2(c, 1) f3(c, 1)
fnull(c, 1) fnull(c, 1) f4(c, 1)
fnull(c, 1) fnull(c, 1) fnull(c, 1)

M2
K =

[
0 0 [〈(1, 2), (2, 2)〉, {r11, r12}] + [〈(2, 2), (1, 2)〉, {r11, r12}]

]

The interpretation of each of the above Mt
K matrices is as follows. The M1

K matrix
indicates that with just one action there are two ways for the system to be in the state where
one of the agents move to the area of type B and the other one will not take any action
(as it is pointed out by the fact that its time is equal to 0). Both ways require specified
agent to carry out the action represented by the r1 rule. The same matrix also gives us
information that with one action there is a possibility to reach s2 state if both agents engage
in cooperative execution of r2 rule. Finally, the M2

K points out two walks in the state space
that lead to the s2 state. Both involve performing the action associated with r1 rule two
times (each time by a different agent).

It is worth pointing out that in a software implementation of the above algorithm
labels should denote specific transition functions rather than reaction rules. While for
this particular example it was sufficient to indicate what “kind” of changes (i.e., reaction
rules) need to occur in the system for automated generation of behavior policies it is
necessary to distinguish exactly what transformation (including who participated in a
specific transformation) is required.

For more detailed examples we refer to [36].

2.5. Verification and Visualization of Behavior Policies

Below we will describe the algorithm to verify and illustrate the behavior policy. It
consists of 4 phases. At the beginning of the discussion about each phase formal elements
not introduced so far will be defined. Subsequent phases will be discussed so that newly
introduced definitions will be directly used in the discussed phase. A diagram of rela-
tionships between phases is presented in Figure 3, from which it can be seen that the
implementation of all the other phases is necessary for the execution of Phase 1. In contrast,
Phases 4 and 2 are independent of the others.

Figure 3. Diagram of relationships between phases of the algorithm. The direction of an arrow
indicates the phase required by the phase from which the arrow emerges.

Appl. Sci. 2021, 11, 8291 11 of 35

2.5.1. Phase 4—Applying a Single Transformation to Constructed State and Checking
Correctness Beforehand

Phase 4 of the algorithm is responsible for verifying the correctness of the model and
for expanding the scenario’s state at a particular point in time.

Input:

• A currently constructed state—a bigraph;
• A map of unique identifiers to vertices of the currently constructed state (a bijection);
• The reaction rule to be applied to the constructed state;
• A map of unique identifiers to rule’s redex vertices (bijection);
• State at the previous moment in time—a bigraph;
• A mapping of unique identifiers to state vertices at a previous point in time;
• First new unique identifier—used when a new task element appears after a transformation.

Output:

1. Option 1—the model is correct:

• Newly constructed state—bigraph;
• Mapping of unique identifiers to vertices of the newly constructed state;
• First new unique identifier.

2. Option 2—the model is incorrect:

• Information about the failed transformation. Whether the given reaction rule
could not be applied to the state at the previous point in time or to the currently
constructed state (given the mappings of unique identifiers to vertices).

Formal definitions:

• X ⊆ N—a set of unique identifiers (UIs) of task elements; It is used to track the
environment and objects involved between system transformations. The idea behind
this set is to assign to each task element a unique identifier, which makes it possible to
check whether the task elements marked as taking part in a reaction rule are present
in a given scenario state. The reaction rules themselves allow only to check whether
alike (rather than the same) elements exist in both a reaction rule and a bigraph.

• CorrRed : R → Red—a function that assigns reaction rules to their corresponding redexes;
• Mx ⊂ XVb b ∈ Agt ∪ Red—a set of functions assigning unique identifiers to elements

of the support of a bigraph, which is either a scenario state or a redex of a reaction rule;
• IsUpdatePossible : Agt × Mx × Red × Mx → {true, f alse}—a function that deter-

mines whether it is possible to apply a reaction rule to a given state, taking into
account the mapping of the UIs to the state’s vertices and the mapping of the UIs to
the redex vertices of that rule;

• Update : Agt×Mx ×R×Mx × X → Agt×Mx × X—a function that transforms the
current state.

The flowchart of the Phase 4 algorithm is shown in Scheme 1. The input arguments of
this algorithm and its results are described in Tables 5 and 6 respectively.

Table 5. Input data for the Phase 4 algorithm.

Variable Description

s ∈ Agt Currently constructed scenario state
ms ∈ M Mapping of UIs to vertices of currently constructed state s
r ∈ R Reaction rule
mr ∈ Mx Mapping of UIs to redex r vertices
s0 ∈ Agt State at the previous moment in time
m0 ∈ Mx Mapping of UIs to vertices of s0
nx ∈ X The first new UI

Appl. Sci. 2021, 11, 8291 12 of 35

Table 6. Output data of the Phase 4 algorithm.

Variable Description

ress ∈ Agt Constructed state extended by application of the provided reaction rule
resm ∈ Mx Mapping of UIs to the vertices of ress
resx ∈ X The first new UI

Start

rl = CorrRed(r)

c1 = IsUpdatePossible(s0, m0, rl , mr)

c1 = true? End—error (previous state)

c2 = IsUpdatePossible(s, ms, rl , mr)

c2 = true? End—error (current state)

ress, resm, resx = Update(s, ms, r, mr, nx)

End—ok

yes

no

yes

no

Scheme 1. Flowchart of the Phase 4 algorithm. The purpose of this phase is to check if a reaction rule
extended by a map of unique identifiers to its vertices can be applied to the scenario state for the
previous moment in time and the currently constructed one. If it is impossible to perform either of
the mentioned operations it means that the model is incorrectly constructed. If both operations are
feasible, the currently constructed state is modified based on the given reaction rule and the map of
unique identifiers to its vertices.

2.5.2. Phase 3—Constructing Scenario State at a Given Moment of Time

Phase 3 of the algorithm is responsible for constructing the state of the scenario at a
given point in time.

Input:

• State at the previous moment in time—bigraph;
• A map of unique identifiers to state elements at the previous moment in time;

Appl. Sci. 2021, 11, 8291 13 of 35

• A set of walk elements combined with a UIs mapping to the vertices of the redex of the
reaction rule associated with this walk element, a UIs mapping to the vertices of the
input state and the smallest new UI from which new task elements will be numbered.

• A linear order relation defined on the above set;
• State-At-Time configuration of the system at the previous moment in time;
• A moment of time for which the system state is constructed;
• Number of objects.

Output:

1. Option 1—the model is correct:

• A subset of the walk elements (given as input) that have not been used to
construct the state at the given point in time;

• State at the given moment in time;
• Mapping of unique identifiers to state elements at the given point in time;
• State-at-time configuration at the set point in time.

2. Option 2—the model is incorrect:

• A currently constructed state with its UIs mapping that could not be transformed
(if it is the cause of the Phase 4 error);

• The state from the previous moment in time with its UIs mapping that could not
be transformed (if it is the cause of the Phase 4 error);

• Reaction rule with UIs mapping to its redex vertices, which was not success-
fully applied.

Formal definitions:

• A ⊂ 2N—A collection of sets of mission object identifiers. The same identifiers are
used in SAT configurations

• WM ⊂ N× T ×Mx ×Mx × X× (A×N)—an extended walk consisting of:

1. A positional number;
2. A transition function;
3. A map of UIs to redex vertices. The redex is associated with the reaction rule

corresponding to the above transition function;
4. A map of UIs to vertices of the output state of the extended walk element;
5. First new UI assigned to a new task element created by applying the reaction

rule (useful only if the reaction rule corresponding to the transition function
creates new environment elements);

6. A set of object identifiers involved in the walk element along with the duration
of that transformation. In other words, it is information about which objects are
involved in the transformation represented by the walk element and how long it
will take.

• <WM —linear order relation on the elements of the extended walk.
We will assume the following rule for ordering the elements of a walk:

∀e1 = (l1, f1, m1,r, m1,in, n1, (A1, d1)), e2 = (l2, f2, m2,r, m2,in, n2, (A2, d2)) ∈WM

e1 <WM e2 ↔ l1 < l2

• FirstM : 2WM → WM × 2WM —a function that returns the “smallest” element of the
walk and the “truncated” walk;

• CorrTra : T → Tra—a function that assigns transition functions to transitions from TTS;
• ObjectsU : I × (A× N) → I—SAT configuration update function. Takes a current

configuration and a set of objects for which the time will be changed along with the
value by how much. The result is the new SAT configuration;

• ObjectsF : I × N → A—a function that determines for which objects activities are
scheduled later than the moment of time for which the scenario state is constructed.
Takes a SAT configuration and the moment of time for which the state is generated;

Appl. Sci. 2021, 11, 8291 14 of 35

• CorrR : Tra→ R—a function assigning reaction rules to transitions from TTS.

The flowchart of Phase 3 of the algorithm is shown in Scheme 2. The input arguments
for the algorithm are described in Table 7. The auxiliary variables, some of which are also
outcomes of Phase 3, are described in Table 8. The outcome of Phase 3 is described in Table 9.

Table 7. Input data for the Phase 3 algorithm.

Variable Description

s0 ∈ Agt State at the previous point in time.
m0 ∈ Mx Mapping of UIs to vertices of s0.
W ⊆WM,<WM A walk and the linear order relation on its elements.
i0 ∈ I The SAT configuration at the previous moment of time.
d ∈ N The moment of time for which the scenario state is constructed.
no ∈ N Number of objects.

Table 8. Auxiliary variables of Phase 3 algorithm.

Variable Description

sc ∈ Agt Current constructed state. The initial value is s0.
mc ∈ Mx Mapping of UIs to vertices of sc.
ic ∈ I SAT configuration of the currently constructed state.

The initial value is i0.
Ao ∈ A A set of object identifiers, skipped in the constructed state. The initial

value is the empty set.
Wc ⊆W A collection of usable walk elements.

The initial value is W.
Wo ⊆W A collection of unused walk elements.

The initial value is the empty set.

Table 9. Output data of Phase 3 algorithm.

Variable Description

Wo ⊂W Unused walk elements that will be used to construct subsequent scenario
states.

sc ∈ Agt System state.
mc ∈ Mx Mapping of UIs to vertices of sc.
ic ∈ I SAT configuration at time d.

Noteworthy are the conditions checked in the subsequent steps of Phase 3 of the
algorithm. Comments for each of them are given below.

1. The first condition checked is if we have reached the end of a walk. If so, then surely
the state currently constructed is the state for the given moment of time.

2. Do we omit actions of all mission objects? If so, the state constructed so far is the state
for the given moment of time.

3. Do any objects involved in the current action belong to the set of skipped objects? If
so, we omit this walk element.

4. Will all objects involved in the current action have finished before the moment d? If
not, we disregard that activity in the currently constructed state and add those objects
to the set of skipped objects.

5. If Phase 4 is not completed correctly, it means that the model is incorrect.

Appl. Sci. 2021, 11, 8291 15 of 35

Start

1

2Wo = Wo ∪WcEnd—ok

(nw, t f , mr , m f ull , nx , (Ad, nd)), Wc = First(Wc)

in = ObjectsU(ic, (Ad, nd))

3

A f = ObjectsF(in, d)

Wo = Wo ∪ {(nw, t f , mr , m f ull , nx)}

4Ao = Ao ∪ A f

ttra = CorrTra(t f)

ic = in

r = CorrR(ttra)

result = Phase4(sc, mc, r, mr , s0, m0, nx) 5

sc, mc, _ = result

End—error

Wc 6= ∅Wc = ∅

Ao = no

Ao 6= no

Ao ∩ Ad = ∅

Ao ∩ Ad 6= ∅

A f ∩ Ad = ∅

A f ∩ Ad 6= ∅

Phase 4 ends with error

Phase 4 ends without error

Scheme 2. Flowchart of the Phase 3 algorithm. The goal of this phase is to construct the state of a scenario at a given point
in time. This phase runs in a loop until there are no available walk elements or when an execution of Phase 4 ends with an
error. It takes subsequent elements of the input walk and updates both the current SAT configuration and a scenario state. If
the mission objects will not have finished the activity represented by the currently processed walk element before or at the
specified moment of time then the SAT configuration and state updates are not performed. The same thing happens if an
activity involves objects participating in other activities that would end in a future and that have already been skipped.

Appl. Sci. 2021, 11, 8291 16 of 35

2.5.3. Phase 2—Extending a Previously Constructed Walk

Phase 2 of the algorithm is responsible for extending a walk to the form acceptable by
Phase 3.
Input:

• A walk resulting from the algorithm presented in Section 2.4;
• Number of objects.

Output:

• Extended walk.

Formal definitions:

• W ⊂ N× T—a walk. The first element denotes the positional number of the transition
function that is the second element of the tuple;

• <W—linear order relation on the elements of the set W.
As in the case of the set WM, we define the order relation by the following rule:

∀e1 = (n1, f1), e2 = (n2, f2) ∈W e1 <W e2 ↔ n1 < n2

• First : 2W → W × 2W—a function that returns the “smallest” walk element and a
truncated walk;

• Trans : Tra× Mx × X → Mx × Mx × X—a function that transforms a mapping of
unique identifiers based on the given transition and the first new identifier (in case
new environment elements appear in the output state of the transition and need to be
tagged). The results are: a new UIs map to the redex of the reaction rule corresponding
to the provided transition, a UIs mapping to the output state of the transition, and a
new smallest UI;

• U ⊂ I I—a set of functions that update SAT configurations;
• CorrU : T → U—a function that assigns transition functions to their corresponding

SAT configuration update functions;
• TimeU : I ×U → I—a SAT configuration update function;
• TimeD : I × I → A×N—a time difference function for individual objects between

SAT configurations. Returns information about which objects are involved in the
transformation and how long it takes.

The flowchart of the Phase 2 algorithm is shown in Scheme 3. Input arguments are
described in Table 10; auxiliary variables and the result of this phase are discussed in Table 11.

Table 10. Input data for the Phase 2 algorithm.

Variable Description

W,<W A walk with a linear order relation on its elements.
no Number of objects.

Table 11. Auxiliary variables of the Phase 2 algorithm.

Variable Description

nx ∈ X The value of a first new UI. The initial value is the number of vertices of
the input state of the first walk element.

m f ull ∈ Mx The current UIs mapping to the vertices of the last processed output
state. The initial value is a function that assigns consecutive natural
numbers to the vertices of the input state of the first element of the walk.

Wr ⊆WM Elements of the extended walk. The initial value is the empty set. This is
the result of this phase.

Wc ⊆W A subset of walk elements that have not been processed yet. The initial
value is W.

ic ∈ I Current SAT configuration. The initial value is ((1, 0), . . . , (no, 0)).

Appl. Sci. 2021, 11, 8291 17 of 35

Start(nw, ft), Wc = First(Wc)

fu = CorrU(t f)

in = TimeU(ic, fu)

Ad, nd = TimeD(ic, in)

ttra = CorrTra(ft)

mr, m′f ull , n′x = Trans(ttra, m f ull , nx)

Wr = Wr ∪ {(nw, ft, mr, m f ull , nx, (Ad, nd))}

nx = n′x

m f ull = m′f ull End

Wc 6= ∅

Wc = ∅

Scheme 3. Flowchart of the Phase 2 algorithm. The goal of Phase 2 is to expand each element of
a provided walk to the form acceptable by Phase 3. Each element of the walk is coupled with the
duration of its corresponding activity along with the identifiers of the objects (not unique identifiers
of task elements) that participate in the activity and two bijections. The first function maps unique
identifiers to vertices of the redex of the reaction rule associated with the currently processed walk
element. With this function, we know exactly who is participating in the activity. The second function
maps unique identifiers to the output state of a processed TTS transition (derived from the walk
element). With this function, we know exactly which task element corresponds to which vertex after
applying the reaction rule. The second function is used in the next iteration of Phase 2.

2.5.4. Phase 1—Constructing All Scenario States and Checking the Correctness of a
Given Walk

Phase 1 of the algorithm is its entry point. It is responsible for verifying a model and
constructing scenario states at successive moments in time.
Input:

• Number of objects;
• A walk with a linear order relation on its elements.

Output:

1. The model is correct:

• A set of scenario states at consecutive moments in time with corresponding map-
pings of unique identifiers to the vertices of these states and SAT configurations;

2. The model is incorrect:

• The moment of time for which the scenario state could not be generated;
• The element that could not be transformed (constructed state or state at some

point in time);
• The reaction rule corresponding to the unsuccessful transformation;
• The UIs mapping of the element that could not be transformed and the redex of

the above reaction rule.

Appl. Sci. 2021, 11, 8291 18 of 35

Phase 1 input parameters are described in Table 12. The auxiliary variables along with
the outcome are discussed in Table 13. The flowchart of the Phase 1 algorithm is shown in
the Scheme 4.

Table 12. Input data for the Phase 1 algorithm.

Variable Description

W,<W A walk with a linear order relation on its elements.
no Number of objects.

Table 13. Auxiliary variables for the Phase 1 algorithm.

Variable Description

Wc ⊆WM A set of extended walk elements that have not been
used yet. The initial value is the empty set but it is
properly initialized with the result of Phase 2.

d The current moment of time for which a scenario
state is constructed. The initial value is 1.

s ∈ Agt The scenario state at the time d− 1. The initial value
is the input state of the first walk element W.

ms ∈ Mx Mapping of UIs to vertices of the state s. The initial
value is a bijection of consecutive natural numbers
on the vertices of s.

is ∈ I SAT configuration for the scenario state at the time
d− 1. The initial value is ((1, 0), . . . , (no, 0)).

Sr ⊂ N× Agt×Mx × I A collection of states at successive moments in time
with their corresponding UIs mapping and SAT con-
figurations. The initial value is the empty set. This is
the result of this phase.

Start

Wc = Phase2(W)

Sr = Sr ∪ {(d− 1), s, ms, is}

End—ok

result = Phase3(s, ms, Wc, d, no)

End—error

Wc, s, ms, is = result d = d + 1

Wc = ∅

Wc 6= ∅

Phase 3 ends with an error

Phase 3 ends without error

Scheme 4. A flowchart of the Phase 1 algorithm. The goal of Phase 1 is to verify a model and construct the subsequent
states of a scenario using a provided walk. In the first step the walk is extended to the form acceptable by Phase 3. Then the
model verification and construction of successive scenario states is performed in a loop. The loop is executed until Phase 3
ends with either an error or when there are no more elements of the walk to further construct states of the scenario from.

Appl. Sci. 2021, 11, 8291 19 of 35

3. Results

This section will provide example use cases of the algorithm discussed in the previous
section. The first two examples show in detail how the algorithm detects errors in a model
and how it constructs successive scenario states. The next examples present how to check
the fulfillment of non-functional requirements for systems designed with our methodology.
Finally, the problem of memory complexity of convolution operation performed during a
construction of walks in a state space is discussed. We also provide a few propositions how
to address this issue.

3.1. Model Verification Example
3.1.1. Introduction

The first example will demonstrate how the algorithm can detect that a system is
incorrectly designed.

A task (as defined in Section 2.1) for this example consists of six elements, two actions
that can be performed, and one goal. The task elements comprise three areas with two
robots and an object to be carried between the areas. The goal of the task is for the robots
(denoted by vertices with the control B) to move the object (denoted by a vertex with the
control O) from the area AT1 to the area AT3. The initial state of this system is shown in
Figure 4. We will use two reaction rules to generate a tracking bigraphical reactive system:
mov1 and mov2 depicted in Figure 5a,b, respectively.

Figure 4. The initial state of a system in the example of verifying model correctness.

(a) (b)
Figure 5. Reaction rules for the example of verifying a model. All residue functions are identities. (a) Reaction rule mov1.
(b) Reaction rule mov2.

The elements of a tracking transition system for this example are shown in Table 14.
If we categorize the task elements as presented in Table 15 then we can transform the

TTS from Table 14 into the state space as in Figure 6. However, this will not be a valid state
space because no time is taken into account for the object being moved (i.e., it is not treated
as a passive or active object as defined in Section 2.1).

3.1.2. Using the Algorithm for Model Verification

Walk S0
f1−→ S1

f2−→ S2 can be represented as W = {(0, f1), (1, f2)}. Assuming that both
actions associated to the reaction rules take 1 unit of time to complete, in Phase 2 both
elements of set W will be transformed to form:

Appl. Sci. 2021, 11, 8291 20 of 35

1. (0, f1, {(0, 0), (1, 1), (2, 2), (3, 3)}, {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}, 6, ({1}, 1))
2. (1, f2, {(2, 0), (3, 1), (4, 2), (5, 3)}, {(0, 0), (1, 1), (2, 3), (3, 2), (4, 4), (5, 5)}, 6, ({2}, 1))

The method of constructing mr and m′f ull functions that result from Trans function in
Phase 2 is shown below.

The rule of constructing mr function:

∀x ∈ {0, . . . , nx −−− 1} mr(x) = par−1(m f ull(x))

where par−1 is the inverse function to par being an element of ttra. In this case, the functions
f1, f2, . . . , f8 correspond to the subsequent rows in Table 14.

The rule of constructing m′f ull function:

∀x ∈ {0, . . . , nx −−− 1} m′f ull(x) = res−1(m f ull(x))

res−1 is the inverse function of res which is an element of ttra.
Table 16 lists the successive steps of the algorithm that will lead to a detection of an

error in the model. The reason why this model is incorrect is not because the redex of the
rule mov2 is not in the 0 state but because the moved object is categorized as an element of
the environment, thus we do not take into account the passage of time for it. As a result,
the reaction rules create the appearance of being independent of each other when in fact the
execution of mov2 rule is dependent on the execution of the rule mov1. To fix the model, the
relocated object needs to be categorized as a passive object and one need to add a reaction
rule allowing a robot that is in AT3 area to wait until the object being moved is in AT2 area.

Table 14. Tracking transition system for the first example.

Input State Label Output State Par & Res

mov1 {(0, 0), (1, 1), (2, 2), (3, 3)}
{(0, 0), (1, 1), (2, 3), (3, 2), (4, 4), (5, 5)}

mov2 {(0, 2), (1, 3), (2, 4), (3, 5)}
{(0, 2), (1, 4), (2, 5), (3, 3), (4, 0), (5, 1)}

Table 15. Categorization of task elements for the first example. Note that this produces an incorrect
model because the moved object is considered an environment element.

Category of Task Elements Elements Belonging to the Category

Environment {AT1, AT2, AT3, O}
Passive objects ∅
Active objects (agents) {B}

Figure 6. Incorrect state space for the task from the first example.

Appl. Sci. 2021, 11, 8291 21 of 35

Table 16. Subsequent steps of the algorithm in the model validation example.

Phase Step Result/Comment

1 Sr = Sr ∪ {((d− 1, s, ms, is))} Sr =

0, ,

{(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)},
((1, 0), (2, 0))

1 Phase3(. . .)

3
nw, t f , mr, m f ull , nx, (Ad, nd), Wc =

FirstM(Wc)
nw = 0
t f = f1
mr = {(0, 0), (1, 1), (2, 2), (3, 3)}
m f ull =

{
(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)

}

nx = 6
Ad = {1}
nd = 1
Wc = Wc \ {e1} = {e2}

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 1), (2, 0))

3 A f = ObjectsF(in, d) A f = ∅

3 ttra = CorrTra(t f) ttra = first row of Table 14

3 ic = in ic = (1, 1), (2, 0)

3 r = CorrR(ttra) r = reaction rule mov1

3 result = Phase4(sc, mc, r, s0, m0, nx) Phase 4 completed without error

3 sc, mc, nx = result sc =

mc = {(0, 0), (1, 1), (2, 3), (3, 2), (4, 4), (5, 5)}
(mc is calculated in the same way as m′f ull in Phase 2)
nx = 6

3
nw, t f , mr, m f ull , nx, (Ad, nd), Wc =

FirstM(Wc)
nw = 1
t f = f2
mr = {(2, 0), (3, 1), (4, 2), (5, 3)}
m f ull =

{
(0, 0), (1, 1), (2, 3), (3, 2), (4, 4), (5, 5)

}

nx = 6
Ad = {2}
nd = 1
Wc = Wc \ {e2} = ∅

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 1), (2, 1))

3 A f = ObjectsF(in, d) A f = ∅

3 ttra = CorrTra(t f) ttra = second row of Table 14

3 ic = in ic = ((1, 1), (2, 1))

3 r = CorrR(ttra) r = reaction rule mov2

4 rl = CorrRed(r) rl =

4 c1 = IsUpdatePossible(s0, m0, rl , mr) c1 = f alse

The pattern does not occur in the bigraph .

1 End—error

Appl. Sci. 2021, 11, 8291 22 of 35

3.2. Example of Scenario States Visualization
3.2.1. Introduction

The second example will demonstrate the problem of visualizing a scenario and how
our algorithm can help in solving it. A task for this example is composed of three areas
and two robots of the same type. The initial state of the system is presented in Figure 7.
The tracking bigraphical reactive system for the purpose of this example consists of two
reaction rules, r1 and r2, shown in Figure 8a,b, respectively. The goal of the task is to move
the two robots from the area AT1 to the area AT3.

Figure 7. The initial state of a system for the scenario visualization example.

(a) (b)
Figure 8. Reaction rules for the example of scenario visualization. (a) Reaction rule r1. τ = {(0, 0), (1, 2), (2, 1)}. (b)
Reaction rule r2.τ = {(0, 0), (1, 1), (2, 2)}.

Tracking Transition System generated from this TBRS is defined in Table 17.
The tracking Transition System from Table 17 can be transformed into a state space as in

Figure 9. Now, suppose that a walk chosen for the behavior policy is of the form:

S0
f1−→ S1

f3−→ S2
f5−→ S4

f8−→ S5

The above walk never “passes” through a state where both robots are in AT2 area.
(that is, through the state S3). Such a situation must occur for the following reasons. For a
walk representing four activities (because it consists of four arcs), that can correspond only
to reaction rules from Figure 8 a course of a mission for each robot must take the form of
moving from an AT1 area to an AT2 area and then from AT2 to AT3 area. Since the activities
represented by the reaction rules are not cooperative (each of the reaction rules involve
only one agent) the movements will be performed in parallel. We also know that the time
required to perform both activities will be the same for both agents (because agents are
of the same type and perform the same type of activity) so the successive movements
will end at the same moment. Because of all that, during a mission there must occur a
situation where both robots are at an AT2 area at the same time. Therefore, the algorithm
for constructing subsequent scenario states must be able to construct states that are not
“on” a provided walk.

Appl. Sci. 2021, 11, 8291 23 of 35

Table 17. Tracking Transition System for the second example.

Input State Label Output State Par & Res

r1 par = {(0, 0), (1, 2), (2, 3)}
res = {(0, 0), (1, 3), (2, 2), (3, 1), (4, 4)}

r1 par = {(0, 0), (1, 1), (2, 3)}
res = {(0, 0), (1, 3), (2, 1), (3, 2), (4, 4)}

r2 par = {(0, 1), (1, 2), (2, 4)}
res = {(0, 1), (1, 4), (2, 2), (3, 0), (4, 3)}

r1 par = {(0, 1), (1, 3), (2, 1)}
res = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)}

r1 par = {(0, 3), (1, 4), (2, 0)}
res = {(0, 3), (1, 0), (2, 4), (3, 1), (4, 2)}

r2 par = {(0, 1), (1, 2), (2, 4)}
res = {(0, 0), (1, 1), (2, 3), (3, 4), (4, 2)}

r2 par = {(0, 1), (1, 3), (2, 4)}
res = {(0, 0), (1, 1), (2, 2), (3, 4), (4, 3)}

r2 par = {(0, 1), (1, 2), (2, 3)}
res = {(0, 0), (1, 3), (2, 4), (3, 0), (4, 2)}

Figure 9. The state space generated from Tracking Transition System from Table 17.

3.2.2. Using the Algorithm to Construct Scenario States

The walk S0
f1−→ S1

f3−→ S2
f5−→ S4

f8−→ S5 can be presented as:

W = {(0, f1), (1, f3), (2, f5), (3, f8)}

Appl. Sci. 2021, 11, 8291 24 of 35

A linear order relation on the set W has the form:

<W=

((0, f1), (1, f3)), ((0, f1), (2, f5)), ((0, f1), (3, f8)),

((1, f3), (2, f5)), ((1, f3), (3, f8)),

((2, f5), (3, f8))

Assuming that execution of each reaction rules takes one unit of time, in Phase 2 the
consecutive elements of set W will be transformed to the following form:

• e1 = (0, f1, {(0, 0), (2, 1), (3, 2)}, {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)}, 5, ({2}, 1))
• e2 = (1, f3, {(3, 0), (2, 1), (4, 2)}, {(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)}, 5, ({2}, 1))
• e3 = (2, f5, {(0, 0), (1, 1), (3, 2)}, {(0, 3), (1, 4), (2, 2), (3, 0), (4, 1)}, 5, ({1}, 1))
• e4 = (3, f8, {(3, 0), (1, 1), (4, 2)}, {(0, 0), (1, 2), (2, 4), (3, 1), (4, 3)}, 5, ({1}, 1))

Knowing the above, we can define an extended walk.

WM = {e1, e2, e3, e4}

The linear order relation remains unchanged between elements, i.e,:

<WM= {(e1, e2), (e1, e3), (e1, e4), (e2, e3), (e2, e4), (e3, e4)}

Steps of the algorithm to construct the subsequent scenario states are presented in
Table 18.

Table 18. Successive steps of the algorithm in the example of visualizing a scenario.

Phase Step Result/Comment

1 Sr = Sr ∪ {((d− 1, s, ms, is))}

Appl. Sci. 2021, 1, 0 26 of 37

Table 18. Successive steps of the algorithm in the example of visualizing a scenario.

Phase Step Result/Comment

1 Sr = Sr ∪ {((d− 1, s, ms, is))} Sr =

0, ,

{(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)},
((1, 0), (2, 0))

1 Phase3(. . .)

3 nw, t f , mr, m f ull , nx, (Ad, nd), Wc = FirstM(Wc) nw = 0
t f = f1
mr = {(0, 0), (2, 1), (3, 2)}
m f ull = {(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)}
nx = 5
Ad = {2}
nd = 1
Wc = Wc \ {e1} = {e2, e3, e4}

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 0), (2, 1))

3 A f = ObjectsF(in, d) A f = ∅

3 ttra = CorrTra(t f) ttra = first row of Table 17

3 ic = in ic = ((1, 0), (2, 1))

3 r = CorrR(ttra) r = reaction rule r1

3 result = Phase4(sc, mc, r, s0, m0, nx) Phase 4 completed without error

3 sc, mc, nx = result sc =

mc = {(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)}
nx = 5

3 nw, t f , mr, m f ull , nx, (Ad, nd), Wc = FirstM(Wc) nw = 1
t f = f3
mr = {(3, 0), (2, 1), (4, 2)}
m f ull = {(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)}
nx = 5
Ad = {2}
nd = 1
Wc = Wc \ {e2} = {e3, e4}

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 0), (2, 2))

3 A f = ObjectsF(in, d) A f = {2}
3 Ao = Ao ∪ A f Ao = ∅ ∪ {2} = {2}
3 Wo = Wo ∪ {(nw, t f , mr, m f ull , nx, (Ad, nd))} Wo = ∅ ∪ {e2}
3 nw, t f , mr, m f ull , nx, (Ad, nd), Wc = FirstM(Wc) nw = 2

t f = f5
mr = {(0, 0), (1, 1), (3, 2)}
m f ull = {(0, 3), (1, 4), (2, 2), (3, 0), (4, 1)}
nx = 5
Ad = {1}
nd = 1
Wc = Wc \ {e3} = {e4}

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 1), (2, 1))

3 A f = ObjectsF(in, d) A f = ∅

Continued on the next page

1 Phase3(. . .)

3 nw, t f , mr, m f ull , nx, (Ad, nd), Wc = FirstM(Wc) nw = 0
t f = f1
mr = {(0, 0), (2, 1), (3, 2)}
m f ull = {(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)}
nx = 5
Ad = {2}
nd = 1
Wc =
Wc \ {e1} =
{e2, e3, e4}

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 0), (2, 1))

3 A f = ObjectsF(in, d) A f = ∅

3 ttra = CorrTra(t f) ttra = first row of Table 17

3 ic = in ic = ((1, 0), (2, 1))

3 r = CorrR(ttra) r = reaction rule r1

3 result = Phase4(sc, mc, r, s0, m0, nx) Phase 4 completed without error

Appl. Sci. 2021, 11, 8291 25 of 35

Table 18. Cont.

Phase Step Result/Comment

3 sc, mc, nx = result

Appl. Sci. 2021, 1, 0 26 of 37

Table 18. Successive steps of the algorithm in the example of visualizing a scenario.

Phase Step Result/Comment

1 Sr = Sr ∪ {((d− 1, s, ms, is))} Sr =

0, ,

{(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)},
((1, 0), (2, 0))

1 Phase3(. . .)

3 nw, t f , mr, m f ull , nx, (Ad, nd), Wc = FirstM(Wc) nw = 0
t f = f1
mr = {(0, 0), (2, 1), (3, 2)}
m f ull = {(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)}
nx = 5
Ad = {2}
nd = 1
Wc = Wc \ {e1} = {e2, e3, e4}

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 0), (2, 1))

3 A f = ObjectsF(in, d) A f = ∅

3 ttra = CorrTra(t f) ttra = first row of Table 17

3 ic = in ic = ((1, 0), (2, 1))

3 r = CorrR(ttra) r = reaction rule r1

3 result = Phase4(sc, mc, r, s0, m0, nx) Phase 4 completed without error

3 sc, mc, nx = result sc =

mc = {(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)}
nx = 5

3 nw, t f , mr, m f ull , nx, (Ad, nd), Wc = FirstM(Wc) nw = 1
t f = f3
mr = {(3, 0), (2, 1), (4, 2)}
m f ull = {(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)}
nx = 5
Ad = {2}
nd = 1
Wc = Wc \ {e2} = {e3, e4}

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 0), (2, 2))

3 A f = ObjectsF(in, d) A f = {2}
3 Ao = Ao ∪ A f Ao = ∅ ∪ {2} = {2}
3 Wo = Wo ∪ {(nw, t f , mr, m f ull , nx, (Ad, nd))} Wo = ∅ ∪ {e2}
3 nw, t f , mr, m f ull , nx, (Ad, nd), Wc = FirstM(Wc) nw = 2

t f = f5
mr = {(0, 0), (1, 1), (3, 2)}
m f ull = {(0, 3), (1, 4), (2, 2), (3, 0), (4, 1)}
nx = 5
Ad = {1}
nd = 1
Wc = Wc \ {e3} = {e4}

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 1), (2, 1))

3 A f = ObjectsF(in, d) A f = ∅

Continued on the next page

mc = {(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)}
nx = 5

3 nw, t f , mr, m f ull , nx, (Ad, nd), Wc = FirstM(Wc) nw = 1
t f = f3
mr = {(3, 0), (2, 1), (4, 2)}
m f ull = {(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)}
nx = 5
Ad = {2}
nd = 1
Wc = Wc \
{e2} = {e3, e4}

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 0), (2, 2))

3 A f = ObjectsF(in, d) A f = {2}
3 Ao = Ao ∪ A f Ao = ∅ ∪ {2} = {2}
3 Wo = Wo ∪ {(nw, t f , mr, m f ull , nx, (Ad, nd))} Wo = ∅ ∪ {e2}
3 nw, t f , mr, m f ull , nx, (Ad, nd), Wc = FirstM(Wc) nw = 2

t f = f5
mr = {(0, 0), (1, 1), (3, 2)}
m f ull = {(0, 3), (1, 4), (2, 2), (3, 0), (4, 1)}
nx = 5
Ad = {1}
nd = 1
Wc = Wc \
{e3} = {e4}

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 1), (2, 1))

3 A f = ObjectsF(in, d) A f = ∅

3 ttra = CorrTra(t f) ttra = fifth row of Table 17

3 ic = in ic = ((1, 1), (2, 1))

3 r = CorrR(ttra) r = reaction rule r1

3 result = Phase4(sc, mc, r, s0, m0, nx) Phase 4 completed without error

3 sc, mc, nx = result

Appl. Sci. 2021, 1, 0 27 of 37

Table 18 – continued from the previous page

Phase Step Result/Comment

3 ttra = CorrTra(t f) ttra = fifth row of Table 17

3 ic = in ic = ((1, 1), (2, 1))

3 r = CorrR(ttra) r = reaction rule r1

3 result = Phase4(sc, mc, r, s0, m0, nx) Phase 4 completed without error

3 sc, mc, nx = result sc =

mc = {(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)}
nx = 5

3 nw, t f , mr, m f ull , nx, (Ad, nd), Wc = FirstM(Wc) nw = 3
t f = f8
mr = {(3, 0), (1, 1), (4, 2)}
m f ull = {(0, 0), (1, 2), (2, 4), (3, 1), (4, 3)}
nx = 5
Ad = {1}
nd = 1
Wc = Wc \ {e4} = ∅

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 2), (2, 1))

3 A f = ObjectsF(in, d) A f = {1}
3 Ao = Ao ∪ A f Ao = {2} ∪ {1} = {1, 2}
3 Wo = Wo ∪ {(nw, t f , mr, m f ull , nx, (Ad, nd))} Wo = {e2} ∪ {e4}
3 End—ok

1 Wc, s, ms, is = result Wc = {e2, e4}

s =

ms = {(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)}
is = ((1, 1), (2, 1))

1 d = d + 1 d = 2

1 Sr = Sr ∪ {((d− 1, s, ms, is))} Sr = Sr ∪

1, ,

{(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)},
((1, 1), (2, 1))

1 Phase3(. . .)

3 nw, t f , mr, m f ull , nx, (Ad, nd), Wc = FirstM(Wc) nw = 1
t f = f3
mr = {(3, 0), (2, 1), (4, 2)}
m f ull = {(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)}
nx = 5
Ad = {2}
nd = 1
Wc = Wc \ {e2} = {e4}

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 1), (2, 2))

3 A f = ObjectsF(in, d) A f = ∅

3 ttra = CorrTra(t f) ttra = third row of Table 17

3 ic = in ic = ((1, 1), (2, 2))

3 r = CorrR(ttra) r = reaction rule r2

Continued on the next page

mc = {(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)}
nx = 5

3 nw, t f , mr, m f ull , nx, (Ad, nd), Wc = FirstM(Wc) nw = 3
t f = f8
mr = {(3, 0), (1, 1), (4, 2)}
m f ull = {(0, 0), (1, 2), (2, 4), (3, 1), (4, 3)}
nx = 5
Ad = {1}
nd = 1
Wc =
Wc \ {e4} = ∅

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 2), (2, 1))

3 A f = ObjectsF(in, d) A f = {1}

Appl. Sci. 2021, 11, 8291 26 of 35

Table 18. Cont.

Phase Step Result/Comment

3 Ao = Ao ∪ A f Ao = {2} ∪ {1} = {1, 2}
3 Wo = Wo ∪ {(nw, t f , mr, m f ull , nx, (Ad, nd))} Wo = {e2} ∪ {e4}
3 End—ok

1 Wc, s, ms, is = result Wc = {e2, e4}

Appl. Sci. 2021, 1, 0 27 of 37

Table 18 – continued from the previous page

Phase Step Result/Comment

3 ttra = CorrTra(t f) ttra = fifth row of Table 17

3 ic = in ic = ((1, 1), (2, 1))

3 r = CorrR(ttra) r = reaction rule r1

3 result = Phase4(sc, mc, r, s0, m0, nx) Phase 4 completed without error

3 sc, mc, nx = result sc =

mc = {(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)}
nx = 5

3 nw, t f , mr, m f ull , nx, (Ad, nd), Wc = FirstM(Wc) nw = 3
t f = f8
mr = {(3, 0), (1, 1), (4, 2)}
m f ull = {(0, 0), (1, 2), (2, 4), (3, 1), (4, 3)}
nx = 5
Ad = {1}
nd = 1
Wc = Wc \ {e4} = ∅

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 2), (2, 1))

3 A f = ObjectsF(in, d) A f = {1}
3 Ao = Ao ∪ A f Ao = {2} ∪ {1} = {1, 2}
3 Wo = Wo ∪ {(nw, t f , mr, m f ull , nx, (Ad, nd))} Wo = {e2} ∪ {e4}
3 End—ok

1 Wc, s, ms, is = result Wc = {e2, e4}

s =

ms = {(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)}
is = ((1, 1), (2, 1))

1 d = d + 1 d = 2

1 Sr = Sr ∪ {((d− 1, s, ms, is))} Sr = Sr ∪

1, ,

{(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)},
((1, 1), (2, 1))

1 Phase3(. . .)

3 nw, t f , mr, m f ull , nx, (Ad, nd), Wc = FirstM(Wc) nw = 1
t f = f3
mr = {(3, 0), (2, 1), (4, 2)}
m f ull = {(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)}
nx = 5
Ad = {2}
nd = 1
Wc = Wc \ {e2} = {e4}

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 1), (2, 2))

3 A f = ObjectsF(in, d) A f = ∅

3 ttra = CorrTra(t f) ttra = third row of Table 17

3 ic = in ic = ((1, 1), (2, 2))

3 r = CorrR(ttra) r = reaction rule r2

Continued on the next page

ms = {(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)}
is = ((1, 1), (2, 1))

1 d = d + 1 d = 2

1 Sr = Sr ∪ {((d− 1, s, ms, is))}

Appl. Sci. 2021, 1, 0 27 of 37

Table 18 – continued from the previous page

Phase Step Result/Comment

3 ttra = CorrTra(t f) ttra = fifth row of Table 17

3 ic = in ic = ((1, 1), (2, 1))

3 r = CorrR(ttra) r = reaction rule r1

3 result = Phase4(sc, mc, r, s0, m0, nx) Phase 4 completed without error

3 sc, mc, nx = result sc =

mc = {(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)}
nx = 5

3 nw, t f , mr, m f ull , nx, (Ad, nd), Wc = FirstM(Wc) nw = 3
t f = f8
mr = {(3, 0), (1, 1), (4, 2)}
m f ull = {(0, 0), (1, 2), (2, 4), (3, 1), (4, 3)}
nx = 5
Ad = {1}
nd = 1
Wc = Wc \ {e4} = ∅

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 2), (2, 1))

3 A f = ObjectsF(in, d) A f = {1}
3 Ao = Ao ∪ A f Ao = {2} ∪ {1} = {1, 2}
3 Wo = Wo ∪ {(nw, t f , mr, m f ull , nx, (Ad, nd))} Wo = {e2} ∪ {e4}
3 End—ok

1 Wc, s, ms, is = result Wc = {e2, e4}

s =

ms = {(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)}
is = ((1, 1), (2, 1))

1 d = d + 1 d = 2

1 Sr = Sr ∪ {((d− 1, s, ms, is))} Sr = Sr ∪

1, ,

{(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)},
((1, 1), (2, 1))

1 Phase3(. . .)

3 nw, t f , mr, m f ull , nx, (Ad, nd), Wc = FirstM(Wc) nw = 1
t f = f3
mr = {(3, 0), (2, 1), (4, 2)}
m f ull = {(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)}
nx = 5
Ad = {2}
nd = 1
Wc = Wc \ {e2} = {e4}

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 1), (2, 2))

3 A f = ObjectsF(in, d) A f = ∅

3 ttra = CorrTra(t f) ttra = third row of Table 17

3 ic = in ic = ((1, 1), (2, 2))

3 r = CorrR(ttra) r = reaction rule r2

Continued on the next page

1 Phase3(. . .)

3 nw, t f , mr, m f ull , nx, (Ad, nd), Wc = FirstM(Wc) nw = 1
t f = f3
mr = {(3, 0), (2, 1), (4, 2)}
m f ull = {(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)}
nx = 5
Ad = {2}
nd = 1
Wc = Wc \
{e2} = {e4}

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 1), (2, 2))

3 A f = ObjectsF(in, d) A f = ∅

3 ttra = CorrTra(t f) ttra = third row of Table 17

3 ic = in ic = ((1, 1), (2, 2))

3 r = CorrR(ttra) r = reaction rule r2

3 result = Phase4(sc, mc, r, s0, m0, nx) Phase 4 completed without error

3 sc, mc, nx = result

Appl. Sci. 2021, 1, 0 28 of 37

Table 18 – continued from the previous page

Phase Step Result/Comment

3 result = Phase4(sc, mc, r, s0, m0, nx) Phase 4 completed without error

3 sc, mc, nx = result sc =

mc = {(0, 0), (3, 1), (4, 3), (1, 2), (2, 4)}
nx = 5

3 nw, t f , mr, m f ull , nx, (Ad, nd), Wc = FirstM(Wc) nw = 3
t f = f8
mr = {(3, 0), (1, 1), (4, 2)}
m f ull = {(0, 0), (1, 2), (2, 4), (3, 1), (4, 3)}
nx = 5
Ad = {1}
nd = 1
Wc = Wc \ {e4} = ∅

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 2), (2, 2))

3 A f = ObjectsF(in, d) A f = ∅

3 ttra = CorrTra(t f) ttra = eighth row of Table 17

3 ic = in ic = ((1, 2), (2, 2))

3 r = CorrR(ttra) r = reaction rule r2

3 result = Phase4(sc, mc, r, s0, m0, nx) Phase 4 completed without error

3 sc, mc, nx = result sc =

mc = {(0, 3), (3, 0), (4, 1), (1, 4), (2, 2)}
nx = 5

3 End—ok

1 Wc, s, ms, is = result Wc = ∅

s =

ms = {(0, 3), (3, 0), (4, 1), (1, 4), (2, 2)}
is = ((1, 2), (2, 2))

1 d = d + 1 d = 3

1 Sr = Sr ∪ {((d− 1, s, ms, is))} Sr = Sr ∪

2, ,

{(0, 3), (3, 0), (4, 1), (1, 4), (2, 2)},
((1, 2), (2, 2))

1 End—ok

The result of the algorithm contains a state where both robots are in AT2 area despite
the fact that the walk has not passed through such state. A Gantt diagram for this scenario
is shown in Figure 10. Both robots are performing actions r1 and r2 in parallel.

mc = {(0, 0), (3, 1), (4, 3), (1, 2), (2, 4)}
nx = 5

3 nw, t f , mr, m f ull , nx, (Ad, nd), Wc = FirstM(Wc) nw = 3
t f = f8
mr = {(3, 0), (1, 1), (4, 2)}
m f ull = {(0, 0), (1, 2), (2, 4), (3, 1), (4, 3)}
nx = 5
Ad = {1}
nd = 1
Wc =
Wc \ {e4} = ∅

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 2), (2, 2))

3 A f = ObjectsF(in, d) A f = ∅

3 ttra = CorrTra(t f) ttra = eighth row of Table 17

Appl. Sci. 2021, 11, 8291 27 of 35

Table 18. Cont.

Phase Step Result/Comment

3 ic = in ic = ((1, 2), (2, 2))

3 r = CorrR(ttra) r = reaction rule r2

3 result = Phase4(sc, mc, r, s0, m0, nx) Phase 4 completed without error

3 sc, mc, nx = result

Appl. Sci. 2021, 1, 0 28 of 37

Table 18 – continued from the previous page

Phase Step Result/Comment

3 result = Phase4(sc, mc, r, s0, m0, nx) Phase 4 completed without error

3 sc, mc, nx = result sc =

mc = {(0, 0), (3, 1), (4, 3), (1, 2), (2, 4)}
nx = 5

3 nw, t f , mr, m f ull , nx, (Ad, nd), Wc = FirstM(Wc) nw = 3
t f = f8
mr = {(3, 0), (1, 1), (4, 2)}
m f ull = {(0, 0), (1, 2), (2, 4), (3, 1), (4, 3)}
nx = 5
Ad = {1}
nd = 1
Wc = Wc \ {e4} = ∅

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 2), (2, 2))

3 A f = ObjectsF(in, d) A f = ∅

3 ttra = CorrTra(t f) ttra = eighth row of Table 17

3 ic = in ic = ((1, 2), (2, 2))

3 r = CorrR(ttra) r = reaction rule r2

3 result = Phase4(sc, mc, r, s0, m0, nx) Phase 4 completed without error

3 sc, mc, nx = result sc =

mc = {(0, 3), (3, 0), (4, 1), (1, 4), (2, 2)}
nx = 5

3 End—ok

1 Wc, s, ms, is = result Wc = ∅

s =

ms = {(0, 3), (3, 0), (4, 1), (1, 4), (2, 2)}
is = ((1, 2), (2, 2))

1 d = d + 1 d = 3

1 Sr = Sr ∪ {((d− 1, s, ms, is))} Sr = Sr ∪

2, ,

{(0, 3), (3, 0), (4, 1), (1, 4), (2, 2)},
((1, 2), (2, 2))

1 End—ok

The result of the algorithm contains a state where both robots are in AT2 area despite
the fact that the walk has not passed through such state. A Gantt diagram for this scenario
is shown in Figure 10. Both robots are performing actions r1 and r2 in parallel.

mc = {(0, 3), (3, 0), (4, 1), (1, 4), (2, 2)}
nx = 5

3 End—ok

1 Wc, s, ms, is = result Wc = ∅

Appl. Sci. 2021, 1, 0 28 of 37

Table 18 – continued from the previous page

Phase Step Result/Comment

3 result = Phase4(sc, mc, r, s0, m0, nx) Phase 4 completed without error

3 sc, mc, nx = result sc =

mc = {(0, 0), (3, 1), (4, 3), (1, 2), (2, 4)}
nx = 5

3 nw, t f , mr, m f ull , nx, (Ad, nd), Wc = FirstM(Wc) nw = 3
t f = f8
mr = {(3, 0), (1, 1), (4, 2)}
m f ull = {(0, 0), (1, 2), (2, 4), (3, 1), (4, 3)}
nx = 5
Ad = {1}
nd = 1
Wc = Wc \ {e4} = ∅

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 2), (2, 2))

3 A f = ObjectsF(in, d) A f = ∅

3 ttra = CorrTra(t f) ttra = eighth row of Table 17

3 ic = in ic = ((1, 2), (2, 2))

3 r = CorrR(ttra) r = reaction rule r2

3 result = Phase4(sc, mc, r, s0, m0, nx) Phase 4 completed without error

3 sc, mc, nx = result sc =

mc = {(0, 3), (3, 0), (4, 1), (1, 4), (2, 2)}
nx = 5

3 End—ok

1 Wc, s, ms, is = result Wc = ∅

s =

ms = {(0, 3), (3, 0), (4, 1), (1, 4), (2, 2)}
is = ((1, 2), (2, 2))

1 d = d + 1 d = 3

1 Sr = Sr ∪ {((d− 1, s, ms, is))} Sr = Sr ∪

2, ,

{(0, 3), (3, 0), (4, 1), (1, 4), (2, 2)},
((1, 2), (2, 2))

1 End—ok

The result of the algorithm contains a state where both robots are in AT2 area despite
the fact that the walk has not passed through such state. A Gantt diagram for this scenario
is shown in Figure 10. Both robots are performing actions r1 and r2 in parallel.

ms = {(0, 3), (3, 0), (4, 1), (1, 4), (2, 2)}
is = ((1, 2), (2, 2))

1 d = d + 1 d = 3

1 Sr = Sr ∪ {((d− 1, s, ms, is))}

Appl. Sci. 2021, 1, 0 28 of 37

Table 18 – continued from the previous page

Phase Step Result/Comment

3 result = Phase4(sc, mc, r, s0, m0, nx) Phase 4 completed without error

3 sc, mc, nx = result sc =

mc = {(0, 0), (3, 1), (4, 3), (1, 2), (2, 4)}
nx = 5

3 nw, t f , mr, m f ull , nx, (Ad, nd), Wc = FirstM(Wc) nw = 3
t f = f8
mr = {(3, 0), (1, 1), (4, 2)}
m f ull = {(0, 0), (1, 2), (2, 4), (3, 1), (4, 3)}
nx = 5
Ad = {1}
nd = 1
Wc = Wc \ {e4} = ∅

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 2), (2, 2))

3 A f = ObjectsF(in, d) A f = ∅

3 ttra = CorrTra(t f) ttra = eighth row of Table 17

3 ic = in ic = ((1, 2), (2, 2))

3 r = CorrR(ttra) r = reaction rule r2

3 result = Phase4(sc, mc, r, s0, m0, nx) Phase 4 completed without error

3 sc, mc, nx = result sc =

mc = {(0, 3), (3, 0), (4, 1), (1, 4), (2, 2)}
nx = 5

3 End—ok

1 Wc, s, ms, is = result Wc = ∅

s =

ms = {(0, 3), (3, 0), (4, 1), (1, 4), (2, 2)}
is = ((1, 2), (2, 2))

1 d = d + 1 d = 3

1 Sr = Sr ∪ {((d− 1, s, ms, is))} Sr = Sr ∪

2, ,

{(0, 3), (3, 0), (4, 1), (1, 4), (2, 2)},
((1, 2), (2, 2))

1 End—ok

The result of the algorithm contains a state where both robots are in AT2 area despite
the fact that the walk has not passed through such state. A Gantt diagram for this scenario
is shown in Figure 10. Both robots are performing actions r1 and r2 in parallel.

1 End—ok

The result of the algorithm contains a state where both robots are in AT2 area despite
the fact that the walk has not passed through such state. A Gantt diagram for this scenario
is shown in Figure 10. Both robots are performing actions r1 and r2 in parallel.

Time

1 2 3

O1 r1 r2

O2 r1 r2

Figure 10. A Gantt diagram for the scenario from the second example. Activities marked as t in the
row preceded by Ox denote involvement of the element x (x is the unique identifier of a task element
given at its first appearance or at the beginning of a scenario) during the activity t. Only elements
that are active objects are included in the diagram.

Functions tupled with each state allow to “track” task elements between states. For
example, the function ms = (0, 0), (1, 1), (2, 2), (3, 3), (4, 4) for the state at time 0 indicates
that the object tagged with the unique identifier 2 (the argument of ms function) is rep-
resented by the vertex with identifier 2 (the value of ms function for argument 2). The
support of a bigraph itself does not track its elements between transitions, as can be seen
by comparing the state of the system at time 0 and time 1. For example, knowing that there
is one area of each type, we have no doubt that a vertex with the control AT1 represents
the same object in both states even though the support element assigned to each vertex is
different between states. However, we do not have such certainty for vertices with controls

Appl. Sci. 2021, 11, 8291 28 of 35

of the type B. Unique identifiers point to unique objects between states, even if those objects
have changed the controls representing them.

Here is an example based on the elements of set Sr from Table 18 how to use a unique
identifier mapping. For the state at time 1, the UI with the value of 3 points to the vertex
with identifier 1. This means that it is the same task element that in the state at time 0 is
represented by the vertex with identifier value of 3 and the same element that at time 2 is
represented by the vertex with support 0.

3.3. Example of Verifying the Fulfillment of Non-Functional Requirements

The last example is intended to demonstrate how non-functional requirements can
be defined for systems designed using our methodology and determine whether these
requirements have been satisfied.

For this example, we will define a task of relocating items in a warehouse. The goal
of this task is for two robots to deploy items of different types from the warehouse to
unloading areas. The initial state of the task is depicted in Figure 11. The interpretation
of each control is shown in Table 19. Six reaction rules are defined for this system; all of
them are listed and described in Table 20. For this example, the graphical representation of
reaction rules is omitted because it will not be relevant.

Figure 11. The initial state of a system in the example of checking whether non-functional require-
ments are met.

Table 19. Interpretation of controls in the example of checking whether non-functional requirements are satisfied.

Control Real World Object

A Robot
MA Warehouse area—robots can move between them.

B Beacon—indicates the warehouse area where robots should return after relocating objects.
M Warehouse—it stores objects to be moved.

OT1 Object of type 1
OT2 Object of type 2
DT1 Type 1 unloading area—the location where objects of type 1 are to

be relocated.
DT2 Type 2 unloading area—the location where objects of type 2 are to

be relocated.

Appl. Sci. 2021, 11, 8291 29 of 35

Table 20. System reaction rules for the example of checking whether non-functional requirements
are satisfied. A value in the third column is the amount of time required to execute a rule.

Label Description ∆T

mov Moving a robot between warehouse areas. 1
stay A robot remains in the warehouse area where it is located. 1
get1 A robot retrieves a type 1 object from the warehouse. 2
get2 A robot retrieves a type 2 object from the warehouse. 2
set1 A robot deposits a type 1 object into an unloading area. 2
set2 A robot deposits a type 2 object into an unloading area. 2

The state space for the system consists of 666 states (vertices) and 5325 transitions
(arcs). Due to the size of this example, the graphical representation of the state space and
elements of the tracking transition system will not be presented. It is worth discussing
here the increase in the size of a state space as the number of system elements increases. If
one were to expand the current system to three robots, two type 1 objects, and three type
2 objects, the number of states increases to 5765 and the number of transitions to 70,701.
Such a significant increase in the size of a system suggests that it is reasonable to consider
ways of limited construction of a state space that will remain useful in later stages of the
development of behavior policies.

Moving on to behavior policies for the agents in the task above. First walks solving the
task are 15 steps long. However, these solutions are using only one robot, as can be observed
in the action schedule presented in Figure 12. A mission performed using behavior policy
based on such a walk takes 21 units of time.

Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

O1 mov mov get1 mov set1 mov get2 mov set2 mov get2 mov set2 mov mov

Figure 12. Schedule of actions for a scenario based on a walk of the length of 15 arcs.

3.3.1. Non-Functional Requirement—Length of a Mission

Now let us assume that one of the non-functional requirements imposed on the task is
to limit the length of a mission to the maximum of 20 units of time. There is no walk of the
length 15 that satisfies this requirement. Knowing that the current solutions use only one
robot we can try to improve them by extending the walks to 18 steps. This way the second
robot can move one of the objects to an unloading area. A schedule of actions constructed
with a walk of 18 steps is presented in Figure 13.

Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

O1 mov mov get1 mov set1 mov get2 mov set2 mov mov

O2 mov mov get2 mov set2 mov mov

Figure 13. A schedule of actions for a scenario created with a walk of the length of 18 arcs.

Appl. Sci. 2021, 11, 8291 30 of 35

It is important to note that simply lengthening a walk does not guarantee an improved
result. For example, if the walk underlying the schedule in Figure 12 is lengthened by
three transition functions, all corresponding to the reaction rule stay, it will not yield any
improvement in the quality of a solution.

Checking whether non-functional requirements are fulfilled should be done in Phase 1
after Phase 3 has been successfully completed. This step is not shown on Scheme 4 but this is
how it was implemented in [39].

3.3.2. Non-Functional Requirement—Collision Avoidance

Another example of a non-functional requirement will be related to safety of mission
execution. This time we impose a requirement that there should be no collisions between
robots that are in the process of moving objects.

One of the advantages of using bigraphs is that they allow one to define patterns to
be found in other bigraphs. These patterns are of “minimal satisfying phenomenon” type.
One cannot define an “all but” type pattern in bigraph notation. In other words, you can
define a pattern like “minimum three people in a room” but you cannot define a (single)
pattern that detects “less than three people in a room”.

Let us assume that a collision-free mission will be guaranteed if the robots moving the
objects are not in the same area. Such a requirement can be defined as “if two robots, at least
one of which is moving an object, are in the same area then the scenario is unacceptable”.
Bigraph patterns able to detect such a situation are shown in Figure 14.

Identical to the previous non-functional requirement, this requirement can be verified
in Phase 1 after a successful completion of the Phase 3.

(a) (b)
Figure 14. Bigraph patterns to detect whether a collision between robots may occur during a scenario.
The two patterns differ only in type of the relocated object. (a) The first pattern. (b) The second pattern.

3.4. Memory Complexity

As we have already mentioned, the size of a system grows much faster than the num-
ber of task elements. The same is true for the memory complexity of matrix multiplication
operations described in Section 2.4. We have tested how limiting the number of results
of convolution operation affects memory usage of the tool [40]. All measurements were
done using multi-threaded F# implementation on a PC with 64 bit Ubuntu 20.04 operating
system installed and the previous example regarding non-functional requirements was
used for testing. We carried out three different tests reducing the number of results to 500,
10,000, and leaving the number of results unlimited. In the first case, the peak memory
usage was about 700 MB before walks of the length of 15 arcs were found. The second case
resulted in memory consumption around 15 GB before similar walks were found. The last
case did not succeed on a machine with 64GB of RAM.

To deal with the memory complexity, we propose three methods to reduce the number
of results:

Appl. Sci. 2021, 11, 8291 31 of 35

• First N—a result of the convolution operation performed during a matrix multipli-
cation is limited to the first N results. This way of searching for behavior policies is
suitable when the first results found satisfy non-functional requirements;

• Best N—a result of the convolution operation is constrained to the N best results
evaluated using an evaluation function (discussed below). This method of searching
for walks is useful when a desired walk should have a certain length;

• All—the result of a convolution operation is not constrained in any way. Useful only
for small systems to verify model correctness.

In the case of best N method, there is a need is to define an evaluation function
for partial solutions. We propose a SAT configuration evaluation function based on the
involvement of task objects. The evaluation function returns a higher score the more objects
are involved equally. The formula for calculating the evaluation function value can be
expressed as below:

E(i) = m = 0, ∀(oid ,t)∈im = m +
t

tmax
i ∈ I

tmax −−− The largest engagement of any object.

Table 21 shows the values of the proposed evaluation function for a few example SAT
configurations.

Table 21. Partial solution evaluation function values for random SAT configurations.

i tmax E(i)

((1, 2), (2, 2), (3, 2)) 2 3
((1, 6), (2, 0), (3, 0)) 6 1
((1, 2), (2, 4), (3, 0)) 4 1.5
((1, 1), (2, 1), (3, 4)) 4 1.5
((1, 3), (2, 2), (3, 1)) 3 2
((1, 1), (2, 1), (3, 0)) 1 2

The prepared tool [40] for walk construction offers six strategies for finding solutions:

• All first found—Returns all walks leading to the goal state with the shortest length;
• First N found—returns all walks leading to the target state. The matrix multiplication

operation is constrained by first N method;
• First N best found—returns all walks leading to the target state. The matrix multiplica-

tion operation is constrained by best N method;
• All up to a certain length—returns all walks leading to the target state of a length no

greater than a given value;
• First N up to a certain length—returns all walks leading to the target state with a length

no greater than a given value. The matrix multiplication operation to find walks in a
state space is constrained by first N method which results in each set of walks of the
same length being allowed to have a count of at most N elements;

• Best N up to a certain length—returns all walks leading to the target state with a length
no greater than a given value. The matrix multiplication operation to find walks in a
state space is constrained by best N method which results in each set of walks of the
same length being allowed to have a count of at most N elements.

We summarized all of the above strategies in Table 22.

Appl. Sci. 2021, 11, 8291 32 of 35

Table 22. Summary of the proposed strategies for finding walks in a state space. The second column denoted as MNoR
stands for Maximum Number of Results. The value of N is equal to a number of results of the same length. The value of L
is equal to the maximum length of a result.

Strategy MNoR Pros Cons

All first found Unlimited Perfect for assuring correctness
of the model as this strategy
gives all existing walks to the de-
sired destination state.

Unfeasible for anything but
small systems due to large mem-
ory consumption.

First N found N The fastest of all strategies since
it does not sort results and can
shrink an output of convolution
operation. Perfect when the qual-
ity of a result is not important or
when all results are expected to
have similar quality.

Does not care about quality of
returned results at all.

First N best found N With a good evaluation function
this strategy can return the best
results. Perfect when model has
already been validated and the
developer is looking for a behav-
ior policy of a certain quality.

Slower than first N found since
results are sorted with an evalua-
tion function.

All up to a certain length Unlimited Gives a glimpse of how the
length of a walk impacts the way
a mission is executed. Since it
is an extension of all first found
it allows for throughout correct-
ness testing.

Only for tiny systems. This is the
most memory consuming strat-
egy because it not only returns
all found results but the search is
continued until results have spec-
ified length.

First N up to a certain length N × L Allow for insight into how the
length of a result impacts the
way a mission is executed. Very
fast as it is an extension of first
N found.

Does not care about the quality
of returned results at all.

Best N up to a certain length N × L It gives good insight how the
quality of results varies with the
length of a walk. Perfect when
the developer is looking for a be-
havior policy that he or she has
no expectations about.

It is slower than first N found up
to a certain length strategy due to
sorting of results.

4. Discussion

In this paper, we presented an algorithm to verify multi-agent system models based
on tracking bigraphical reactive systems. Our algorithm can detect incorrectness of a model
and unfulfillment of non-functional requirements. The algorithm considers a model to
be incorrect if activities planned to be executed in parallel are not independent of each
other. In this article, we presented two examples of utilizing the algorithm to check if
a behavior policy meets non-functional requirements regarding time and safety of task
execution. We also demonstrated how to generate successive states of a scenario, which is
a task realization using a selected behavior policy, based on the the behavior policy. Finally,
we discussed memory complexity of operations essential to behavior policies generation
and proposed a few ways to reduce it. One of the suggested methods is to limit results to a
certain number of the best ones. We gave an example of an evaluation function that allows
ranking partial results (in our case, these are behavior policies that when executed do not
meet functional requirements). The evaluation function is applicable to tasks of any kind
and size.

Appl. Sci. 2021, 11, 8291 33 of 35

This work complements our previous publication, which focused solely on designing
multi-agent systems with tracking bigraphs. The methodology enables the design of a
broad range of systems from warehouse robots to drone swarms performing a task without
human intervention. One can also consider designing software systems where programs
act as agents and operations performed by these programs could represent transition
functions. The functional programming paradigm intuitively fits this kind of design.

The main drawback of our methodology is the lack of adaptability of behavior policies.
This means there can be no deviation from scheduled actions when executing a behavior
policy. It also means that agents in a modeled system have to be fully controllable in the
real world. The biggest drawback of the algorithm presented in this article is that it verifies
the correctness of a model looking for errors in a single behavior policy. Thus, the more
behavior policies that are checked, the more confident we are that the model is correct.

As for directions of further development, the primary goal should be to improve the
generation speed of tracking reactive systems as it is the main limitation of the methodology
right now. One way to achieve it is to develop a method of partial construction of a tracking
bigraphical reactive system that consists of bigraphs necessary to manufacture a good
quality walk in state space. If the method of reducing the number of states is automatic, i.e.,
it will not require the designer to specify bigraphical patterns, it is going to significantly
speed up the development of behavior policies. Right now our method can only be applied
to relatively small systems because the explosion of states makes it impossible to efficiently
search for walks in the state space of a modeled system.

Author Contributions: Conceptualization, P.C. and Z.Z.; methodology, P.C. and Z.Z.; software, P.C.;
validation, P.C.; formal analysis, P.C.; investigation, P.C.; resources, P.C.; data curation, P.C.; writing—
original draft preparation, P.C.; writing—review and editing, Z.Z.; visualization, P.C.; supervision,
Z.Z.; project administration, Z.Z. Both authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dorri, A.; Kanhere, S.S.; Jurdak, R. Multi-Agent Systems: A Survey. IEEE Access 2018, 6, 28573–28593. [CrossRef]
2. Falco, M.; Robiolo, G. A Systematic Literature Review in Multi-Agent Systems: Patterns and Trends. In Proceedings of the 2019

XLV Latin American Computing Conference (CLEI), Panama City, Panama, 30 September–4 October 2019; pp. 1–10. [CrossRef]
3. Canese, L.; Cardarilli, G.C.; Di Nunzio, L.; Fazzolari, R.; Giardino, D.; Re, M.; Spanò, S. Multi-Agent Reinforcement Learning: A

Review of Challenges and Applications. Appl. Sci. 2021, 11, 4948. [CrossRef]
4. Busoniu, L.; Babuska, R.; De Schutter, B. A Comprehensive Survey of Multiagent Reinforcement Learning. IEEE Trans. Syst. Man

Cybern. Part C (Appl. Rev.) 2008, 38, 156–172. [CrossRef]
5. Macal, C.M.; North, M.J. Tutorial on Agent-Based Modeling and Simulation. In Proceedings of the 37th Conference on Winter

Simulation. Winter Simulation Conference, Orlando, FL, USA, 4–7 December 2005; pp. 2–15.
6. Weyns, D.; Holvoet, T. A Formal Model for Situated Multi-Agent Systems. Fundam. Inf. 2004, 63, 125–158.
7. Herrera, M.; Pérez-Hernández, M.; Kumar Parlikad, A.; Izquierdo, J. Multi-Agent Systems and Complex Networks: Review and

Applications in Systems Engineering. Processes 2020, 8, 312. [CrossRef]
8. Ota, J. Multi-agent robot systems as distributed autonomous systems. Adv. Eng. Inform. 2006, 20, 59–70. [CrossRef]
9. Yan, Z.; Jouandeau, N.; Cherif, A.A. A Survey and Analysis of Multi-Robot Coordination. Int. J. Adv. Robot. Syst. 2013, 10, 399.

[CrossRef]
10. Iñigo-Blasco, P.; del Rio, F.D.; Romero-Ternero, M.C.; Cagigas-Muñiz, D.; Vicente-Diaz, S. Robotics software frameworks for

multi-agent robotic systems development. Robot. Auton. Syst. 2012, 60, 803–821. [CrossRef]
11. Geihs, K. Engineering Challenges Ahead for Robot Teamwork in Dynamic Environments. Appl. Sci. 2020, 10, 1368. [CrossRef]
12. Bullo, F.; Cortés, J.; Martínez, S. Distributed Control of Robotic Networks: A Mathematical Approach to Motion Coordination Algorithms;

Princeton University Press: Princeton, NJ, USA, 2009.

http://doi.org/10.1109/ACCESS.2018.2831228
http://dx.doi.org/10.1109/CLEI47609.2019.235098
http://dx.doi.org/10.3390/app11114948
http://dx.doi.org/10.1109/TSMCC.2007.913919
http://dx.doi.org/10.3390/pr8030312
http://dx.doi.org/10.1016/j.aei.2005.06.002
http://dx.doi.org/10.5772/57313
http://dx.doi.org/10.1016/j.robot.2012.02.004
http://dx.doi.org/10.3390/app10041368

Appl. Sci. 2021, 11, 8291 34 of 35

13. Yang, Z.; Zhang, Q.; Chen, Z. A novel adaptive flocking algorithm for multi-agents system with time delay and nonlinear
dynamics. In Proceedings of the 32nd Chinese Control Conference, Xi’an, China, 26–28 July 2013; pp. 998–1001.

14. Sadik, A.R.; Urban, B. An Ontology-Based Approach to Enable Knowledge Representation and Reasoning in Worker–Cobot
Agile Manufacturing. Future Internet 2017, 9, 90. [CrossRef]

15. Viseras, A.; Xu, Z.; Merino, L. Distributed Multi-Robot Information Gathering under Spatio-Temporal Inter-Robot Constraints.
Sensors 2020, 20, 484. [CrossRef]

16. Siefke, L.; Sommer, V.; Wudka, B.; Thomas, C. Robotic Systems of Systems Based on a Decentralized Service-Oriented Architecture.
Robotics 2020, 9, 78. [CrossRef]

17. Pal, C.V.; Leon, F.; Paprzycki, M.; Ganzha, M. A Review of Platforms for the Development of Agent Systems. arXiv 2020,
arXiv:2007.08961.

18. Jamroga, W.; Penczek, W. Specification and Verification of Multi-Agent Systems. In Lectures on Logic and Computation: ESS-
LLI 2010 Copenhagen, Denmark, August 2010, ESSLLI 2011, Ljubljana, Slovenia, August 2011, Selected Lecture Notes; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 210–263. [CrossRef]

19. Blanes, D.; Insfran, E.; Abrahão, S. RE4Gaia: A Requirements Modeling Approach for the Development of Multi-Agent
Systems. In Advances in Software Engineering; Ślęzak, D., Kim, T., Kiumi, A., Jiang, T., Verner, J., Abrahão, S., Eds.; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 245–252.

20. Bresciani, P.; Giorgini, P.; Giunchiglia, F.; Mylopoulos, J.; Perini, A. Tropos: An Agent-Oriented Software Development
Methodology. Auton. Agents-Multi-Agent Syst. 2004, 8, 203–236. [CrossRef]

21. Jamont, J.P.; Raievsky, C.; Occello, M. Handling Safety-Related Non-Functional Requirements in Embedded Multi-Agent
System Design. In Advances in Practical Applications of Heterogeneous Multi-Agent Systems. The PAAMS Collection; Demazeau, Y.,
Zambonelli, F., Corchado, J.M., Bajo, J., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 159–170.

22. Picard, G.; Gleizes, M.P. The ADELFE Methodology Designing Adaptive Cooperative Multi-Agent Systems. In Methodologies and
Software Engineering for Agent Systems; Kluwer Publishing: Alphen aan den Rijn, The Netherlands, 2004; Chapter 8, pp. 157–176.

23. Milner, R. The Space and Motion of Communicating Agents; Cambridge University Press: Cambridge, UK, 2009; Volume 20. [CrossRef]
24. Sevegnani, M.; Calder, M. Bigraphs with sharing. Theor. Comput. Sci. 2015, 577, 43–73. [CrossRef]
25. Krivine, J.; Milner, R.; Troina, A. Stochastic Bigraphs. Electron. Notes Theor. Comput. Sci. 2008, 218, 73–96.
26. Gassara, A.; Bouassida, I.; Jmaiel, M. A Tool for Modeling SoS Architectures Using Bigraphs. In Proceedings of the Symposium on

Applied Computing; Association for Computing Machinery: New York, NY, USA, 2017; pp. 1787–1792. [CrossRef]
27. Archibald, B.; Shieh, M.Z.; Hu, Y.H.; Sevegnani, M.; Lin, Y.B. BigraphTalk: Verified Design of IoT Applications. IEEE Internet

Things J. 2020, 7, 2955–2967. [CrossRef]
28. Calder, M.; Koliousis, A.; Sevegnani, M.; Sventek, J. Real-time verification of wireless home networks using bigraphs with sharing.

Sci. Comput. Program. 2014, 80, 288–310. [CrossRef]
29. Perrone, G.; Debois, S.; Hildebrandt, T. A model checker for Bigraphs. In Proceedings of the ACM Symposium on Applied

Computing, New York, NY, USA, 26–30 March 2012. [CrossRef]
30. Grzelak, D. Bigraph Framework for Java. 2021. Available online: https://bigraphs.org/products/bigraph-framework/ (accessed

on 16 August 2021).
31. Sevegnani, M.; Calder, M. BigraphER: Rewriting and Analysis Engine for Bigraphs. In Proceedings of the International Conference on

Computer Aided Verification, Los Angeles, CA, USA, 21–24 July 2020; Springer: Cham, Switzerland, 2016; Volume 9780, pp. 494–501.
[CrossRef]

32. Mansutti, A.; Miculan, M.; Peressotti, M. Multi-agent Systems Design and Prototyping with Bigraphical Reactive Systems.
Distributed Applications and Interoperable Systems; Magoutis, K., Pietzuch, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp.
201–208.

33. Taki, A.; Dib, E.; Sahnoun, Z. Formal Specification of Multi-Agent System Architecture. In Proceedings of the ICAASE 2014
International Conference on Advanced Aspects of Software Engineering, Constantine, Algeria, 2–4 November 2014.

34. Pereira, E.; Potiron, C.; Kirsch, C.M.; Sengupta, R. Modeling and controlling the structure of heterogeneous mobile robotic
systems: A bigactor approach. In Proceedings of the 2013 IEEE International Systems Conference (SysCon), Orlando, FL, USA,
15–18 April 2013; pp. 442–447. [CrossRef]

35. Agha, G. Actors: A Model of Concurrent Computation in Distributed Systems; MIT Press: Cambridge, MA, USA, 1986.
36. Cybulski, P.; Zieliński, Z. UAV Swarms Behavior Modeling Using Tracking Bigraphical Reactive Systems. Sensors 2021, 21, 622.

[CrossRef] [PubMed]
37. Mermoud, G.; Upadhyay, U.; Evans, W.C.; Martinoli, A. Top-Down vs. Bottom-Up Model-Based Methodologies for Distributed

Control: A Comparative Experimental Study. In Experimental Robotics: The 12th International Symposium on Experimental Robotics;
Springer: Berlin/Heidelberg, Germany, 2014; pp. 615–629. [CrossRef]

38. Amato, F.; Moscato, F.; Moscato, V.; Pascale, F.; Picariello, A. An agent-based approach for recommending cultural tours. Pattern
Recognit. Lett. 2020, 131, 341–347. [CrossRef]

39. Cybulski, P. Verification Tool for TRS-SSP Toolchain. (trs-ssp-verif). Available online: https://github.com/zajer/trs-ssp-verif
(accessed on 16 August 2021).

40. Cybulski, P. A Tool for Generating Walks in State Space of a TRS-Based Systems. 2021. Available online: https://github.com/
zajer/trs-ssp (accessed on 16 August 2021).

http://dx.doi.org/10.3390/fi9040090
http://dx.doi.org/10.3390/s20020484
http://dx.doi.org/10.3390/robotics9040078
http://dx.doi.org/10.1007/978-3-642-31485-8_6
http://dx.doi.org/10.1023/B:AGNT.0000018806.20944.ef
http://dx.doi.org/10.1017/CBO9780511626661
http://dx.doi.org/10.1016/j.tcs.2015.02.011
http://dx.doi.org/10.1145/3019612.3019802
http://dx.doi.org/10.1109/JIOT.2020.2964026
http://dx.doi.org/10.1016/j.scico.2013.08.004
http://dx.doi.org/10.1145/2245276.2231985
https://bigraphs.org/products/bigraph-framework/
http://dx.doi.org/10.1007/978-3-319-41540-6_27
http://dx.doi.org/10.1109/SysCon.2013.6549920
http://dx.doi.org/10.3390/s21020622
http://www.ncbi.nlm.nih.gov/pubmed/33477345
http://dx.doi.org/10.1007/978-3-642-28572-1_42
http://dx.doi.org/10.1016/j.patrec.2020.01.005
https://github.com/zajer/trs-ssp-verif
https://github.com/zajer/trs-ssp
https://github.com/zajer/trs-ssp

Appl. Sci. 2021, 11, 8291 35 of 35

41. Cybulski, P. Visualization Tool for TRS-SSP Toolchain. (trs-ssp-frontend). Available online: https://github.com/zajer/trs-ssp-
frontend (accessed on 16 August 2021).

https://github.com/zajer/trs-ssp-frontend
https://github.com/zajer/trs-ssp-frontend

	Introduction
	Methods and Materials
	Basic Concepts
	Bigraphs
	State Space
	Behavior Policy
	Verification and Visualization of Behavior Policies
	Phase 4—Applying a Single Transformation to Constructed State and Checking Correctness Beforehand
	Phase 3—Constructing Scenario State at a Given Moment of Time
	Phase 2—Extending a Previously Constructed Walk
	Phase 1—Constructing All Scenario States and Checking the Correctness of a Given Walk

	Results
	Model Verification Example
	Introduction
	Using the Algorithm for Model Verification

	Example of Scenario States Visualization
	Introduction
	Using the Algorithm to Construct Scenario States

	Example of Verifying the Fulfillment of Non-Functional Requirements
	Non-Functional Requirement—Length of a Mission
	Non-Functional Requirement—Collision Avoidance

	Memory Complexity

	Discussion
	References

