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Featured Application: The characterization of the correlation structure among air pollutants
during heat waves may be useful for decision makers that have the responsibility of taking
additional measures to prevent health effects on the population when extreme temperatures
are forecasted.

Abstract: Meteorological conditions play a crucial role in air pollution by affecting both directly and
indirectly the emissions, transport, formation, and deposition of air pollutants. Extreme weather events
can strongly affect surface air quality. Understanding relations between air pollutant concentrations and
extreme weather events is a fundamental step toward improving the knowledge of how excessive heat
impacts on air quality. In this work, we developed a statistical procedure for investigating the variations
in the correlation structure of four air pollutants (NOx, O3, PM10, PM2.5) during extreme temperature
events measured in monitoring sites located of Emilia Romagna region, Northern Italy, in summer
(June–August) from 2015 to 2017. For the selected stations, Hot Days (HDs) and Heat Waves (HWs)
were identified with respect to historical series of maximum temperature measured for a 30-year period
(1971–2000). This method, based on multivariate techniques, allowed us to highlight the variations in air
quality of study area due to the occurrence of HWs. The examined data, including PM concentrations,
show higher values, whereas NOx and O3 concentrations seem to be not influenced by HWs. This
operative procedure can be easily exported in other geographical areas for studying effects of climate
change on a local scale.

Keywords: local climate variability; air pollution; multivariate statistics

1. Introduction

In the last years, the scientific research linked to human health and wellbeing of
populations in urban and industrialized areas mainly focused on two issues: climate
change and air quality [1–10]. Climate change affects human wellbeing through many
related events: increased frequency and intensity of heat waves and cold waves, changing
precipitation intensity, and increased devastating weather events, such as hurricanes,
tornadoes, floods and droughts, cold-related mortality, and heat-related mortality [11–17].
Observed climate trends show that temperatures are increasing, particularly extreme
temperatures, with heat waves (HWs) becoming more frequent, more intense, and longer
lasting [3,17–20]. In literature, many studies are focused on the effects of HWs and air
pollution on human health, particularly on the increase in mortality and morbidity, whilst
few studies investigate the link between HWs and air pollution [2,21–24].

Climate change is intrinsically connected to air pollution because the main driver of
climate change is fossil fuel combustion, which is also a major contributor to air pollution. In
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fact, combustion processes emit both greenhouse gases (CO2, CH4, N2O) and air pollutants
(PM, SO2, NOx, CO) [25–28]. Meteorological conditions seem to influence atmospheric
concentrations of ozone, particulate matter, and nitrogen oxides. These air pollutants are a
major threat to human health; particularly, they are dangerous for older people, people
with heart disease, and children. Inadequate pollutant dispersion due to topographic and
meteorological conditions, such as low wind intensity, cause the stagnation of the chemical
air mass, associated with peak pollution episodes [29–31].

We focused our investigation on Po plain, an area in which many studies have shown
a strong influence of dispersion conditions for all particle matter ranges, a distinct anthro-
pogenic periodicity (seasonal and diurnal) for many pollutants, and a strong dependence
on atmospheric conditions. Our study analyses data collected during the summers of the
years 2015–2017 in the Emilia Romagna Region (Italy). We focus on this region because
of its severe urban air pollution due to the high population and industrial manufacturing
density and to the fact of being in a valley where two surrounding mountain chains favor
the stagnation of pollutants [29–31]. Extreme temperature events (Hot Days and Heat
Waves) in selected 14 regional stations were identified with respect to a 30-year period
(1971–2000). The objective of this study was to develop an operative procedure based on
multivariate techniques for investigating the relationship between temperature and air
quality during Hot Days and Heat Waves and for evaluating the impact of temperature on
air pollutant concentrations.

2. Materials and Methods
2.1. Study Area

The study was carried out in Emilia Romagna (Figure 1), a region of Northern Italy
that largely includes the Po Valley, delimited by Tusco-Emilian Apennines to the south, with
mountains reaching altitude of 2000 m.a.s.l. A climate gradient, from the Mediterranean
warm-temperate climate to the cold-temperate climate of the Apennines, is present in
the region. In the Po plain, summers are hot, winters are cold (typical monthly mean
temperatures ranging from 1 ◦C to 26 ◦C), and autumns rainy. This region is characterized
by high humidity levels (typical monthly mean relative humidity ranging from 60% to
84%) and low wind intensities (typical annual mean wind intensities of about 2 m/s). The
Emilia Romagna region is densely populated and suffers a strong anthropic pressure due
to urban areas, heavy industrialization, and intensive breeding and agriculture.

Figure 1. Study area and sampling sites. In light grey: Apennine mountains and hill area; in dark
grey: west plain area; in white: east plain area; in black: the agglomeration area (Bologna city)
(www.arpae.it) accessed on 1 July2021.

2.2. Data

In this work, 14 sampling sites (SS) were selected. The sampling points are located
either in rural areas or in background urban or suburban areas. Moreover, the stations
are representative of the four areas in which the territory of the region is classified, the
agglomeration area of Bologna city and the three different geographical zones: west plain
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area, east plain area, and Apennine mountains and hill area (Figure 1). Each sampling site
consists of an air-quality monitoring station and a closer meteorological station managed
by the Regional Agency for Prevention, Environment, and Energy of Emilia-Romagna
(www.arpae.it accessed on 1 July 2021). The sampling sites are listed in Table 1. For each
site, we analyze the following six descriptors (DSs), reduced at daily scale and collected
during summer (1 June–31 August) from 2015 to 2017: PM10 daily concentrations (µg/m3):

• PM2.5 daily concentrations (µg/m3);
• NOx daily concentrations (µg/m3);
• O3 daily concentrations (µg/m3);
• Tmax daily maximum temperature (◦C); and
• RHmin daily minimum relative humidity (%).

Table 1. Sampling sites: in the last two columns, the classification according to Air Quality Monitoring
Network of Emilia-Romagna region (AQ cl.) and the altitude (Q).

Label Geographical Zone Municipality AQ cl. Q
(m.a.s.l.)

SS1 Montecucco West plain area Piacenza Urban 61
SS2 Cittadella West plain area Parma Urban 60
SS3 Badia Westplain area Parma Rural 202
SS4 San Lazzaro West plain area Reggio Emilia Urban 55
SS5 Castellarano West plain area Reggio Emilia Suburban 150
SS6 Parco Ferrari West plain area Modena Urban 30
SS7 G. Margherita Bologna area Bologna Urban 43
SS8 S.Pietro Capofiume Eastplain area Bologna Rural 11
SS9 Villa Fulvia East plainarea Ferrara Urban 8

SS10 J. di Savoia East plain area Ferrara Rural −2
SS11 Parco Bertozzi Eastplain area Ravenna Urban 35
SS12 Parco Resistenza Eastplain area Forlì-Cesena Urban 29
SS13 Marecchia East plain area Rimini Urban 5

SS14 Porretta Terme Apennine mountains
and hill area Bologna Rural 970

For each sampling site, we used historical series of maximum temperatures for the
reference 30-year period (1971–2000); we selected this reference period on the base of the
suggestion given by WMO (World Meteorological Organization) to update CLINO every
ten years [32,33]. The entire database was checked to guarantee the goodness of fit and
to avoid the presence of anomalies; to this aim, ad-hoc routines were implemented in
R environment for automatically detecting missing data. In all the examined data, the
percentage of data missing is less than 5%; in the other cases, the data are considered
not available.

2.3. Data Analysis Procedure

Using historical series of maximum temperature and following the methodology
proposed in [3], Hot Days (HD) and Heat Waves (HW) for each sampling site and for each
summer were determined. For each station, we defined the degree of severity of these ex-
treme events, comparing the 2015–2017 data with the respective historical time series from
1971–2000. The current daily value of temperature was compared with its mean historical
value, including standard deviation (σ). We define Hot Days of the first degree HDL1 if
the current value is higher than historical values ±σ; Hot Days of the second degree HDL2
with n{HDL2} ≤ n{HDL1}, if the current value is higher than historical values ± 2σ; and
Hot Days of the third degree HDL3 with n(HDL3) ≤ n{HDL2} ≤ n{HDL1}, if the current
value is higher than historical values± 3σ. Furthermore, to measure the persistence of these
events, the occurrence of Heat Waves is defined with the following criteria: occurrence
of at least six consecutive days classified as HDL1 = occurrence of Heat Wave of the first
degree HWL1; occurrence of at least six consecutive days classified as HDL2 = occurrence
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of Heat Wave of the second degree HWL2; and occurrence of at least six consecutive days
classified as HDL3 = occurrence of Heat Wave of the third degree HWL3.

In a second step, multivariate statistical procedures were applied [34,35]. For each
sampling site, all data related to summer 2015–2017 were organized in data matrices at
daily scale. Cluster Analysis (CA) and Principal Component Analysis (PCA) were applied
to highlight the underlying correlation structure between pollutants concentrations and
meteorological parameters [36]. CA is a classification technique used for determining
homogeneous subgroups of sampling sites. For each data matrix, we calculated the
association matrix using the Euclidean distance, and we applied the clustering algorithm at
complete linkage. For results validation, each cluster has to be characterized by means of
endogenous indices (centroids are the mean values of descriptors measured in SS included
in the cluster) and by means of exogenous indices (mean values of variables external to
the clustering procedure). The correspondence among endogenous and exogenous indices
allowed us to explain the clustering structure. If the data matrix is correctly constructed,
the results must not depend on the selected parameters

PCA is the most common factorial technique for reducing the space dimensionality
and for highlighting the underlying correlation structure among measured variables. For
determining the principal components (PCs), starting from data matrices, we calculated
the eigenvalues and the corresponding eigenvectors of correlation matrix (association
matrix based on Pearson coefficient). The eigenvectors represent the mutually orthogonal
linear combinations of the original descriptors, and each of them can be considered a new
independent variable. In order to investigate the nature of the new variables, or PC, we
analyzed the percentage loadings matrix in which each element represents the percentage
weight of the original descriptor in the PC.

For highlighting differences in the correlation structures among pollutants and me-
teorological parameters, we used Hot Days and Heat Waves identification procedure for
selecting specific subsets of sampling days. We introduced two external variables with
double modalities: (HD/noHD) and (HW/noHW). On the base of value assumed by bi-
modal variables, the original data matrices, including all the summer days My

SS = [m× n]
(in which SS indicates the sampling site, y the year, m the number of sampling days m ≤ 92,
and n the number of descriptors), may be divided in the following submatrices:

1 HD-Submatrix (MHD)
y
SS = [mHD × n] and noHD-Submatrix (MnoHD)

y
SS = [mnoHD × n],

for which (MHD)
y
SS ∪ (MnoHD)

y
SS = My

SS with mHD ≤ m . Basically, we divided
the original matrix into two submatrices one containing only HD days and the other
containing only non-HD days; and

2 HW-Submatrix (MHW)
y
SS = [mHW × n] and noHW-Submatrix (MnoHW)

y
SS = [mnoHW × n],

for which (MHW)
y
SS ∪ (MnoHW)

y
SS = My

SS with mHW ≤ mHD ≤ m. Additionally, in this
case, we divided the original matrix in two parts: the first that contains only the days that fall
within a defined interval HW and another that contains only the days that do not belong to
intervals of HW.

This procedure may be repeated also introducing the degree of severity for HD and
HW, reducing the number of sampling days included in the submatrices, and increasing
the level of risk. For all these different submatrices, PCA is applied in order to characterize
the different correlation structures.

3. Results and Discussion
3.1. HD and HW Characterization

Hot Days and Heat Waves of the three levels of severity identified for the 14 study
sites are shown in Tables 2 and 3. We highlight that the three threshold series used to
identify extreme events were obtained using historical temperature series proper for each
site station; in this way, the extreme event occurrences were identified with a higher degree
of accuracy because linked to strictly local information.
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Table 2. Hot Days (in parenthesis, in italic, the percentage calculated in summer, 92 sampling days).
Legend: n(HDL1) = number of Hot Days of the first level; n(HDL2) = number of Hot Days of the
second level; n(HDL3) = number of Hot Days of the third level.

2015 2016 2017

n(HDL1) n(HDL2) n(HDL3) n(HDL1) n(HDL2) n(HDL3) n(HDL1) n(HDL2) n(HDL3)

SS1 40 (43%) 9 (10%) 0 14 (15%) 1 (1%) 0 35(38%) 5 (5%) 0
SS2 39 (42%) 12 (13%) 2 (2%) 17 (18%) 1 (1%) 0 38 (41%) 13 (14%) 0
SS3 59 (64%) 19 (20%) 3 (3%) 36 (39%) 6 (6%) 0 57 (62%) 21 (22%) 3 (3%)
SS4 45 (49%) 9 (10%) 0 9 (10%) 0 0 38 (41%) 12 (13%) 0
SS5 50 (54%) 12 (13%) 0 29 (31%) 4 (4%) 0 55 (60%) 17 (18%) 3 (3%)
SS6 52 (56%) 17 (18%) 3 (3%) 27 (29%) 4 (4%) 0 54 (58%) 20 (21%) 4 (4%)
SS7 31 (33%) 4 (4%) 0 9 (10%) 0 0 30 (32%) 5 (5%) 0
SS8 37 (40%) 9 (10%) 0 13 (14%) 2 (2%) 0 38 (41%) 7 (7%) 0
SS9 34 (37%) 12 (13%) 0 16 (17%) 2 (2%) 0 39 (42%) 9 (10%) 1 (1%)
SS10 40 (43%) 13 (14%) 2 (2%) 15 (16%) 3 (3%) 0 36 (39%) 7 (7%) 1 (1%)
SS11 47 (51%) 14 (15%) 1 (1%) 28 (30%) 4 (4%) 0 49 (53%) 16 (17%) 1 (1%)
SS12 40 (43%) 12 (13%) 0 20 (22%) 3 (3%) 0 41 (44%) 14 (15%) 1 (1%)
SS13 38 (41%) 8 (9%) 1 (1%) 18 (19%) 1 (1%) 0 34 (37%) 10 (11%) 1 (1%)
SS14 36 (39%) 3 (3%) 0 13 (14%) 0 0 36 (39%) 9 (10%) 0

Table 3. Heat Waves (in parenthesis, the length of each HW expressed in days). Legend:
n(HWL1) = number of Heat Waves of the first level; n(HWL2) = number of Heat Waves of
the second level.

2015 2016 2017

n(HWL1) n(HWL2) n(HWL1) n(HWL1)

SS1 3 (7,8,12) 2 (6,7)
SS2 3 (7,13,6) 2 (6,7)
SS3 5 (8,6,8,15,6) 1 (9) 2 (6,7) 5 (8,7,9,7,8)
SS4 4 (8,8,14,6) 4 (7,7,6,7)
SS5 4(8,12,14,6) 6 (8,7,8,7,8,8)
SS6 4 (8,8,14,6) 1 (8) 6 (8,7,8,7,8,8)
SS7 1 (8) 1 (6)
SS8 2 (8,8) 5 (6,6,6,7,7)
SS9 2 (6,9) 1 (7) 3 (6,6,7)

SS10 3 (7,6,10) 1 (8) 4 (6,6,7,6)
SS11 2 (8,10) 1 (8) 1 (6) 5 (6,7,7,6,7)
SS12 2 (7,10) 3 (6,7,6)
SS13 2 (7,10)
SS14 3 (6,8,10) 4(8,6,7,6)

From Table 2, we note that 2015 and 2017 present higher events of HDL1, HDL2, and
HDL3 respect to 2016; Table 3 shows that we record HWL1 for all the stations (except for
SS13 during 2017) in 2015 and 2017, while only three HWL1 are recorded in 2016 for SS3
and SS11 stations. HWL2 are observed in 2015 in few stations (SS3, SS6, SS9, SS10, SS11),
whereas no heat wave of the third level is recorded.

Comparing these results with those obtained in an area of Southern Italy (Matera,
Basilicata) during summer 2015–2017, we note that, using the same method, the number of
HDs and HWs highlighted in the second case are greater. Particularly, we note the marked
presence of second- and third-level HWs, which instead are rare in Emilia-Romagna. This
is probably due to the difference between the two examined regions: in Emilia-Romagna,
the anthropogenic pressure of the last 40 years has remained unchanged, while in Matera,
there has been a significant variation in land use [3,11].

3.2. Cluster Analysis on 2015–2017 Data

In Table 4, mean values of all the six descriptors are shown. If we focus on pollution
data, we note that the recorded values, the maximum values included, do not exceed the
alarm threshold stated by Italian law, which incorporates the European indications [37]. If
we compare the values measured in the selected sampling sites with the data shown in the
literature for similar studies, we note that they are low, both those measured by Mavrakys
et al. [24] and those measured by Kalisa et al. [2]
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Table 4. Mean values of pollutants concentrations, maximum daily temperature (Tmax), and mini-
mum daily relative humidity (RHmin) measured in 2015; 92 sampling days (n.a., not available data).

2015 PM10 PM2.5 NOx O3 Tmax RHmin

(µg/m3) (µg/m3) (µg/m3) (µg/m3) (◦C) (%)

SS1 25.6 17.5 15.8 88.8 31.4 30.3
SS2 26.1 14.4 13.3 98.3 31.8 33.1
SS3 21.0 12.9 6.6 104.4 31.5 32.3
SS4 20.4 13.6 13.0 83.8 32.4 28.75
SS5 19.4 12.5 9.4 98.2 31.0 n.a.
SS6 20.2 13.4 17.7 81.9 31.9 28.4
SS7 19.6 12.6 16.0 88.1 31.4 27.8
SS8 20.6 12.5 9.6 73.0 32.0 34.0
SS9 20.8 11.8 10.8 80.9 31.2 33.1

SS10 24.6 16.7 8.1 86.9 30.7 n.a.
SS11 n.a. n.a. n.a. n.a. n.a. n.a.
SS12 17.7 10.0 16.5 86.2 31.0 30.9
SS13 23.4 14.1 17.4 86.2 28.7 40.1
SS14 14.1 9.4 3.8 86.8 29.3 n.a.

2016 PM10 PM2.5 NOx O3 Tmax RHmin

SS1 14.3 19.6 16.4 78.5 30.1 30.9
SS2 20.8 11.2 13.6 89.3 30.4 33.4
SS3 16.1 9.3 7.2 90.8 30.2 32.2
SS4 17.2 11.0 14.8 73.6 31.4 31.6
SS5 16.3 10.2 7.9 89.1 29.6 n.a.
SS6 16.8 10.0 19.4 79.3 30.3 30.5
SS7 15.4 9.7 14.3 84.3 29.7 29.9
SS8 15.9 9.6 4.9 67.2 30.2 37.8
SS9 16.7 8.1 10.0 80.1 29.6 35.7

SS10 18.5 12.3 6.3 77.4 28.5 n.a.
SS11 14.6 8.2 8.6 79.6 31.1 33.3
SS12 13.9 7.6 7.9 77.4 29.3 33.6
SS13 18.3 9.7 15.7 77.4 27.3 41.8
SS14 10.8 6.2 2.3 61.0 27.6 n.a.

2017 PM10 PM2.5 NOx O3 Tmax RHmin

SS1 15.5 21.8 13.3 85.9 31.8 n.a.
SS2 23.5 11.4 12.7 94.5 32.4 28.5
SS3 18.1 9.6 6.6 106.5 32.1 26.4
SS4 18.8 11.2 13.8 83.6 33 24.7
SS5 20.1 11.2 10.8 100.8 31.8 n.a.
SS6 19.9 9.8 18.5 87.2 32.4 24.8
SS7 16.8 10.4 10.8 94.6 31.9 24.9
SS8 18.8 10.1 6.4 60.8 32.3 32.3
SS9 18.9 8.5 8.5 85.3 31.7 31.3

SS10 20.4 12.6 8.3 78.7 30.5 n.a.
SS11 17.0 9.3 10.2 84.3 33.3 26.6
SS12 16.3 9.3 11.4 91.3 31.5 29.6
SS13 21.8 10.2 16.6 91.3 28.9 34.4
SS14 14.5 7.7 1.8 82.2 30.1 n.a.

To put in evidence homogeneous subgroups of sampling sites, in our statistical pro-
cedure, we applied a clustering algorithm. We repeated the clustering procedure twice,
the first time taking into account all pollutants and meteorological parameters available
and the second time eliminating RHmin because, as shown in Table 4, it presents a great
deal of data missing. We obtained similar results so, for brevity, here, we show only
the results of the procedure applied eliminating RHmin. For each year, data matrices are
M2015 = [13 SS × 5 DS]; M2016 = [14 SS × 5 DS]; and M2017 = [14 SS × 5 DS].

The dendrograms (Figure 2) show that SS2 Cittadella, SS3 Badia, and SS5 Castellarano
have a high level of similarity during all the examined periods. These three stations, from a
geographical point of view, are located in the west plain area and have a high on sea level
of 60 m.a.s.l., 202 m.a.s.l., and 150 m.a.s.l., respectively. All of them are characterized by low
concentrations of NOx and high values of O3. In 2015 and 2016, SS8 San Pietro Capofiume
and SS14 Porretta Terme showed isolated elements in the dendrograms. They are located
in two different geographical areas: the east plain area and Apennine Mountain area; have
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two different highs on sea level (11 m.a.s.l. and 970 m.a.s.l.); and are characterized by very
low pollutants concentrations.

3.3. Combined Analysis of HD/HW Occurrence and Pollutants Concentrations

In the groups SS2, SS3, and SS5, highlighted by cluster procedure, the frequency of
Hot Days is higher than in the other SSs. In 2015, 53% of summer days are classified as
HDL1, while the other SSs show an average of 43% of HDL1, while in 2017, these two
percentages are 50% and 40%, respectively (Table 2).

Regarding Heat Waves’ occurrence (Table 3), the difference is more marked. In the
first group of SSs, in 2015, an average of four HWL1 for the sampling site is recorded; on the
contrary, in the other group of SSs, this mean frequency is 2.5. In 2017, the HWL1 frequencies
were 4.3 and 3.4, respectively. Moreover, also the Heat Waves intensity (or length of HWs)
was significantly different: in 2015, for the first group of SSs, 73% of sampling days
classified as HDL1, which includes Heat Waves; on the contrary, in the other group of SSs,
this percentage is 53%; in 2017, analogous behavior was observed, and the two percentage
were 62% and 55%, respectively.

In the following, we present and discuss the results for the sampling site SS3 Badia
(Parma, West Plain Area); this choice is based on the results previously discussed. SS3
shows a certain number of HW and HD that is statistically significant, allowing a detailed
discussion of the correlation structure.

Using the HD and HW identification procedure [3], we introduce, as explained in
Section 2.3, two external variables with double modalities (HD/noHD) and (HW/noHW)
determining the submatrices:

(MHD)
y
SS3 = [mHD x n] and (MnoHD)

y
SS3 = [mnoHD x n ]

(MHW)
y
SS3 = [mHW x n] and (MnoHW)

y
SS3 = [mnoHW x 6 DS].

in which n is the number of DS (n = 6); mHD is the number of Hot Days; and mHW is the
number of Hot Days included in HW (reported in Table 5 as N number of sampling days).
In Table 5, for each year and for each pollutant, we report the mean value calculated in
summer and the percentage difference of mean values calculated only on sampling days
classified as HD or HW. Levels of gaseous pollutants NOx and O3 show limited variations;
on the contrary, the levels of particulate (PM10 and PM2.5) show a significant increase in
the HD and in the HW sampling day subsets. The concentration percentage increase is in
the range 15–31%.

Figure 2. Cont.
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Figure 2. Dendrograms of sampling sites.

Table 5. Mean values (mtot expressed in µg/m3) of pollutants concentrations measured in SS3
sampling site and the corresponding percentage variation (∆m%) calculated with respect to mean
values in Hot Days submatrices (MHD)

y
SS3 and to mean values in Heat Waves submatrices (MHW)

y
SS3

(N, number of sampling days).

N mtot(PM10) mtot(PM2.5) mtot(NOx) mtot(O3)

M2015
SS3 92 21 12.9 6.6 104.4

∆m% ∆m% ∆m% ∆m%
(MHD)

2015
SS3 59 17% 16% −3% 12%

(MHW)2015
SS3 43 22% 22% −4% 14%

N mtot(PM10) mtot(PM2.5) mtot(NOx) mtot(O3)

M2016
SS3 92 16.1 9.3 7.2 90.8

∆m% ∆m% ∆m% ∆m%
(MHD)

2016
SS3 36 21% 18% 1% 18%

(MHW)2016
SS3 13 31% 30% −11% 14%

N mtot(PM10) mtot(PM2.5) mtot(NOx) mtot(O3)

M2017
SS3 92 18.1 9.6 6.6 106.5

∆m% ∆m% ∆m% ∆m%
(MHD)

2017
SS3 53 17% 15% 6% 6%

(MHW)2017
SS3 38 20% 17% 7% 8%
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In last step, we applied PCA to submatrices (MHD)
y
SS3 and (MnoHD)

y
SS3 (the subma-

trices (MHW)
y
SS3 and (MnoHW)

y
SS3 are a subset of the previous matrices, and we obtained

similar results). For the entire investigated period 2015–2017, in (MHD)
y
SS3, the first three

factors explain more than 80% of data variance (Table 6), and the first factor is characterized
by PM concentrations, whereas for (MnoHD)

y
SS3 submatrices (Table 7), all the examined pol-

lutants and meteorological parameters have a similar weight (about 20%) in the first factor,
confirming the dominant role of particulate during Hot Days independent from relative
humidity, which often plays an isolated role in the correlation structure. These results are
comparable with what is described in Athene, where a worsening of the air-quality index
is described in correspondence with HDs and HWs [19]. In our case, the pollutants that
most increase their concentration in correspondence with heat waves are PM10 and PM2.5.

Table 6. PCA results for HDs detected in SS3 sampling site. In the upper part of the table,
the percentage of explained variance (P%) and the cumulative percentage (Pcum%) for the
first three Principal Components (PC); in the lower part, the percentage weights (w%) of
the original descriptors in the new factors.

2015 PC1 PC2 PC3

P% 56.0 26.4 8.1
Pcum% 82.4 90.5

w(PM10)% 26.2 0.3 12.1
w(PM2.5)% 24.9 1.1 12.0
w(NOx)% 14.9 9.7 66.3
w(O3)% 22.9 0.6 45.2

w(Tmax)% 10.9 34.2 0.1
w(RHmin)% 0.1 54.0 7.9

2016 PC1 PC2 PC3

P% 45.0 26.2 14.7
Pcum% 71.2 85.9

w(PM10)% 29.3 1.7 9.0
w(PM2.5)% 30.7 0.6 6.5
w(NOx)% 8.9 10.9 57.0
w(O3)% 12.1 19.6 23.3

w(Tmax)% 0.6 56.1 0.1
w(RHmin)% 18.3 11.1 4.1

2017 PC1 PC2 PC3

P% 41.8 23.7 18.0
Pcum% 65.5 83.5

w(PM10)% 33.6 3.4 0.4
w(PM2.5)% 29.5 3.4 3.8
w(NOx)% 8.0 20.5 21.1
w(O3)% 5.1 5.9 56.0

w(Tmax)% 21.9 15.1 8.3
w(RHmin)% 1.9 51.7 10.3

Our method allowed us to study the behavior of pollutants during extreme temper-
ature events even if the concentrations of pollutants were not particularly high, while
generally in the literature, we find comparisons between extreme events of concentration
of pollutants and extreme events of temperature [23]. Moreover, our statistical procedure
allowed us to make hypothesis also without a large database and on a local scale.
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Table 7. PCA results for noHDs detected in SS3 sampling site. In the upper part of the table, the
percentage of explained variance (P%) and the cumulative percentage (Pcum%) for the first three
Principal Components (PC); in the lower part, the percentage weights (w%) of the original descriptors
in the new factors.

2015 PC1 PC2 PC3

P% 50.7 28.5 10.6
Pcum% 79.2 89.9

w(PM10)% 28.8 3.4 0.2
w(PM2.5)% 21.2 10.9 8.1
w(NOx)% 9.6 21.0 45.8
w(O3)% 18.7 9.3 22.8

w(Tmax)% 19.6 13.8 3.5
w(RHmin)% 2.2 41.5 19.6

2016 PC1 PC2 PC3
P% 48.6 26.2 12.3

Pcum% 74.8 87.1
w(PM10)% 21.0 18.6 2.1
w(PM2.5)% 18.0 15.9 11.0
w(NOx)% 12.6 0.8 82.6
w(O3)% 20.7 11.1 3.9

w(Tmax)% 24.8 6.6 0.1
w(RHmin)% 3.0 47.0 0.3

2017 PC1 PC2 PC3
P% 48.4 27.1 11.5

Pcum% 75.5 87.0
w(PM10)% 26.3 6.5 1.7
w(PM2.5)% 25.7 3.9 1.3
w(NOx)% 11.9 5.9 79.2
w(O3)% 12.4 24.6 16.0

w(Tmax)% 9.2 31.8 1.8
w(RHmin)% 14.4 27.2 0.1

4. Conclusions

In this study, we present a statistical procedure investigating the behavior of air pollu-
tants concentrations during Hot Day and Heat Waves. Our procedure was based on the
following steps: definition of HD and HW from the comparison with the 30-year reference
periods of each sampling site; identification of homogenous subgroups of sampling sites
by means of Cluster analysis; and characterization of the correlation patterns among air
pollutants during Hot Days and Heat Waves by means of Principal Component Analysis.

For the examined test case, by analyzing extreme events of maximum temperature
through the identification of the number of occurrences of the Hot Days and their persis-
tence (Heat Waves), it is possible to state that: summer 2016 presented a lower frequency
of extreme event occurrence than summers 2015 and 2017; during the investigated and in
examined area, no Heat Wave of the third level was identified. The last step of our proce-
dure shows that there is a different behavior of pollutants during Heat Waves; particularly,
Particulate Matter concentrations are higher independent from humidity, whereas NO2
and O3 concentrations seem to be not influenced by Heat Waves.

We want to emphasize that our procedure is easily applicable also in different geo-
graphical areas and with different pollutants. This method works well even if the pollutants’
concentrations are low and if there are no large differences in the level of pollutants between
Hot Days and no Hot Days.

The discussed procedure can be used in other contexts at local scale; it is useful for
understanding the influence of extreme events on air pollutant concentrations and may
be used by decision makers that have the responsibility of taking additional measures to
prevent health effects on the population.
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CA Cluster Analysis
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noHD sampling day not classified as Hot Day
noHW sampling day not included in an Heat Wave
PCA Principal Component Analysis
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