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Abstract: In this work, Ce doped MgAl-LDHs layers have been developed through an in-situ
synthesis method on 6082 aluminum surface. The aim was to gain mechanistic insight into the role
of Ce(III) as an active corrosion inhibitor embedded in the LDHs layer. The development of the
LDH structure was verified by checking the presence of the characteristic XRD peaks, the platelet
morphology (evaluated by SEM-EDXS) and the functional groups (by FTIR-ATR analyses). The same
techniques were employed to assess the effect of a prolonged immersion time in 0.1 NaCl on the Ce
doped MgAl-LDH coatings. Electrochemical impedance spectroscopy (EIS) was employed to monitor
the evolution of the electrochemical properties of the coatings during prolonged immersion in saline
solutions. The findings suggest a crystallization/dissolution/precipitation mechanism which implies:
(i) the formation of crystalline cerium compounds, such as Ce(OH)3, in the LDH structure during the
synthesis; (ii) the dissolution upon exposure to the NaCl solution, thus leading to cerium ions release;
(iii) the precipitation of amorphous Ce oxides/hydroxides at the cathodic sites when the metal starts
to corrode; (iv), the consequent mitigation of the electrochemical activity of the metal and, thus, the
reduction of the extent of corrosion.

Keywords: MgAl-LDH; AA6082; Ce doping

1. Introduction

Chromate conversion coatings (CCC) have been widely used as anticorrosive treat-
ments for zinc, steel, and aluminum alloys until 2006 [1–3] thanks to the undeniable
active corrosion protection (ACP) provided by Cr(VI) species. However, the European
directive 2002/95/CE [4] banned the use of chromium for anticorrosive surface finishing
due to the high toxicity to human health and due to environmental impact of Cr(VI) on
living species [5]. In the last decades, numerous studies have been aimed towards the
substitution of Cr(VI) based surface conversion treatments for corrosion protection pur-
poses. In particular, hexafluorozirconic acid (H2ZrF6) [6–13] and hexafluorotitanic acid
(H2TiF6) [14–16] based treatments, silicon alkoxides derived sol-gel coatings [17–20], Cr(III)
conversion treatments [21–23], and lanthanides based conversion coatings [24–26] gained
prominent attention.

As far as lanthanides based conversion treatments are concerned, cerium salts proved
to be able to provide a certain active healing effect if properly released in correspondence
of a corrosion site [27,28]. The exploitation of the inhibition properties of cerium dates back
to the mid-1980. Eco-friendly cerium compounds-based conversion films are recognized to
provide corrosion mitigation through a cathodic inhibition effect [29,30].

In addition to the well-established surface conversion treatments, recently, a new class
of talcite-based coatings (namely layered double hydroxides, LDHs) has also been deeply
investigated as a promising surface finishing for corrosion protection purposes.
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LDHs are hydrotalcite-like clays (generally termed as anionic clays) constituted by
lamellar hydroxides (Figure 1) typically having two types of metallic cations arranged
in octahedral sites forming a layered crystalline structure [31,32]. The overall positively
charged layers are electrically counterbalanced by interlayer water molecules and anionic

species [33,34]. The general formula of an LDH is expressed as
[
M2+

1−xM3+
x (OH)2

]q+(
Xn−)

q/n ·
mH2O where M2+ and M3+ are divalent and trivalent metal cations, respectively, x stands
for the molar ratio M2+/

(
M2+ + M2+

)
and Xn− represents an anion having charge n− [35].

Usually, the divalent and trivalent metal cations are Mg2+, Zn2+, Cu2+, Mn2+, Co2+, Al3+,
Cr3+ and Fe3+ ions but also lanthanides and bismuth, having comparable ionic radii, can
isomorphically substitute the trivalent metallic cations [36]. For what concern the inter-
domain anions, F−, Cl− Br−, I−, oxides as NO−3 , CO2−

3 , sulfates and chromates or more
complex organic and inorganic compounds can be present as counterbalancing species.
Generally, anions having high charge density are preferentially intercalated into the LDH
complex [37–39]. According to the recent reviews on this topic [40,41], several LDH based
coatings were developed by the in-situ method on aluminum alloys and were demonstrated
to provide the substrate with improved corrosion protection. The anti-corrosion properties
of these compounds are recognized to rely on two factors: (i) the ion-exchange mechanism
through which corrosive species as chlorides are entrapped into the LDH structure, being
thermodynamically more favored than other species to lay inside the domains [42,43],
and (ii) a physical barrier effect that protects the substrate [44,45]. Rare earth elements (in
particular, lanthanum) have been successfully employed to modify LDH coatings either
synthesized by means of the co-precipitation method [46,47] and synthesized in situ on
aluminum alloys [48–51]. In a previous work devoted to Ce(III)-doped MgAl-LDHs layers
developed on anodized AA6082 [52], we observed a beneficial effect in terms of improved
durability provided by the presence of cerium ions. However, the role of cerium was not
investigated in-depth, and the corrosion protection mechanism was only hypothesized. In
this work, we aim at gaining mechanistic insight into the role of Ce(III) as an active corro-
sion inhibitor embedded in the LDHs layer. For this reason, we performed the deposition
of Ce doped MgAl-LDHs layers by the in-situ method on AA6082. The synthesis time was
varied to assess the potential of the synthesis route to embed the lanthanide ions in the
LDH structure. The structural and chemical properties and the morphological features
of the LDHs layers were evaluated prior and after the exposure to a saline containing
environment to investigate the role of the cerium on the corrosion processes occurring
on the metal surface. The evolution of the surface conditions during the exposure was
monitored by means of electrochemical impedance spectroscopy (EIS). The investigation
of the surface of the samples after the exposure to the aggressive solution, along with the
electrochemical assessment, revealed an active role of cerium to mitigate the corrosion
process occurring on the metal surface.
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2. Experimental Section
2.1. Materials

The samples were obtained from a laminated AA6082 T6 aluminum plate (wt.%;
0.70–1.30 silicon, 0.50 iron, 0.10 cupper, 0.40–1.00 manganese, 0.60–1.20 magnesium,
0.25 chromium, 0.20 zinc, 0.10 titanium, and balance aluminum) provided by Metal Center
S.r.l. (Italy) having a thickness equal to 3 mm. The samples were degreased by sonication
for 6 min in acetone. To remove impurities and the near-surface deformed layer (NSDL),
a chemical pickling into a 5 wt.% NaOH solution of for 6 min and a desmutting in a
30 wt% HNO3 solution was performed. The specimens were rinsed with DI water after
each treatment.

2.2. Synthesis of Mg-Al Layered Double Hydroxide

The MgCe-LDH coatings were developed in situ employing a solution containing
0.01 M Mg(NO3)2 · 6H2O, 0.06 M NH4NO3, and 0.001 M Ce(NO3)2 · 6H2O. To get a
complete overview of the effect of the synthesis parameters, different pH (6, 8, and 10)
and treatment times (1, 4.5, 9, 18, and 27 h) were investigated (not reported results). This
preliminary investigation revealed that a pH≥ 10 is needed to develop an LDH architecture
on AA6082 fully. For synthesis time longer than 9 h, the competitive mechanism of
formation/dissolution of LDHs was revealed to be detrimental for developing the brucite
structure. Based on these preliminary results, only the samples immersed at a pH 10 from
1 to 9 h were considered and analyzed in-depth in the present study. The other synthesis
parameters, such as the temperature and the solution’s stirring speed, were kept constant
at 80 ◦C and 350 rpm, respectively.

A simply pickled and desmutted AA6082 plate (named Blank throughout the manuscript)
was kept as a reference. At the same time, the other samples were labelled using the “C”
letter followed by the corresponding pH and treatment time. The desired pH was reached
by dropwise addition of NH4OH. At a pH of 10, the precipitation of Ce(OH)3 occurs as
expected [53,54], leading to the formation of a yellowish solution (Figure 2) [55]. All the
chemicals were purchased from Sigma Aldrich (Burlington, MA, USA).
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reproduced from [55].

2.3. Characterization

The electrochemical impedance spectroscopy measurements (EIS) were collected over
a 1 cm2 exposed area. The impedance curves were collected over 216 h into 0.1 M Na2SO4
+ 0.05 M NaCl solution (23 ± 2 ◦C, pH 5.8). The reduced chloride content (0.05 M NaCl)
allows to minimize the EIS data scattering in the low-frequency domain (<0.1 Hz). A
Metrohm AutoLab PG Stat 302 N (Utrecht, The Netherlands) was employed. An amplitude
of 10 mV (rms) and a frequency range from 10 mHz to 100 kHz were selected. The
experimental EIS datasets were fitted using ZSimpWin software. A three-electrode cell
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arrangement consisting of an Ag/AgCl reference electrode (3.5 M KCl, + 0.205 V vs. SHE),
a platinum ring counter electrode, and the analyzed samples as a working electrode was
employed. The morphology of the surface and the cross-section of the selected MgCe-
LDHs were observed by an SEM (JEOL JSM-IT300, Tokyo, Japan) equipped with an energy
dispersive spectrometer (EDS). The crystallographic structure was analyzed by XRD (X’Pert
High Score diffractometer—Rigaku, Tokyo, Japan) with Cu emission source (λ = 1.54056 Å),
the monochromator operating at 30 kV–10 mA and the scanning rate set at 4 min−1. The
LDH characteristic peaks reflections (hkl) were used to measure the basal space dhkl and
to evaluate the integral breath β needed to calculate the crystallite size D by the Scherrer
formula, Equation (1) [56]. The Scherrer constant K is assumed equal to 0.9 [57]. The lattice
parameters a, b, and c were calculated by using Equation (2) related to the hexagonal crystal
system, where d is the lattice spacing calculated by the Braggs law. The functional groups
and the chemical bonding were investigated by FTIR-ATR (Varian 4100 FTIR Excalibur
Series, Santa Clara, CA, USA) in the wavenumber range from 500 to 4000 cm−1 with a
resolution of 4 cm−1 and acquiring 32 scans for each spectrum. All the analyses were
performed on the as-synthesized materials and after 400 h of immersion in 0.1 NaCl
solution. SEM images were also taken after the EIS measurement over 216 h.

D =
Kλ

β cos θ
(1)

1
d2 =

4
3

(
h2 + hk +

k2

a2

)
+

l2

c2 (2)

3. Results

ATR-FTIR was used to study the effect of prolonged immersion time (400 h) in
0.1 M NaCl (23 ± 2 ◦C, pH 5.8) on the structural properties of the LDH coatings. The
peaks assignment is performed considering the as prepared C10-9 sample in Figure 3, but
it is the same for the other samples. The solid lines refer to the as-synthesized condition,
the dashed lines to the samples immersed in 0.1 M NaCl during 400 h.
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Between 3500 and 2750 cm−1 there is the characteristic absorption band of hydrotalcite
given by the overlapping of two or even three OH stretching vibrations that belong to in-
terlayer water molecules and hydroxides basal layer in the brucite-like structure Mg(OH)2
and Al(OH)3 [58]. At 2995 cm−1 it seems to be present a partially hidden peak, that in
combination with the signal at 1544 cm−1 suggests the presence of asymmetric stretching of
carbonate ions CO2−

3 [59]. The position of the peak at 3398 cm−1 found for the C10-9 is not
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the same for the C10-1 sample as it is slightly shifted toward lower wavenumbers. Since the
band position is inversely related to the bond strength of the cation to the oxygen ion [60],
the shift could be related to the lower bond strength of the OH group to the divalent
metal cations Mg2+. On the other hand, for C10-9 specimen, the higher replacement of
Mg2+ by Al3+ ions, which have higher charge and smaller radius, results in a stronger
hydrogen bond between LDH layers. At 1630 cm−1 the peak can be associated with the
bending vibration of water molecules present in the interlayer domain [61]. The signal at
1348 cm−1 can be attributed to the asymmetric stretching bond of CO2−

3 [62,63]. Nitrates
and carbonates are intercalated between the brucite-like layers, and they are formed from
the nitrate salt present in the initial synthesis solution and from CO2 dissolved from the
atmosphere. Absorption peaks of aluminum hydroxides Al-OH are found at 1014, 743, and
655 cm−1 while at lower wavenumber, between 540, and 650 cm−1, there are the signals of
Al-O and Mg-O groups. The peak at 1028 cm−1 is likely to be related to the NO−2 group
bonded to a metal cation (Mg2+ or Al3+) through one of its oxygen atoms, forming the
so-called nitro complexes [64]. Therefore, the peak under investigation can be attributed to
the NO symmetric stretching, while the associated N=O stretching and the ONO bending
vibrations are located at 1397 cm−1 and 825–830 cm−1, respectively. The broad signal
in the high wavenumber range was investigated by analyzing the deconvolution of the
FTIR spectra of the C10-4.5 sample (represented in Figure 4a). Four absorption bands
are found in the region between 3750 and 2250 cm−1. According to Figure 4a, the cyan
broadband at 2995 cm−1 is associated with the vibration mode of water molecules and
carbonate group that forms CO2−

3 −H2O bonds. It represents the major contribution to the
overall peak since the integrated area is equal to 53%. The second blue peak at 3260 cm−1

is due to hydrogen-bond interlayer water. The third band, located at 3396 cm−1, represents
the second major contribution and it is given by the stretching mode of the M-OH bond.
Moreover, the fourth peak is associated with the same hydroxyl vibration mode. Which
metal is bonded with the OH or OH2 is complex to determine since it depends on the LDH
crystal structure, in particular, the M2+/M3+ ratio. Instead, at a higher wavenumber is
more probable to have a signal related to Mg−OH2 or Al−OH3 [60].
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A similar investigation on the deconvolution of the absorption band was done for the
region between 1100 and 500 cm−1 (Figure 4b). The peaks located at 551 and 760 cm−1

are related to the translation modes of the hydroxyl group mainly attached to Al3+. The
associated deformation modes are represented by two signals at 943 and 1014 cm−1. The
absorption band found at 610 cm−1 is assigned to the hydroxyl translation modes attached
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mainly to Mg2+. The peaks at 656 and 870 cm−1 are attributed to the asymmetric stretching
modes of the interlayer carbonate groups. The relative percentage of the different chemical
groups were found not to differ significantly with synthesis time (from 1 to 9 h).

After the exposure in the electrolyte for 400 h, the lowering in peak intensity suggests
the dissolution of the LDH coatings along with the release of ionic species. The peaks
associated with the asymmetric stretching NO−3 at 1348 cm−1 and the ONO bending
vibration at 1397 cm−1 disappear for the C10-4.5 and C10-9 samples, thus suggesting
the release of the nitrogen compounds as a result of the intercalation of Cl- ions. The
Cl− ↔ NO−3 exchange is recognized to play a role in corrosion resistance as it is suggested
that the nitrate-containing LDH coatings are effective nano-traps that can entrap chloride
ions and, thus, postpone the initiation of the corrosion process [42]. Under the favorable
conditions, the dissolved Mg2+ ions could form hydroxy compounds, Mg(OH)2, which
can inhibit the spread of the pitting corrosion [65]. Interestingly, it is possible to observe
the signal split at 1028 cm−1 observable in C10-1 and C10-9 spectra, which is attributed by
some authors [63] to the symmetric stretching of the carbonate CO2−

3 . However, in this case
the corresponding increase in the signal of both the symmetric and asymmetric stretching
vibration of CO2−

3 at 1544 cm−1 is not observed.
Figure 5 shows the XRD patterns of the in situ developed LDH films. Between 10 and

45◦, it is possible to observe the characteristic peaks of LDH that confirm the hydrotalcite
layer’s presence, in accordance with the FTIR results. They have miller indexes (003), (006),
and (009) and they are located at 13, 25.5, and 40◦, respectively [66]. Small signals are
present at about 13, 27, and 32◦ that can be attributed to the formation of cerium hydroxide
Ce(OH)3 or oxide CeO2 [48,67]. The 2θ range between 45 and 65◦ was omitted since it
contains only reflections belonging to the Al substrate and intermetallic particles [68]. In
the 2θ range between 65 and 110◦, the peaks at 72 and 73◦ are distinctive of the cell planes
(110) and (113).
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Figure 5. XRD pattern from 10◦ to 110◦ of C10 series C10 in their fresh state (solid lines) and after
400 h 0.1 M of NaCl immersion (dashed lines).

The dhkl basal spacing and the crystal size D were calculated: the results are reported
in Table 1. The FWHM parameter was used instead of the integral breath, and it was
calculated by employing the OriginLab software. The reflection peak related to the plane
(003) was used to measure c = 3 · d003 and the plane (001) for a = 2 · d110 [44].
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Table 1. XRD analysis results: cell parameters a and c and crystallite size D. All values are expressed
in nm.

Sample Lattice Parameter Interlayer Distance Crystallite
Size

a c d003 d006 d009 d110 D

C10-1 0.2662 2.0591 0.6831 0.3294 0.2217 0.1311 2.9835
C10-4.5 0.2623 2.0261 0.6755 0.3271 0.2216 0.1312 5.5919
C10-9 0.2629 2.0464 0.6830 0.3307 0.2226 0.1315 2.8406

The XRD patterns collected after 400 h of immersion in 0.1 M NaCl are reported
in Figure 5 as dashed lines. Looking at the low and high angle regions, it is clear that
the signals belonging to the LDH structure have almost completely disappeared, thus
suggesting the partial loss of crystallinity. The wide broad signal between 15 and 35◦ can
be assigned to the aluminum hydroxide Al(OH)3 formed as corrosion product after the
chloride attack or to aluminum oxide Al2O3, as suggested by the search-match results
made in the COD databases. The signals belonging to the crystalline cerium compounds at
15 and 17◦ disappeared, suggesting that they solubilize, releasing the cerium ions during
the prolonged immersion.

According to the XRD results, the top-view of SEM images in Figure 6 highlights a well
distinct platelet morphology, especially for C10-4.5 which shows the higher crystallinity
(Figure 6b). For a shorter and longer treatment time, Figure 6a,c, the LDH nano-sheets
seem to merge in a more refined and compact structure. The thickness of the different
LDH layers was measured by SEM and was found to be 11.6 ± 1.3 µm, 5.1 ±0.3 µm, and
9.8 ± 0.8 µm for the C10-1, 4.5, and 9 samples, respectively.
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Figure 6. SEM images of the top-view of the as synthesized samples: (a) C10-1, (b) C10-4.5, and (c) C10-9.

In accordance with the XRD pattern, cerium-rich agglomerates, probably Ce(OH)3,
are found on the surface of the LDH coatings, (Figure 7), regardless of the synthesis time.
The EDS map collected over the agglomerate in Figure 7a highlight the presence of Ce.

The appearance of the LDH coatings after 400 h of exposure to 0.1 M NaCl solution is
reported in Figure 8a–c. Among the investigated LDH coatings, only the C10-4.5 structure
still shows a platelet-like structure (Figure 8b), even if cracks are present over the surface.
On the contrary, the LDH cannot be observed anymore in the samples C10-1 and C10-9 in
Figure 8a,c seems that the LDH coating is completely dissolved.
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Figure 8. SEM images of the top-view of the investigated samples after 400 h of immersion in 0.1 M NaCl: (a) C10-1,
(b) C10-4.5, and (c) C10-9.

By investigating the surface of the sample C10-4.5 (Figure 9) it is possible to observe
different agglomerates: (i) platelet-like clusters whose main constituents are Al, Mg, and
traces of zinc (Figure 9a); (ii) corrosion products consisting of Al hydroxides and alloying
elements such as Fe, Mn, and Si (Figure 9b); and (iii) cerium-rich agglomerates (Figure 9c).
The cerium-rich agglomerates are believed to be amorphous structures since no peaks
corresponding to the crystalline form of Ce compounds were found in the XRD pattern
after 400 h of immersion (Figure 5). We hypothesize that the crystalline structure such
as Ce(OH)3 or CeO2 formed during the synthesis in the LDH structure dissolves during
exposure to the NaCl solution, thus releasing cerium ions. Gradually, the LDH layer cracks,
and the corrosion of the substrate occurs. At the cathodic site, oxygen reduction leads to
the formation of an alkaline environment, which promotes the precipitation of amorphous
Ce oxides/hydroxides. These compounds are recognized to reduce the cathodic reaction
rate, providing mitigation of electrochemical activity of the metal and, thus, reducing the
extent of corrosion.
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the respective EDS analysis.

The effect of cerium in the LDH coating and its corrosion inhibition potential were
better investigated by collecting EIS spectra in 0.05 M NaCl + 0.1 M Na2SO4 solution
during 216 h. As explained in a previous section, the electrolyte was selected to reduce the
electrochemical noise in the low-frequency range.

Figure 10 shows the impedance and phase diagrams of the investigated coatings
during immersion time (2, 8, 24, 72, 168, and 216 h) in the electrolyte. Notice that the
impedance modulus in the low-frequency range (about 0.01 Hz) shows an initial slight
decrease in the very first hours of immersion and then a gradual increase with time elapsed.
At the end of the immersion test (216th h), the C10-1 and C10-4.5 samples show impedance
values higher than at the beginning. The observed trend is consistent with a sort of healing
effect provided by the dissolution of cerium compounds, release of cerium ions, and
precipitation of cerium oxides/hydroxides in correspondence of the cathodic sites on the
metal surface, according to the previously discussed mechanism.

At an early stage of immersion, two-time constants can be observed in the middle-low
frequency range. The relaxation processes tend to partially overlap for prolonged immer-
sion time, as suggested by the merging of the phase angle peaks into a single asymmetrical
peak. The time constant in the middle-frequency range is recognized to be related to the
response of the LDH coating [69], while the attribution of the relaxation process in the
low-frequency range is not straightforward. According to Zhu et al. [70] the low-frequency
time constant derives from the superimposition of the contribution of the faradic process at
the interface and that of the aluminum oxide. According to the previous description of the
observed time constants, the experimental EIS datasets were fitted employing the circuit
depicted in Figure 11. According to the Rsol(QLDH(RLDH(QLFRLF))) circuit in Figure 11, the
equivalent electric parameters are defined as follows: Rsol stands for the solution resistance;
RLDH and the CPELDH are the resistance and the constant phase element associated with the
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LDH coating [41,48,71,72]; the resistance RLF in parallel with the constant phase element
CPELF were employed to fit the relaxation process in the low-frequency range. Constant
phase elements (CPE), were used instead of pure capacitance to account for surface inho-
mogeneity, fractal geometry, roughness, electrode porosity, and the current and potential
distribution of the system surface [73]. Accordingly, ZCPE = 1/

[
Q(jω)α], where α is the

frequency dispersion factor (−1 < α < 1) the terms Q, j, and ω are the pre-exponential
factor, the imaginary unit j =

√
−1, and the angular frequency, respectively.
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The results of the fitting are reported in Tables 2–4 for C10-1, 4.5, and 9, respec-
tively. The values of the QLDH (pre-exponential factor of the CPELDH) are in the order of
10−6 S cm−2 sα regardless of the synthesis parameters. The corresponding αLDH values are
quite far from unity and, thus, a clear physical meaning cannot be attributed to the fitting
parameter QLDH. Although QLDH is likely to reflect the dielectric properties of the LDH
coating, due to the surface roughness, porosity, and corrosion products [74,75], the αLDH
values differ from unity. Thus, a comparison among the numerical values of the QLDH is
not consistent. Similarly, for the values of the QLF (pre-exponential factor of the CPELF) it
is not possible to define a clear physical meaning, as the αLF values scatter from 0.67 to 1
throughout the immersion time. The values corresponding to the resistance RLDH are quite
scattered due to the partial porosity of the coatings [76].
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Table 2. Results of EIS fitting for C10-1 sample.

Time [h] Rsol [Ω cm2] CPELDH [S cm−2 sα] αLDH RLDH [Ω cm2] CPELF[S cm−2 sα] αLF RLF [Ω cm2]

2 62.65 3.91 × 10−6 0.73 2.74 × 103 8.86 × 10−6 0.67 2.06 × 106

8 63.17 9.90 × 10−6 0.75 2.65 × 103 1.66 × 10−6 0.79 3.14 × 106

16 63.71 9.67 × 10−6 0.84 1.18 × 105 4.17 × 10−5 1.00 3.93 × 105

24 62.76 9.80 × 10−6 0.89 9.14 × 104 4.63 × 10−5 0.96 3.30 × 105

72 136.00 9.02 × 10−6 0.93 2.21 × 105 2.49 × 10−5 0.89 6.82 × 105

168 75.75 9.07 × 10−6 0.92 6.85 × 105 1.70 × 10−5 0.97 1.39 × 106

216 59.18 8.98 × 10−6 0.92 8.32 × 105 1.94 × 10−5 1.00 1.30 × 106

Table 3. Results of EIS fitting for C10-4.5 sample.

Time [h] Rsol [Ω cm2] CPELDH [S cm−2 sα] αLDH RLDH [Ω cm2] CPELF[S cm−2 sα] αLF RLF [Ω cm2]

2 65.89 4.84 × 10−6 0.89 1.62 × 10−5 2.14 × 10−5 0.92 3.22 × 105

8 62.74 5.23 × 10−6 0.90 1.28 × 105 6.82 × 10−5 0.85 1.13 × 105

16 65.73 5.47 × 10−6 0.90 1.35 × 105 1.63 × 10−4 0.98 4.39 × 104

24 62.75 5.68 × 10−6 0.91 1.37 × 105 9.58 × 10−5 0.79 5.86 × 104

72 62.13 3.18 × 10−6 0.96 1.78 × 102 2.78 × 10−6 0.86 2.70 × 105

168 68.28 3.26 × 10−6 0.96 1.81 × 102 2.41 × 10−6 0.87 4.34 × 105

216 57.19 3.04 × 10−6 0.96 1.54 × 102 2.60 × 10−6 0.87 4.95 × 105

Table 4. Results of EIS fitting for C10-9 sample.

Time [h] Rsol [Ω cm2] CPELDH [S cm−2 sα] αLDH RLDH [Ω cm2] CPELF[S cm−2 sα] αLF RLF [Ω cm2]

2 73.76 3.58 × 10−6 0.81 1.55 × 102 1.65 × 10−6 0.95 1.59 × 107

8 79.09 5.06 × 10−6 0.91 1.61 × 105 2.19 × 10−5 1.00 6.55 × 105

16 80.31 5.37 × 10−6 0.92 1.68 × 105 2.81 × 10−5 0.97 5.58 × 105

24 75.60 5.69 × 10−6 0.93 1.80 × 105 2.64 × 10−5 0.95 5.40 × 105

72 70.09 5.82 × 10−6 0.93 4.88 × 105 1.38 × 10−5 0.94 9.81 × 105

168 140.00 2.64 × 10−6 1.00 3.12 × 102 3.12 × 10−5 0.85 1.07 × 106

216 61.31 2.22 × 10−6 1.00 1.03 × 102 3.47 × 10−5 0.88 1.17 × 106

According to the evolution with time of RLF, an initial decrease of about one order of
magnitude is observed in the first hours of immersion, followed by an increase at a later
stage. This kind of behavior was observed for all the investigated samples.

To better investigate the evolution of the resistive behavior of the protection system, the
evolution with time of the total resistance (given by the sum RLDH + RLF) was considered
(Figure 12). The LDH dissolution is represented by the lowering of the curve in the first
hours of immersion, precisely from 12 MΩ cm2 to 520 kΩ cm2 for C10-1, from 700 kΩ cm2

to 160 kΩ cm2 for C10-4.5, and from 24 MΩ cm2 to 860 kΩ cm2 for C10-9.
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The curve position of the C10-4.5 sample suggests the lower resistance against cor-
rosion with respect to the other LDH treated during 1 and 9 h for the whole period of
immersion but still much higher than the bare aluminum (sample named “Blank”), which
remains stable at 100 kΩ cm2. For all the treated samples, after 24–48 a recovery of the
resistance value is observed, especially for the samples C10-1 and C10-4.5, while the C10-9
sample seems to maintain certain stability after days of immersion. According to the previ-
ously explained mechanism, this behavior was attributed to the dissolution, release, and
precipitation of cerium compounds. This hypothesis is further supported by the presence
of Ce-rich agglomerates (hydroxides or oxides) on the surface of the LDH coatings after
216 h of immersion in 0.05 M NaCl + 0.1 M Na2SO4 (Figure 13).
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correspondence of the red spot (b).

4. Conclusions

In this study, we aimed to gain mechanistic insight into the role of Ce(III) as an
active corrosion inhibitor embedded in the LDHs layer. For this reason, we performed the
deposition of Ce doped Mg-Al LDHs layers by the in-situ method on AA6082.

XRD and FT-IR measurements along with SEM images, collected before and after
400 h of continuous immersion in the 0.1 M NaCl solution, suggested a corrosion inhibition
mechanism based on the dissolution and re-precipitation of Ce compounds. In particular:

1. Ce-based crystalline structures such as Ce(OH)3 or CeO2 forms during the LDH
in-situ synthesis;

2. Upon exposure to the NaCl solution, Ce-based structures dissolves (thus leading to
cerium ions release), the LDH layer cracks and corrosion initiates;

3. At the cathodic sites, oxygen reduction leads to the formation of an alkaline envi-
ronment, which promotes the precipitation of amorphous Ce oxides/hydroxides,
reducing the cathodic reaction rate and providing mitigation of the corrosion rate of
the metal.

The EIS investigation in the mild electrolyte (0.1 M Na2SO4 + 0.05 M NaCl solution)
further supports the proposed mechanism: the total resistance of the protection system
shows an initial decrease in the first hours of immersion, attributed to the LDH layer
degradation, followed by a gradual increase for prolonged immersion time, attributed to
the effect of cerium ions (in accordance with the mechanism described in (3)).
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