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Abstract: Ecosystem services (ES) and urban services (US) can comparably improve human well-
being. Models for integrating ES and US with unexpressed and objective needs of defined groups of
stakeholders may prove helpful for supporting decisions in landscape planning and management. In
fact, they could be applied for highlighting landscape areas with different characteristics in terms of
services provided. From this base, a suitability spatial assessment model (SUSAM) was developed
and applied in a study area considering different verisimilar scenarios that policy makers could
analyse. Each scenario is based on the prioritization of a set of services considering a defined group
of stakeholders. Consistent and comparable ES and US indices of spatial benefiting areas (SBA) of
services were calculated using GIS spatialization techniques. These indices were aggregated hierar-
chically with the relevance of services according to a spatial multicriteria decision analysis (S-MCDA).
Results include maps for each scenario showing detailed spatial indices of suitability that integrate
the local availability of SBA of ES and US, along with their relevance. The results were compared
with known landscape classes identified in previous studies, which made it possible to interpret
the spatial variation of suitability in the light of known landscape features. A complete sensitivity
analysis was performed to test the sensitiveness of the model’s outputs to variations of judgements
and their resistance to the indicators’ variation. The application of the model demonstrated its
effectiveness in a landscape suitability assessment. At the same time, the sensitivity analysis and
helping to understand the model behaviour in the different landscape classes also suggested possible
solutions for simplifying the whole methodology.

Keywords: landscape planning; landscape liveability; landscape services; ecosystem and urban
services; multicriteria decision analysis; analytical hierarchy process; kernel density estimation

1. Introduction

Ecosystem services (ES), the benefits that people obtain from ecosystems [1], have been
broadly explored by the recent scientific literature, based on the idea that including this
approach in policy making could support the development of instruments for increasing
the global sustainability of the human activities [2]. Some studies made evident different
key concepts for ES application that should be taken into account to design instruments
for landscape management. For example, Burkhard et al. [3–5] suggested an approach for
assessing multiple services for landscape analysis and management instead of focusing on
a single service. Wu [6] highlighted that landscape-specific ES are essential for maintaining
and improving human well-being. ES were classified in “final” and “intermediate,” high-
lighting that the final services are the services that tangibly benefit the final stakeholder,
while the intermediate services are only functional to the production of the former [7,8].
This concept helps apply the ES approach into practice because it helps to focus only on a
group of services, simplifying the decision model and avoiding the risk of double-counting
some services. However, Nahlik et al. [9] observed that the final ES concept strictly depends
on services’ potential users. Focusing on spatial aspects of ES, Syrbe and Walz [10] sug-
gested that they are delivered in the so-called service benefiting areas (SBA), but Bagstad
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et al. [11] highlighted that these areas could be distant from the so-called use region, where
users of services are stably located to live and work. So, for some services, the SBA should
be accessed by road transports or other means to benefit a given service. In other cases, the
service benefiting areas and the use region have to coincide, since citizens can only use the
service if directly provided in the use region (such as electric energy for housing) [12].

In the perspective of assessing local accessibility to multiple services, Antognelli
and Vizzari designed LISAM [13], a model based on the spatial multicriteria decision
analysis (S-MCDA) method [14,15], to improve the inclusion of the ES approach into
policy making. MCDA and S-MCDA methods were already applied for ecosystem services
spatial assessment [16–18] and their trade-off identification [19–21]. LISAM was primarily
designed to calculate liveability maps, where liveability is conceived as the landscape
suitability to be lived by the local population. Liveability assessment, in general, is helpful
to highlight the areas more suitable to meet the expressed needs of a person or a group
of people [22,23]. In the LISAM model, liveability is locally assessed considering both
ES and urban services (US), since both types of services can comparably improve human
well-being [13]. Liveability is calculated in LISAM by a hierarchical aggregation of ES and
US spatial indices expressing the local accessibility to services’ benefiting areas. According
to S-MCDA method, each service is weighted on liveability by filling pairwise comparison
matrices during direct interviews to stakeholders [24]. In the LISAM framework, “residents”
were considered the final users of liveability services. However, “residents” were defined
generally as “people living and working in a landscape”. So, the model was designed
to include their expressed personal needs, but not the objective necessities related to the
economic activities they used to do. In this regard, Landers and Nahlik [25] suggested
that residents can be grouped into more specific stakeholders groups commonly related to
the main economic activities shaping the landscape and typically manifesting contrasting
needs. For example:

• Agricultural activities, which need materials (seeds, fertilizers, instruments, tractors,
etc.), and regulation services that allow them to reduce economic and environmental
costs of production, such as pest regulation, pollination, erosion control, and others. In
an open economy, they also need infrastructures to transport the inputs and outputs
of their activity [26–28];

• Transportation and commercial activities, which need transport infrastructures to carry
on their economic activity. They also rely on the presence of agriculture, industry, and
commerce that provide material to transport [25];

• Industrial activities, which rely on the presence of different material provision and
transport networks;

• Housing market, which aims to meet people’s housing demand and take advantage
from the so-called basic urban infrastructures (e.g., water, power networks, and roads),
as well as materials, food, and different cultural services [25,29].

In this view, the stakeholder can be grouped considering different economic activities
and related perspectives in terms of services needed from the landscape. From the policy
makers’ perspective, landscape planning generally needs to find trade-offs between ser-
vices and interests from different groups of stakeholders [19,30,31]. To do this, planners
may need to assess how the spatial distribution of a defined set of services benefits specific
population groups. In this vein, assessing the suitability of a landscape for contrasting
purposes may be very helpful for supporting policy makers in identifying possible sce-
narios of services improvement. Policy makers must deal with the location of different
stakeholders’ groups and other contrasting needs about their landscape. For example,
infrastructures are necessary to access SBA providing services that typically benefit use
regions far from the SBA. This concept implies that some SBA need to be served by many
infrastructures [13], whose realization may lead to considerable changes in land use and
land cover (LULC) [32–34]. This need does not exist when the SBA and the use regions
coincide. This evidence helps to understand where roads can potentially enable the popula-
tion to reach existing SBA [35,36]. Thus, policy makers could find it very useful to analyse
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different contrasting scenarios of landscape suitability that could be defined by assigning
different importance to services.

Sensitivity analysis is not a common practice in the field of spatial MCDA, as it is still
largely absent or rudimentary, often due to difficulties related to its application [37,38].
These difficulties generally depend on the many steps required to develop this kind of
analysis [39]. However, this analysis is considered very relevant for complex MCDA
models, since it helps to understand the relationships between input and output variables
and possibly to simplify the model, identifying and removing redundant parts of its
structure. It supports understanding how the variation in the output of a model can be
related to different sources of variation [40,41]. Technically, in sensitivity analysis, results
are calculated under different conditions of the model components and parameters for
identifying the key determining variables. The most common critical variables in the
spatial MCDA models are the values of criteria, the relative importance of criteria, and the
weight given to each criterion [42]. Consequently, the three most commonly used ways
to analyse model sensitivity are: changing criteria values, changing criteria ranking, and
changing criteria weights [37]. The interpretation of sensitivity analysis outputs depends
on the purpose of the tested model. In many studies, the model reliability is uncertain,
since results are affected by a high level of uncertainty due to the subjectivity of weights
attributions [42,43]. Maletič et al. changed the relative importance of criteria to see the
influence of the single criterion on the alternative ranking, observing the level of stability
of the model based on the variation of the results compared to the weights’ variation [43].

To our best knowledge, no study aimed to develop broadly applicable and adaptable
models useful in landscape planning to classify the landscape considering the presence or
absence of services with common features. In this direction, we aimed to develop and test a
spatial model, called the suitability spatial assessment model (SUSAM), useful to assess the
suitability of landscape to support specific human activities. The model should apply to
different and verisimilar scenarios, hypothesizing contrasting needs expressed by different
population groups. SUSAM may support landscape policy making by identifying areas
offering services with common characteristics related to a specific group of stakeholders.
Since SUSAM will consider a high number of variable input factors, the model application
includes an extensive sensitivity analysis to understand the model’s response to the vari-
ation of the services’ ranking, relevance, and intensity and identify the less influencing
factors to suggest possible simplifications of the whole methodology.

2. Materials and Methods

Two main steps were performed to meet the stated objectives: (1) SUSAM development
and application considering different and verisimilar scenarios, (2) sensitivity analysis to
test the sensitiveness to variations of judgements and the resistance to the variation of
model’s indicators.

2.1. Study Area

The model was developed and tested in a 1007 km2 wide study area located in the
Umbria region, Italy (43.077837◦ N, 12.420829◦ E). On average, the area is 332 m.a.s.l., has a
transitional Mediterranean climate (sub-coastal in the western part and sub-continental
in the eastern part, according to the Koppen classification), with hot, sunny summers and
relatively cold winters. It includes the city of Perugia and its surroundings, covering seven
different municipalities: Perugia, Magione, Passignano sul Trasimeno, Corciano, Umber-
tide, Torgiano, and Deruta (Figure 1). This area encompasses an urban and productive
landscape of high territorial complexity that, in recent decades, has been characterised
by high rates of urbanisation and related rural transformations. Land use patterns in
the area are typical of central Italy, consisting of 58% agricultural land, 28% forested and
semi-natural land, 8% built-up land, and less than 6% wetland and water bodies (personal
elaboration from CORINE land-use and land-cover data [44]). The area is characterised
by various landscape types, including natural areas as well as the arable, vineyard, and
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olive yard-dominated landscapes. A large proportion of the study area is characterised
by various mixed transitional landscapes [5]. In such heterogeneous areas, landscape
planning proves to be highly challenging, as it involves addressing conflicting needs of the
human populations living and working in the area (e.g., nature conservation, economic
development, agricultural production, housing, etc.).
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Figure 1. Study area location with landscape classes identification [5]. Landscape codes are described
in Table 1.

Eleven landscape classes (Table 1) were identified in a previous study based on un-
supervised classification of different LULC density features [5,45]. The methodology was
aimed at detecting the landscape typologies along a gradient generated by a sliding level
of anthropogenic influence on LULC. In this vein, the landscape classes can be consid-
ered homogeneous in LULC composition and can be ordered according to landscape
sequences [46]. Their interpretation is highly informative, as it highlights different charac-
teristics of the landscape [47]. For this reason, they were used as known reference areas for
a better understanding of the variations of the SUSAM outputs.
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Table 1. Landscape codes, names, and descriptions (extracted from Vizzari et al. [45]).

Landscape Code Landscape Name Description

UHI Urban high intensity Landscape highly dominated by the urban component

UMI Urban medium intensity Landscape dominated by the urban component, with
sparse natural, agricultural, and commercial elements

CMI Commercial medium
intensity

Landscape dominated by commercial buildings, with
high presence of roads, mixed with sparse natural,

agricultural, and urban elements

OMI Olive yards medium intensity
Landscape dominated by olive yards, with relatively

widespread residential settlements, sparse arable lands,
and natural linear elements

OHI Olive yards high intensity Landscape highly dominated by olive yards

AMI Agricultural medium
intensity

Landscape dominated by arable lands, with relatively
widespread urban features and sparse natural

elements, vineyards, and rare olive yards

AHI Agricultural high intensity Landscape highly dominates by arable lands

VMI Vineyards medium intensity Landscape dominated by vineyards, with sparse arable
lands, natural elements, and small urban settlements

VHI Vineyards high intensity Landscape highly dominated by vineyards

NMI Natural medium intensity
Landscape dominated by woods and linear wooded
features frequently framing agricultural lands, olive

yards, and isolated buildings

NHI Natural high intensity Landscapes highly dominated by woods and
wooded features

2.2. Model Development and Application

Comparably to its ancestor LISAM [13], the suitability spatial assessment model
(SUSAM), developed in this study, is based on S-MCDA [14]. S-MCDA is a group of widely
used techniques combining geographic information systems (GIS) and multicriteria deci-
sion aiding (MCDA). These techniques allow integrating spatial indicators (map criteria),
preferences, and related uncertainties (value judgments) expressed by decision makers or
stakeholders. The aim is to obtain information for decision making in an iterative, transpar-
ent, and consistent manner [48,49]. The analytic hierarchy process (AHP) [50,51] is a widely
used approach within S-MCDA [52–55]. It is based on breaking down the decision-making
model into a hierarchical tree. The main goal (in this case the “landscape suitability”) is at
the top, and criteria (groups of services) and sub-criteria (services) are in the descending
order within the hierarchy. According to a hierarchical scheme, the structure of SUSAM,
derived from LISAM, allows the formulation of comparative judgments of criteria and sub-
criteria. The judgements are expressed with iterative pairwise comparisons (PCs) between
criteria or sub-criteria, within a reciprocal matrix (the pairwise comparison matrix—PCM)
in which evaluations of the different factors are entered using the judgments from the
decision makers). PCM is a method developed within the AHP and widely applied in simi-
lar studies [13,15,54]. Scaled indicators of services are progressively aggregated through
weighted linear combinations to obtain the final suitability spatial assessment, using the
weights of each service or group of services calculated at each hierarchical level.

Since the spatialization of suitability is aimed at defining areas providing services
with different characteristics, in SUSAM, relevant scenarios were designed to apply and
test the model. Each scenario is designed to represent the interests of a defined stakeholder
group or the focus of a different decision. In each scenario, the relevance of a group of
services with common characteristics is maximized to identify the areas with high intensity
and density of the most relevant services.

SUSAM was developed in seven steps (Figure 2): (1) definition of a hierarchical
classification including ES and US; (2a) definition of verisimilar scenarios and (2b) service
selection and ranking; (3) attribution of relative weight to each service based on AHP. Then,
steps dedicated to the spatialization of services in the area were performed: (4) spatial
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modelling of SBA and (5) normalization of services ranges into the study area. Finally,
the final suitability index was obtained from the last step (6) oriented to weighting and
aggregation of the spatial indices. Processes oriented to spatial analysis (Figure 2, in
blue) and service ranking (Figure 2, in yellow) can be carried on parallelly, as they are
independent of each other. In SUSAM, AHP is applied unusually, as steps 2 and 3 are
typically developed in reverse order. This reversion, in this application, is necessary
because, in the design of the scenarios, the service ranking (i.e., their order) is defined,
while their relative importance (i.e., the difference between their importance) can only
be estimated.
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2.2.1. Definition of the Services’ Classification

In this research, LIAM 2.0 classification of services [12] was improved to be more
effective for spatial applications supporting policy making. The supplementary material
includes the list of services, the correspondent spatial indicators’ details, and the service
codes (Table S1). LIAM 2.0 classification [8] was based on the Common International
Classification of Ecosystem Services classification and is structured using three hierarchical
levels: sections, divisions, and classes. LIAM 2.0 classification includes 53 final services,
which can potentially support different and identifiable human activities, such as farming,
commercial activity, housing, etc. A closer observation to the designed classification
shows that services demand is restricted to three of the four demand typologies [56]: risk
reduction, consumption, and direct use. This choice determines that the SBA gives benefits
only to the use region located in the study area or nearby, since they are usually contiguous
or relatively close, excluding from the study services having spatial relations at a broader
scale. This choice helps the local policy makers’ focus on the services benefiting the areas
they can actually manage.

2.2.2. Scenarios Definition and Ranking of Services

Different scenarios were designed and analysed for applying SUSAM. As introduced
earlier, we considered scenarios derived from highly debated perspectives in the scientific
literature: the economic activities and the need for infrastructures. Considering the different
groups of economic stakeholders in a given area as a perspective to analyse the contrasting



Appl. Sci. 2021, 11, 8232 7 of 24

landscape economic activities’ needs, three scenarios were identified focusing on groups of
services needed for agricultural activity, housing, and commerce and industry (Table 2).
Regarding the perspective of the need for infrastructures, two scenarios were identified:
the first focuses on the identification of areas where infrastructures are needed for reaching
the services’ benefiting areas, while the second focuses on the identification of areas where
the services can be benefited without infrastructures (these services cannot be replaced
by those provided elsewhere) (Table 2). All the scenarios are linked to common situations
occurring in the planning and management of multifunctional landscapes where decisions
about land use–land cover changes to meet the needs expressed by the different stakeholder
groups are often requested. Based on relevant previous works and empirical knowledge,
services in the classification (Table S1) were divided into two groups for each scenario
(Table 2): important and non-important services. As a reference for the analysis of scenarios,
we calculated a baseline result hypothesizing that the respondent would give the same
importance to all the services. This baseline was used to perform the subsequent sensitivity
analysis and show the model applicability for the suitability assessment.

Table 2. Scenarios defined in this study for the SUSAM application.

Perspective Scenario Code Purpose Services with Higher
Importance Relevant References

Baseline BASE Obtain a reference suitability index for
comparison of scenarios

Same importance to all
the services

Economic activities

FARM Identify the most suitable area for
farming activity Services for farming activity [25,57]

HOUS Identify the most suitable area
for housing Services for housing

[25,36,58]
COMM Identify the most suitable areas for

commercial and production activity
Services for industrial and

commercial activity

Infrastructural needs
INF Identify areas with high demand of

infrastructures
Services with

accessibility needed
[13,32,35,59]

NINF Identify areas that deliver
unmovable services

Services with accessibility
not needed

2.2.3. Services’ Weights Calculation

After defining which of the services included in the classification can be considered
relevant for each scenario, high relative importance was attributed to them through the
PCMs. For each couple of services, two questions are asked to fill the PCM: which of the
two services is more important and how much it is more important than the other service.
The same comparison was made for each service section and division. A semantic scale,
representing the ratio among them, as defined by [50,51], was used to compare couples of
services. From the PCMs, absolute scales of relative values (importance) were obtained
based on principal eigenvectors and, then, by normalizing them by dividing each value by
the sum of all the values. For the studied scenarios, the relevant services were highlighted
in the study area, giving them a score of 9 from Saaty’s scale. The relative importance
of divisions and sections was calculated based on the proportion of the relevant services
included in each group. Final services weights were calculated after filling the PCMs.

2.2.4. Services Spatialization

In this step, we broadly used spatial indicators of services included in LIAM 2.0
classification quantifying the service provided in their SBA [12]. Besides, the indicators
of 17 services, mainly regulating or provisioning, were calculated ex novo to quantify the
services included in the model, while other indicators from LISAM [13] were used for
quantifying other services. For specific services or a group of services, additional spatial
indicators were calculated to integrate those provided by LIAM 2.0. The methodologies
used to define and calculate these indicators are described in Appendix A. The complete
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list of spatial indicators used in this research, complete with various additional information,
is reported in the Supplementary Material (Table S1).

2.2.5. Service Indicators’ Normalization

In the AHP, indicators are usually scaled between 0 and 1 to be comparable and
integrable with their relative weights possible. To this purpose, service indicators can be
scaled using different methodologies based on the purpose of the study. In this work, to
calculate suitability, the model was run using two linear scaling approaches: the supply-
based scaling, according to which 0 was associated to the minimum value of the indicator,
and 1 to the maximum value of the indicator in the study area; the demand-based scaling,
according to which 0 was associated to the minimum level of the indicator required by
the demand and 1 to the values of the indicator able to meet the demand completely. The
former method was targeted at expressing the relative quantity of service supply. In this
case, each indicator is scaled between its minimum value and maximum value in the study
area. So, the resulting indicator has only a relative value clearly expressing the differences
within the area in terms of supply and is not comparable with other study areas. Differently,
with the latter method, indicators were scaled based on demand-driven minimum and
maximum to obtain indices potentially comparable with other areas.

In the demand-based scaling approach, we considered that services demand is influ-
enced by two main factors: population beliefs and preferences, which are variable across
space and time [60], and biophysical characteristics of the landscape. Only this last variable
was considered to identify minimum and maximum values of service demand. So, the
potential service demand of each service needed to be assessed before performing the
demand-based scaling. The demand was considered constant in some cases, while in
others, it varied across space due to physical landscape features (such as slope, presence of
specific land uses, etc.).

Depending on the type of service indicators used in the study (presence–absence indi-
cators or intensity indicators, further differentiated in two sub-types each), we identified a
different method for defining the potential demand (Table 3, Table S1).

Table 3. Approaches used for demand-based scaling of the ecosystem and urban services’ indicators.

Indicator Type Indicator Subtype Potential Demand-Min Potential Demand-Max

Presence–absence Density of point features Absence One point per cell (250 m2)

Presence–absence Areal features Absence Presence

Intensity

Indicators for which
demand is supposed to be
= max of the indicator in

all the study area

Absence Theoretical maximum of
the indicator

Intensity

Indicators for which
potential demand vary

across space due to
landscape features

variation (slope, LULC,
sub-basins)

0% of the (potential or
real) demand is satisfied

by the service

100% of the (potential or
real) demand is satisfied

by the service

2.2.6. Weighting and Aggregation of Spatial Indices

Service indicators, weighted by their percentage importance for the suitability, were
used to calculate a spatial suitability index (SI) for each scenario defined in this study. To this
aim, following the methodology used for the LISAM model [13], raster layers representing
local service availability were progressively aggregated at the three hierarchical levels
through multiple weighted linear combinations implemented in ArcGIS scripts using the
graphical modeller.

Due to the unavailability of pertinent data and reliable indicators, some of the services
were not mapped in this specific application and so were not included in the overall
suitability index. Since the completeness of the resulting suitability index in each place
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depends on the weights of the spatialised services, the sum of these weights was used to
express the proportion of “explained suitability”. This approach is similar to that used for
the LISAM development [13]. Spatial statistics of each suitability index were calculated for
the eleven landscape classes in the study area to interpret the results (Figure 1). This step
was helpful to interpret better and compare the results of the model’s application in the
various scenarios.

2.3. Sensitivity Analysis

A landscape suitability assessment model should be sensitive to variations of judge-
ments, while it should be pretty resistant to the indicators’ variation. Thus, an extensive
sensitivity analysis appeared very important to understand the level of responsivity of
SUSAM to the variation of preferences about services and the variation of the indicators’
level. In this direction, we considered the three main factors mainly influencing results
variability in a typical S-MCDA model [42]: (1) service indicators values, (2) relative im-
portance of services, and (3) service weights. To test sensitivity for each scenario, we fixed
the different parameters of the model, varying one of the variables (Figure 3). Couples
of suitability index outputs were compared by calculating ratios per landscape class to
understand better the entity and the localization of the effect of the varying parameter on
the results.

1 
 

 
Figure 3. Methodological approach to sensitivity analysis (pink rectangles: sources of variability of SUSAM, blue rectangles:
methodological steps of sensitivity analysis).

2.3.1. Understand the Model’s Behaviour under Changing Service Values

The model was applied to the baseline case and the five scenarios under analysis using
supply-based scaling and demand-based scaling. These applications were performed to
test how much SUSAM’s results change due to the method used to scale service indicators.
Then, average suitability values in each landscape class were calculated. The ratios between
SI calculated using supply-based scaling and demand-based scaling were calculated for
each case to better compare the service value’s effect on the results.

2.3.2. Understand the Model’s Behaviour under Changing Services Ranking

To understand the model’s sensitivity to the change in the relative importance of
criteria in terms of spatial pattern and suitability values, SUSAM was applied to the
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baseline of the five scenarios under analysis, both applying supply-based scaling and
demand-based scaling. Then, average suitability values in each landscape class (Figure 1,
Table 1) were calculated. The ratios between SI calculated for each scenario and the baseline
were calculated.

2.3.3. Understand the Model’s Behaviour under Changing Service Weights

The model’s sensitivity to the changes in weights of criteria was tested to understand
how this factor affects the results in terms of services’ relative weight or services’ ranking.
This step was performed on the three economic activities’ scenarios (FARM, HOUS, and
COMM). In each scenario, the effect of relative weights of 3, 5, 7, and 9 from the Saaty’s scale,
applied to the services defined as “important”, was measured, and the results obtained were
compared. This comparison was performed by calculating the ratios between sequential
weights (9/7, 7/5, 5/3, and 3/baseline) for each landscape class. These weights were chosen
because PCMs are commonly filled based on five linguistic indicators that correspond to
the main numerical weights (1, 3, 5, 7, and 9), while the intermediate ones (2, 3, 6, and 8)
are rarely used [52].

3. Results and Discussion
3.1. Landscape Suitability Assessment

The model application results for the suitability assessment are shown in Figures 4 and 5
(baseline and the five scenarios). Supply-based suitability identifies the landscape areas
where there is a relatively higher presence of services. Demand-based suitability shows,
in percentage, how the different locations of the landscape fulfil the potential demand of
services. The application of the model in the baseline scenario resulted in non-uniform
levels of suitability across space. These results are driven by the higher presence of services
in the more urbanized areas, representing the benefiting areas of many of the services
included in the classification. In the first case, when supply-based indicators are used,
suitability is comparably higher in natural landscapes, where many cultural services are
provided in relatively high quantities. When the demand-based scaling is used to calculate
the results, suitability is generally higher than in the first case in the whole study area. In
contrast, the highest levels are clearly shown in the more urbanized landscapes, where
urban services are provided. In both cases, landscapes dominated by agricultural features
such as olive yards (OMI and OHI), arable lands (AHI and AMI), or vineyards (VHI and
VMI) are suffering from a lack of suitability due to the low presence of different categories
of services, mainly cultural.
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The explained suitability, representing the percentage of suitability for which indica-
tors are available, is generally high, ranging from 71% to 96% in the cases under analysis,
since we spatialized 49 on 53 services included in the classification.

The application of SUSAM in the selected scenarios shows that the highest value of
suitability usually characterizes the urbanized landscapes (UHI and UMI). Results from
the supply-based scaling show that values of suitability for agricultural activities (FARM)
are higher in the agri-natural areas. In contrast, the demand-based suitability is higher in
urban and peri-urban areas, showing high possibilities for the whole area to perform urban
agriculture. In fact, the land and environmental conditions are also generally good in the
city centre, while materials are generally well available. The housing scenario (HOUSE)
shows, as expected, its highest values in the UHI landscape, with both types of scaling.
UMI and CMI landscapes also show relatively high levels of suitability for housing if
compared to other landscapes, meaning that the urban component is highly benefiting this
group of activities. Inversely, suitability to housing is considerably low in other landscapes.

The supply-based and demand-based values of suitability for the commercial activity
scenario (COMM) are also increased by the landscape’s urban component, particularly by
the main roads and fast internet connection. The highest levels of this kind of suitability
appear in the UHI landscape, where the demand-based SI reaches 0.66, which is the
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maximum value reached by the indicator in the whole study area. The explained suitability
is high in each case, ranging between 0.81 and 0.96.

Appl. Sci. 2021, 11, 8232 13 of 26 
 

 

E  

F  

Figure 4. Maps from SUSAM application in the different scenarios. (A): BASE, (B): FARM, (C): HOUS, (D): COMM, (E): 
INF, (F): NINF, EX: explained suitability (scenario codes are described in Table 2). 

  

Appl. Sci. 2021, 11, 8232  14  of  26 
 

 

   

Figure 5. Graphs of mean suitability values in the various landscape classes (landscape codes are described in Table 1 and 

scenario codes in Table 2). (A,B): economic perspective, (C,D): infrastructure perspective. (A,C): supply‐based suitability, 

(B,D): demand‐based suitability.   

The application of SUSAM in the selected scenarios shows that the highest value of 

suitability usually characterizes the urbanized landscapes (UHI and UMI). Results from 

the supply‐based scaling show that values of suitability for agricultural activities (FARM) 

are higher in the agri‐natural areas. In contrast, the demand‐based suitability is higher in 

urban and peri‐urban areas, showing high possibilities for the whole area to perform ur‐

ban agriculture. In fact, the land and environmental conditions are also generally good in 

the  city  centre,  while  materials  are  generally  well  available.  The  housing  scenario 

(HOUSE) shows, as expected, its highest values in the UHI landscape, with both types of 

scaling. UMI and CMI landscapes also show relatively high levels of suitability for hous‐

ing if compared to other landscapes, meaning that the urban component is highly bene‐

fiting this group of activities. Inversely, suitability to housing is considerably low in other 

landscapes. 

The supply‐based and demand‐based values of suitability for the commercial activity 

scenario (COMM) are also increased by the landscape’s urban component, particularly by 

the main roads and fast internet connection. The highest levels of this kind of suitability 

appear in the UHI landscape, where the demand‐based SI reaches 0.66, which is the max‐

imum value reached by the indicator in the whole study area. The explained suitability is 

high in each case, ranging between 0.81 and 0.96. 

When SUSAM is applied to produce maps for identifying the areas that need infra‐

structures (INF), results show that the more urbanized areas (UHI, UMI, and CMI) typi‐

cally need roads and transport infrastructures. This tendency appears more evident when 

demand‐based scaling is applied. Similarly, the suitability of natural landscapes (NHI and 

NMI) to roads and transport infrastructures is also high, since they deliver services that 

can only be benefited in loco. On the other side, when the areas with no need for infra‐

structures  are highlighted  (NINF),  the  suitability  shows higher values  in  all  the  land‐

scapes. However, the percentage of explained suitability is relatively lower (0.73). In this 

case, agricultural and natural landscapes produce more directly delivered services to the 

use regions than urban landscapes (UHI, UMI, and CMI). 

These results indicate how the scaling method represents a crucial factor determining 

noticeable quantitative differences in landscape suitability. This evidence is due to their 

different mathematical meaning: on the supply‐based scaling, the result is relative, and 

for each indicator, there are always a value of 0 and a value of 1 in the study area, while 

when demand‐based scaling is applied, indicators represent the percentage of potential 

Figure 5. Graphs of mean suitability values in the various landscape classes (landscape codes are described in Table 1 and
scenario codes in Table 2). (A,B): economic perspective, (C,D): infrastructure perspective. (A,C): supply-based suitability,
(B,D): demand-based suitability.

When SUSAM is applied to produce maps for identifying the areas that need infras-
tructures (INF), results show that the more urbanized areas (UHI, UMI, and CMI) typically
need roads and transport infrastructures. This tendency appears more evident when
demand-based scaling is applied. Similarly, the suitability of natural landscapes (NHI and
NMI) to roads and transport infrastructures is also high, since they deliver services that can
only be benefited in loco. On the other side, when the areas with no need for infrastructures
are highlighted (NINF), the suitability shows higher values in all the landscapes. However,
the percentage of explained suitability is relatively lower (0.73). In this case, agricultural
and natural landscapes produce more directly delivered services to the use regions than
urban landscapes (UHI, UMI, and CMI).

These results indicate how the scaling method represents a crucial factor determining
noticeable quantitative differences in landscape suitability. This evidence is due to their
different mathematical meaning: on the supply-based scaling, the result is relative, and
for each indicator, there are always a value of 0 and a value of 1 in the study area, while
when demand-based scaling is applied, indicators represent the percentage of potential
demand that is satisfied. Thus, the two scaling methods give a different meaning to the
final suitability indicator: when supply-based scaling is applied, indicators effectively
identify the areas with service scarcity, while when demand-based scaling is applied,
SUSAM gives informative results about the satisfaction of potential demand. Since many
essential services are equally provided across the whole study area, the demand-based
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scaling results in a lower level of differentiation between landscape areas, but the resulting
suitability is also potentially comparable with the index from other study areas, scaled with
the same method. On the contrary, supply-based scaling is more effective in highlighting
differences within the area, guiding policy makers more effectively towards comparing the
different locations within their administrative areas.

The application of SUSAM for identifying the areas where services needing accessibil-
ity are concentrated (INF) highlights the crucial role of accessibility for these areas to benefit
the supplied services. In fact, accessibility, defined as the potential opportunities that can be
reached from a given place by paying a specific generalized and space/time-based cost [61],
is a vast and complex concept that needs deep understanding to be adequately quantified
also considering its spatial nature. As suggested by [13], accessibility can be used as a
proxy for assessing service supply, but its application can limit the use of indicators able
to quantify the service supplied. So, further investigation is needed to integrate service
quantification with their accessibility assessment.

3.2. Sensitivity Analysis
3.2.1. Model’s Behaviour under Changing Service Values

Ratios between suitability calculated applying the supply-based approach and the
demand-based approach are reported in Figure 6 for the different scenarios under inves-
tigation. Results show that the values are lower than 1. Moreover, the graphs show few
relevant differences between the results in different landscape classes, while there are some
evident differences in ratios between the different scenarios.
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In the analysed cases, demand-based suitability is higher than supply-based suitability,
meaning that the area has an excellent capacity to fulfil human needs even in landscapes
with a relatively low quantity of service supplied. Demand-based suitability is generally
higher and flatter than supply-based suitability. A reason for that is that some services
typically satisfy all the potential demand in the area, despite varying the supplied quantity.
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For example, soil fertility varies across the area, generating variability in supply-based
suitability. However, the soil fertility is generally rated as “very good” across the whole
area, flattening the differences between the different landscapes. This consideration is also
valid for other services, such as water provision for drinking purposes. This evidence
is also supported by the fact that in those landscape classes where the supply–demand
ratio shows high values, suitability is also high. The contrary happens in the areas with
low liveability values, where the differences between supply-based and demand-based
indicators are more evident. For example, in COMM, a scenario mainly benefiting from
services produced and delivered in urban areas, the supply-based suitability of urbanized
landscapes is high, and the supply-based and demand-based values of the index are more
similar. In the scenarios INF and HOUS, landscapes NHI, NMI, OMI, and OHI show the
highest ratios, meaning that in these cases, supply-based and demand-based suitability are
pretty similar. So, landscape type is relatively suitable to the purpose identified because it
offers a high density of maximized services.

3.2.2. Model’s Behaviour under Changing Services Ranking

The analysis of ratios between specific scenarios and the baseline support the under-
standing of the suitability indicator’s sensitivity to the variation of the relative importance
of services (Figure 7).
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Results from this analysis show that the relative importance of services strongly
influences the final SI. When this factor varies, the suitability is reduced to 75% or increased
up to 220% if compared with the baseline. When the importance of services needing
accessibility is maximized (in INF and HOUS scenarios), suitability tends to decrease
compared to the baseline. On the contrary, when the importance of services that do not
require accessibility is maximized, suitability tends to increase compared to the baseline.
This happens in NINF and FARM. These trends suggest that each landscape type offers high
quantities of the services maximized in NINF and low quantities of the services maximized
in INF and FARM. In the cases discussed above, suitability shows similar trends with
supply-based scaling and demand-based scaling. However, in the COMM scenario, where
many essential services are required, suitability is higher than the baseline in the demand-
based suitability. Differently, it shows a different trend in supply-based suitability.

3.2.3. Model’s Behaviour under Changing Service Weights

Results reported in Figure 8 show the suitability values in the economic activities’
scenarios under changing service weights in the different landscape classes.

These results show clearly that the effect of the weights’ increase with inverse pro-
portionality to the weight increment both in supply-based and demand-based suitability
index. This evidence means that weights have a slight influence on suitability, while the
services’ ranking influences the results strongly, as the diversity of trends shown by the
different cases shows. Moreover, since the graphs show an equal shape of the curves in
Figure 7 (scenarios calculated with a relative weight of 9/indifference case), it is possible
to conclude that the relation between the weights’ increase and the suitability increase is
monotonic in each scenario analysed.

In general, the sensitivity analysis showed that the services’ ranking strongly influ-
ences results. On the one hand, it means that the model is very sensitive to stakeholders’
preferences, and it can be used to measure suitability, differentiating results based on such
preferences. On the other hand, these results indicate that the model is more sensitive to
the relative importance of criteria than their relative weight. This evidence suggests that
when PCMs are filled, and two questions are asked for each pair of services compared
(“which service is more important between these two?” and “how much this service is more
important than the other one?”), the answer to the first question is much more important
than that to the second one. Consequently, more accuracy is required for the definition
of the service ranking than for the service weight. In this view, since PCMs’ completion
is a really demanding technique to calculate service ranking, as the number of pairwise
comparisons can become overwhelming [62], different techniques, such as ranking or
scale rating [63], could also be used for defining service order to simplify the definition of
relative importance at the expenses of the service weight accuracy. In this direction, further
investigation may be necessary.
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Figure 8. Average ratios between suitability indices of economic activities’ scenarios calculated using different weights for
each landscape class (w9/w7: 9 on 7, w7/w5: 7 on 5, w5/w4: 5 on 3, w3/base: 3 on the baseline). (A,B): FARM scenario;
(C,D): HOUS scenario; (E,F): COMM scenario. (A,C,E): supply-based suitability; (B,D,F): demand-based suitability;
Descriptions of the landscape classes’ codes are reported in Table 1, scenarios’ codes in Table 2.

4. Conclusions

This research developed an S-MCDA model, called SUSAM, for the spatial quantifi-
cation of landscape suitability, intended as the landscape ability to provide services with
common features as preferred by specific groups of stakeholders. This application showed
that SUSAM could effectively produce a spatial index of suitability, highlighting areas
with different provision degrees of a defined group of services, producing informative
indicators for landscape policy makers.
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The sensitivity analysis applied on SUSAM showed that the relative importance of
services (services ranking) heavily influences the results, demonstrating that the method is
highly sensitive to the change in scenarios, and therefore very helpful for supporting land-
scape analysis for policy making. The service relative weights only secondarily influence
the results, especially if the weights used in the comparison are lower than seven. This
evidence suggests an uncertainty reduction in the suitability assessment, since the weight
can be more complex to define than the ranking of services. The service indicators’ values
are highly influential on the SUSAM results, meaning that the choice of the indicators and
the methodology for their normalization should be carefully evaluated for an effective
SUSAM application.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app11178232/s1, Table S1: SUSAM service list in MS Excel format, including the correspondent
spatial indicators’ details, and the service codes.
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Appendix A

Additional spatial indicators developed in this research for quantifying specific services
or group of services (the indicator codes reported in Table S1 are indicated in parenthesis):

• Habitat suitability for the most common edible species. It quantifies the provisioning
of nutrition goods “wild plants, algae and their outputs” (112wildpl) as suggested
by [64]. The indicator was calculated as follows:

# Data collection: Data from Global Biodiversity Information Facility (GBIF) database
were collected for each edible plant and fungi species localized in the study area.
Information about edible species was retrieved from actaplantarum.org (accessed
on 15 April 2020). A geobotanic map was used as a database of the land use of
the area;

# Calculation: The potential habitats of each different species were listed and, then,
identified on the geobotanic map. The elevation at which each species typically
live was also considered to define each species’ potential habitat better. Then, a
buffer of 5 km around the potential service benefiting area was built [55] to select
the landscape areas where the service can benefit the residents. The potential
habitat areas of each edible species were selected between the many land uses
included in the buffer. The service indicator was calculated as the sum of the
species potentially present in each point of the study area. As nine edible species
were assessed, the indicator value varies between 0 and 9.

https://www.mdpi.com/article/10.3390/app11178232/s1
https://www.mdpi.com/article/10.3390/app11178232/s1
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• Building density: It is used as an indicator for provisioning of nutrition goods, namely
groundwater and surface water availability for drinking purposes (115grdrin, 116sur-
drin) and energy from fossil fuels (134netener). This indicator can be considered a
meaningful proxy of the quantity of these services, as, in Italy, they are associated by
law with the construction of new buildings. The radius used for the Kernel Density
Estimation is 200 m, which is the distance from the electricity cabin at which a typical
local electricity service asks for a supplementary payment. It is calculated as follows:

# Data collection: a municipal database was used to extract buildings, their covered
areas, and their number of floors;

# Calculation: Kernel density estimation (KDE) of the total floor area of buildings, ob-
tained by multiplying the number of floors of a building by the building dimension.

• Easiness of wells digging: It is used as an indicator of the service: provisioning
of groundwater for the non-drinking purpose (intended as material for different
production uses) (122grnodrin). The indicator was calculated as follows:

# Data collection: A database from local public authorities reporting the wells
registered across the territory was collected. This database also includes the
wells’ depth;

# Calculation: inverse distance weighting was applied to the difference between
the maximum depth of a well (conventionally defined as 50 m) and the actual
well depth.

• Average water yield from rivers and water reservoirs was calculated to quantify the
provisioning of surface water for non-drinking purposes (123surnodrin). The service
was spatialized based on the following empirical observations: (1) a total amount of
2% of the average river flow can be used for industrial and agricultural uses; (2) about
40% of the total volume of reservoirs is available yearly. The indicator was calculated
as follows:

# Data collection: a database of the water reservoirs, indicating the water volume
capacity, and a database of the rivers and streams, indicating the average flow
rate, were collected from local public authorities;

# Calculation: River flow rates and water reservoir volumes were multiplied by the
percentages of availability observed empirically, resulting in the calculation of
the average daily water availability. This value was distributed on a 50 m buffer
area around each watercourse or reservoir.

• Coppices: It has been used to estimate the provision of plant-based resources for
energy (131planres). The indicator was calculated as follows:

# Data collection: The forest map of Umbria was used as a dataset for the esti-
mation of this indicator. It categorizes the forests with many attributes, such as
accessibility of each forested land, which were assessed in the forest map, mainly
based on slope;

# Calculation: the intensity of the service delivery was based on the levels of forest
accessibility defined by the map: 1 = not sufficient, 2 = low, 3 = good.

• Energy plants powered by livestock manure. It was used to map the provision
of animal-based resources for energy (132animres). The indicator was calculated
as follows:

# Data collection: a municipal database of energy plants powered by livestock
manure, including each plant’s maximum power, was used;

# Calculation: Biomass plants powered by manure were spatialized based on coor-
dinates reported in the municipal databases and integrated with local knowledge.
Then, the maximum power produced by each plant was used to define service
intensity. The service was spatialized by a KDE application (radius = 50 m), since
the energy produced can be transported from the plant at increasing costs with
increasing distances.
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• Cumulated avoided runoff due to land cover. It expresses the buffering and atten-
uation of mass flows in river basins and flood protection by natural subsystems
(211ecoflood). This service, delivered downstream by the water retention property of
soils, is a regulating service of natural physical phenomena:

# Data collection: A database of the rivers and streams from the local authorities
was used to localize water streams. The geobotanic map was used for the LULC
definition, while the EU-DEM [65] was used to define topographic variables, such
as slope;

# Calculation: The soil conservation service curve number (SCS-CN) equation was
used for calculating runoff [66,67] both in the actual situation and in a theoretical
worst case, where all the study area is covered by built surface. The areas covered
by rivers and water streams were excluded from the results. Based on [68], soil
moisture was set as 20% of the potential maximum soil retention (S) in both cases,
and the rain event considered was the highest one-day precipitation amount of
the last ten years (100 mm) [69]. The cumulated upstream runoff reduction was
calculated as the cumulated difference between the worst-case runoff and the
actual runoff in each cell.

• Percentage of avoided runoff by artificial reservoirs at sub-basin scale. It expresses
the buffering and attenuation of mass flows in river basins and flood protection by
human subsystems, a regulating service of natural physical phenomena (212urflood).
The service was calculated as follows:

# Data collection: a climate database of rain was used to analyse precipitation
amounts, while sub-basins were defined based on EU-DEM dataset;

# Calculation: Total water runoff per each sub-basin was calculated by SCS-CN
equation [66,67], setting the soil moisture as 20% of the potential maximum soil
retention (S) [68], while the rain event considered in the model is the highest
one-day precipitation amount of the last ten years (100 mm) [69]. Then, the total
volume of reservoirs in each sub-basin was calculated. At the sub-basin level, the
indicator intensity was calculated as 30% of the ratio between the total volume of
the reservoirs and the total water runoff.

• Amount of avoided erosion by agri-natural surfaces and urban surfaces. These in-
dicators were used, respectively, to spatialize services for the regulation of natural
physical phenomena, namely the mass stabilization and control of erosion rates by
natural (213ecoeros) and human (214urberos) subsystems:

# Data collection: geobotanic map and EU-DEM were used as input databases;
# Calculation: The amount of avoided erosion was calculated as the difference

of eroded soil in the actual situation and in a theoretical worse case, where all
the surface was supposed covered by bare soil. For this purpose, the revised
universal soil loss equation (RUSLE) was applied [70]. While R is considered
constant, the K factor (soil erodibility) from [71] was used in agricultural and
natural areas. The K factor in urban areas was roughly estimated using focal mean,
with radius = 500 m. The length and slope (LS) factor was retrieved from [72],
while C was calculated associating the RUSLE C factor tables to land covers
indicated in the geobotanic map. Since the anti-erosion effect is delivered locally,
the avoided erosion was clipped into urban areas for estimating service 214, while
it was clipped into the other lands’ uses for estimating the quantity of the service
213 delivered.

• Average pest predation rate. It quantifies the pest and disease control by natural
subsystem, which is a regulating service for maintaining physical, chemical, and
biological conditions (231ecopestcont). For the indicator calculation, we adapted the
methodology suggested by [73]:



Appl. Sci. 2021, 11, 8232 21 of 24

# Data collection: The geobotanic map was used for the identification of land use
and land covers. A map of the linear features was autonomously designed by
photo interpretation;

# Calculation: Habitats of pest predators were identified on the geobotanic map and
the linear features map. Then, the percentage of LULC covered by the predators’
habitat in a radius of 2 km was calculated by focal mean. Then, the predation rate
was calculated by the following equation [73]:

19.65 + (0.309 × A) (A1)

where A is the average habitat size of a given natural predator.

• Land quality indicator. It expresses a service within the division of “maintenance of
physical, chemical, and biological conditions”, namely the weather decomposition
and fixing processes (234pedogen). For the calculation of this indicator, we adapted
the methodology suggested by [74]:

# Data collection: www.isric.org/explore/soilgrids (Accessed on 6 May 2020)
database at 250 m resolution was used for mapping fertility factors;

# Calculation: To calculate the land quality indicator, scores suggested in the paper
were attributed to five fertility factors (organic C content, clay + silt, pH, cation
exchange capacity, and soil depth). The factors were reclassified as “poor” (1),
“medium” (2), “good” (3), and “excellent” (4) and, then, summed, producing
an indicator with a minimum value of 5 and a maximum value of 17. Zero was
associated with the urban areas.

• Areas contributing to water flows in forested or wooded areas. This indicator was
used to spatially quantify the maintenance of chemical conditions of freshwater by
natural subsystems (235ecowatqual), which is a regulating service for the maintenance
of physical, chemical, and biological conditions:

# Data collection: geobotanic map and EU-DEM were used as input databases;
# Calculation: Flow accumulation was calculated for the whole study area to

calculate this indicator. Then, only the forested cells—the service provisioning
area of this service—were selected.

• Buffer from depurators. It was calculated to map the maintenance of chemical condi-
tions of freshwater by human subsystems (236urwatqual), which is a regulating service
for the maintenance of physical, chemical, and biological conditions. The indicators
spatialize and quantify the ability of man-made systems to maintain clean water:

# Data collection: a database of local depurators was collected from public authorities;
# Calculation: A 500-metre buffer was considered adequate for mapping the SBA,

since all the depurators are nearby the rivers. The intensity considered is repre-
sented by equivalent inhabitants.

• Recreational potential of the agri-natural areas. It expresses the experiential and phys-
ical potential use of plants, animals, and land/seascapes in different environmental
settings (313ecouse). It is a service related to the physical and intellectual interaction
with the agri-natural environment [75]. The indicator was developed considering a
previous research [76]:

# Data collection: geobotanic map was used as an input of the indicator;
# Calculation: Different scores of recreation potential ranging from 0 to 9 were

attributed to the different land-uses in the study area to calculate this indicator.
Then, the effect on surrounding areas was summed or subtracted from the base
score. In detail: the baseline indicator was used when the cells were surrounded
by arable land. When water, forests, or urban areas were within 1 km from a cell,
their positive influence was considered. A KDE (radius = 1000 m) was applied to
the streams and coasts and then scaled between 0 and 1 to calculate this influence.
Then, the watershed effect was added to the baseline indicator. The effect of

www.isric.org/explore/soilgrids
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urban areas was added in the same way, while the effect of forests and woods
was added by KDE addition, scaling the results between 0 and 2.
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