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Abstract: The absence of global positioning system (GPS) signals and the influence of ocean currents
are two of the main challenges facing the autonomy of autonomous underwater vehicles (AUVs).
This paper proposes an acoustic localization-based tracking control method for AUVs. Particularly,
three buoys that emit acoustic signals periodically are deployed over the surface. Times of arrivals of
these acoustic signals at the AUV are then obtained and used to calculate an estimated position of the
AUV. Moreover, the uncertainties involved in the localization and ocean currents are handled together
in the framework of the extended Kalman filter. To deal with system physical constraints, model
predictive control relying on online repetitive optimizations is applied in the tracking controller
design. Furthermore, due to the different sampling times between localization and control, the
dead-reckoning technique is utilized considering detailed AUV dynamics. To avoid using the highly
nonlinear and complicated AUV dynamics in the online optimizations, successive linearizations
are employed to achieve a trade-off between computational complexity and control performance.
Simulation results show that the proposed algorithms are effective and can achieve the AUV tracking
control goals.

Keywords: acoustic localization; ocean currents; extended Kalman filter; model predictive control;
autonomous underwater vehicles

1. Introduction

Autonomous underwater vehicles (AUVs) have been widely used for various pur-
poses, e.g., military, commercial, and marine scientific survey applications [1]. For different
purposes and scenarios, the requirement for the localization and control accuracy of AUVs
ranges from meters to hundreds of meters. Compared to manned underwater vehicles,
AUVs have no human pilots on board and thus avoid being exposed to dull and dangerous
underwater environments. Compared to the tethered unmanned underwater vehicles,
i.e., remotely operated vehicles (ROVs) [2], AUVs are tether free and thus can reach wider
ocean spaces without the technical issues brought by the tether cable. The perception–plan–
action cycle [3] is achieved by AUVs without persistent human instructions in order to
accomplish the programmed missions. However, in the underwater environment, the at-
tenuation rate of the global positioning system (GPS) signals is high, which makes GPS not
applicable. Moreover, the ubiquitous ocean currents pose great influences on the relatively
slow-moving AUVs. These factors impede the realization of the autonomy of AUVs.

In general, there are two types of localization methods underwater, i.e., distance
independent methods and distance dependent methods [4]. Distance independent methods
estimate the positions of underwater targets based on the topology of several beacon
nodes. The most commonly used distance dependent methods include received signal
strength indicator, time difference of arrival (TDOA), and time of arrival (TOA). They differ
in the distance calculation processes. Multipath and shadow fading effects are usually
concerned with the received signal strength indicator method. TOA methods use fewer
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fixed nodes than TDOA methods and are easier for implementation. The widely used base
line localization methods are developed from TOA methods [5]. In TOA, the target position
can be directly calculated based on the triangulation principle [6]. TOA has the advantages
of low computational complexity and low cost. However, precise synchronization in-
between subsurface nodes is often required which is hardly available in ocean applications
considering the cost and power constraints. Besides, measurement noises play an important
role in the localization accuracy. Improvement techniques such as the least square method
and Kalman filter [7] have been proposed to overcome this issue. An extended Kalman
filter (EKF) is designed to handle the measurement noises for a GPS intelligent buoy (GIB)-
like system in underwater target tracking [8]. Experimental results show that the trajectory
of the underwater target can be recovered well with the EKF based approach.

Besides the localization issue, another difference between AUVs and ground or air-
borne robots is that the influence of the dense ocean current flow cannot be neglected [9].
Therefore, various regional ocean models that generate realistic ocean current fields have
been developed and used for AUV simulations [10]. For AUVs that operate in coastal
regions, considering the collision risks with ships and land, ref. [11] utilizes the probabilistic
ocean current predictions in the path planning of AUVs to improve the safety and reliability
with stochastic approaches. By modeling the ocean current as a vector valued function of
space and time, the current flow field is described as an Eulerian map in [10]. The Eulerian
map then provides inputs to a planning and control module to optimize metrics such as
energy consumption and path lengths. Instead of using the predicted ocean current values,
another approach is to treat ocean current as environmental disturbances directly. Soft
sensors, i.e., “observers”, are designed in [9,12] to achieve integrated current estimation
and AUV motion control performance. In [13], in order to compensate for the steady-state
error caused by the presence of ocean current, an adaptive/integral proportional derivative
controller is designed for AUVs. The integral action has also been commented in [14] and is
demonstrated to be a useful technique to achieve zero steady-state errors for systems with
disturbances. Moreover, Kalman filter or EKF [15,16] is also commonly used for filtering
general disturbances and estimating the motion states of marine robots. The estimated
states can then be used for controller design assuming the “separation” principle holds so
that the controller and observer could be designed separately.

With the information on localization and ocean current, the controller computes the
input to the AUV system so as to achieve certain tasks. The most widely implemented
controller is proportional-integral-derivative (PID) [13] due to its simplicity. More recent
PID variants are usually equipped with gain scheduling [17] or fuzzy logic [18] designs to
deal with nonlinearities. Lyapunov-based techniques such as backstepping [19] and sliding
mode control [20] are also frequently used in AUV control to handle nonlinearities and
guarantee convergence. However, these methods are often associated with tedious tuning
procedures, and the control performance differs when the environment, load, or tasks
change. Besides, control metrics and system constraints cannot be handled. In addition to
systematically handling system constraints and optimizing performance, model predictive
control (MPC) is inherently robust to disturbances to a certain degree [21]. MPC is applied
to the AUV docking scenario in [22]. In [23], a series of MPC controllers are proposed to the
AUV path following problem, and closed-loop system stability is guaranteed theoretically.
A sliding mode control, a filtered Smith predictor, and an MPC controller are integrated
in [24] to deal with disturbances, dead time, and constraints, respectively. However, most
of the control problems assume the availability of the localization information of AUV,
which is not practical.

In this paper, we consider the localization and control problem of AUVs simulta-
neously. In the absence of GPS signals, an acoustic localization method based on three
surface buoys is first proposed. The three buoys emit acoustic signals periodically from
the surface. The different times of arrivals of these signals at the AUV can then determine
an estimated position of the AUV upon the receiving of the third signal in a localization
cycle. Regarding the noises in the estimated positions, the unavailability of the velocity
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states, and the uncertainties due to the ocean current, an EKF approach is proposed to
provide an estimate of the system’s full state. With the estimated system states, MPC is
applied to track a reference trajectory. System physical constraints and control perfor-
mance are explicitly considered. Since the localization and control have different sampling
times, the dead-reckoning technique is utilized with detailed AUV dynamics. In the MPC
controller design, to relieve the possible computational burden, the AUV dynamics are
simplified through successive linearizations. Briefly, this paper contributes to the state of
the art in the following aspects:

1. a novel integrated acoustic localization and predictive tracking control approach is
proposed for AUVs;

2. the uncertainties in localization and ocean currents are handled together systemati-
cally using EKF;

3. the approach of successive linearizations is applied to AUVs for computational effi-
ciency. Simulation results demonstrate the effectiveness of the proposed algorithms
for AUVs.

The remainder of the paper is organized as follows. Section 2 presents the AUV
dynamic model and the tracking control problem statement. Then in Section 3, the acoustic
localization method is proposed. The tracking control based on successively linearized
prediction models, state estimation with EKF and MPC are further proposed in Section 4.
Section 5 presents simulation results and discussions, followed by concluding remarks and
future research considerations in Section 6.

2. AUV Modeling and Problem Statements

This section first presents the AUV dynamic models for later controller design and
simulations, and then defines the localization and control problem considered in this paper.

2.1. AUV Modeling

The AUV motions can be modeled by two sets of differential equations: kinematics
and kinetics. Kinematics deal with the geometrical relationships of the AUV motion.
Kinetics follow Newton’s second law and analyze how the forces and moments that are
generated by the thrusters cause the motion. Notably, AUVs maneuvering underwater
inevitably experience ocean currents that also influence the system motions.

The AUV model used in this paper is modified from the REMUS AUV introduced
in [25] where the values of all the mechanical design, hydrostatic and hydrodynamic
parameters of the system have been made public. For simplicity, assumptions are made for
the considered AUV dynamics that

1. the origin Ob of the body-fixed coordinate system {b} coincides with the center of
gravity of the AUV;

2. the AUV moves at a constant depth which can be measured accurately with a pres-
sure sensor;

3. the AUV is port-starboard symmetric;
4. the AUV center of buoyancy coincides with the center of gravity.

The 6 Degrees Of Freedom (6 DOFs) motions are reduced to the horizontal 3-DOF
motions neglecting the roll, pitch, and heave dynamics, as shown in Figure 1. Then, the 3-
DOF AUV dynamics considering the influences of ocean currents are modeled following
the vectorial format [14]. For notational simplicity, time dependence for system states and
control inputs are left out in this section:

η̇ = R(ψ)ν, (1)

ν̇ = (MRB + MA)
−1(τ − (DL + DNL + CA)νr − CRBν + MArSTνc), (2)

where η =
[

x y ψ
]T indicates the pose states in the inertial coordinate system {n},

and ν =
[

u v r
]T indicates the velocity states in the body-fixed coordinate system {b}.
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The more precise definition of the body-fixed AUV velocity is the velocity of the point Ob
with respect to {n} expressed in {b}. The ocean current velocity vector νc is also defined in
the body-fixed coordinate system {b}, as to be specified later. The controlled forces and
moments are τ =

[
ξ Yuuδu2δ Nuuδu2δ

]T where ξ and δ, i.e., the system inputs, are the
propeller thrust and rudder angle, respectively, and Yuuδ and Nuuδ are the corresponding
hydrodynamic parameters. The rotation matrix R(ψ) relates the motions in {n} and {b}:

R(ψ) =

 cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

,

where ψ is the heading angle, and R satisfies d
dt{R(ψ)} = ψ̇R(ψ)S with

S =

 0 −1 0
1 0 0
0 0 0

.

In Equation (2), νr = ν− νc =
[

ur vr rr
]T is the relative velocity in {b} between

the AUV hull and the ocean current. For simplification, we consider constant irrotational
ocean current which is denoted as b = [Vc, βc]T where Vc and βc are the current speed and
angle in the inertial coordinate system {n}, respectively. Therefore, βc = 0 means that the
direction of the ocean current is aligned with the xn axis. Then

νc = R(ψ)T

 Vc cos βc
Vc sin βc

0

. (3)

Therefore,

ν̇r = ν̇− rSTνc.

Rigid-body and added mass matrices are indicated as MRB ∈ R3×3 and MA ∈ R3×3,
respectively MRB and MA are given as constant matrices here, and the inverse (MRB + MA)

−1

exists for the given matrices. Similarly, CRB and CA are the rigid-body and added Coriolis
and centripetal matrices, respectively. The damping effects are modeled by a DL and a
nonlinear part DNL. The added and damping matrices are due to the hydrodynamic effects
of marine crafts moving in fluid. The detailed matrix forms and paramter values can be
found in the Appendix A.

Figure 1. AUV motions in the inertial coordinate system {n} and the body-fixed coordinate system
{b} with ocean currents in the horizontal plane.
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Physical limitations are imposed on AUV speeds, and propeller and rudder working
ranges as:

umin 6 u 6 umax, (4)

ξmin 6 ξ 6 ξmax, (5)

δmin 6 δ 6 δmax. (6)

2.2. Problem Statement

The AUV is required to start from an origin and track a time parameterized path
to arrive at the destination. In the specified origin-destination region where the AUV
operates, the ocean current information, i.e., Vc and βc, usually can be either predicted
by regional ocean models or roughly measured by the sensors carried with the AUV [10].
However, these predictions or measurements are not precise and are mostly stochastically
uncertain. Therefore, we assume that the ocean current could in principle be obtained
by predictions, but with small prediction biased errors εb and uncertainties following
a normal distribution as, i.e., b ∼ N

(
b̄ + εb, Σb

)
where b̄ = [V̄c, β̄c], and V̄c, β̄c are the

predicted mean current speed and angle in the inertial coordinate system, respectively;
Σb = diag([σ2

V , σ2
β]) is the corresponding covariance that reflect the prediction accuracy

where diag means diagonal matrices; εb = [εv, εβ] with εv and εβ are the corresponding
prediction biased errors, respectively. Note that the biased errors are unknown in the design
process, and are modeled only for simulation purposes. In the simulations, we will explore
how the ocean current biased errors influence the AUV motions as well as the robustness to
small magnitude biased errors due to the feedback from acoustic localization. Furthermore,
Vc and βc are assumed to be independent and identically distributed random variables.

For the controller design, full states need to be known precisely for feedback in general.
However, the sensors such as GPS that are used for the state measurement of ground or
airborne vehicles are not applicable in the underwater environment. Therefore, in the
next section, we first propose a distance dependent localization method to “measure” the
AUV position.

3. Acoustic Localization

Taking advantage of the finite propagation speed of sound in water and the availability
of GPS or global navigation satellite system (GNSS) signals [26] over the ocean surface,
we deploy three surface buoys with known positions [xn, yn, zn]T, n = 1, 2, 3, as shown in
Figure 2. However, the underwater velocity of sound is generally not constant but varies
with the water pressure, temperature, and conductivity. Therefore, the propagation path of
the sound is actually curved, which leads to non-random deviations of signal arrival times.
To overcome this difficulty, the ray tracing technique [27] with isogradient sound speed
profiles (SSP) is utilized in the AUV acoustic localization problem.

Consider the scenario that each of the three buoys carries a pinger and emits acoustic
signals every Tl

s seconds. Denote the position of AUV as [x(t), y(t), z(t)]T at time t. Since
the depth of underwater vehicles can be accurately measured with a depth sensor [28], we
consider the AUV to move at a known constant depth of z meters. The clocks of the three
buoys and the AUV can be synchronized with either GPS or lower power atomic clocks.
For the ray tracing problem between the surface buoys and the AUV, the SSP is dependent
on the water depth as:

c = az + b (7)

where c is the sound speed, a is a constant depending on the underwater environment,
and b is the sound speed at the surface. Then, the TOAs of the signals from the three buoys
at the AUV, denoted as ∆tn, n = 1, 2, 3, can be calculated in simulations as [27]:
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dn(t) =
√
(x(t)− xn)2 + (y(t)− yn)2 (8)

Ln =
0.5az

b + 0.5az
(9)

Xn(t) = z/dn(t) (10)

Yn(t) = Ln(t)/Xn(t) (11)

αn(t) = arctan(Yn(t)) (12)

βn(t) = arctan(Xn(t)) (13)

θB
n (t) = βn(t) + αn(t) (14)

θA
n (t) = βn(t)− αn(t) (15)

∆tn(t) =
−1
a

[
ln

1 + sin θA
n (t)

cos θA
n (t)

− ln
1 + sin θB

n (t)
cos θB

n (t)

]
(16)

where dn stands for the actual horizontal distance between buoy n and the AUV; Ln, Xn
and Yn are the intermediate variables; αn is the angle between the actual sound ray and
the straight line path for buoy n; βn is the angle between the horizontal direction and the
straight line path for buoy n. Lastly, θB

n and θA
n are the grazing ray angles at buoy n and the

AUV, respectively.

Figure 2. AUV localization with three surface buoys.

In simulations, TOAs ∆tn(t), n = 1, 2, 3 can be calculated as Equation (16), and in
practice, they can be measured with synchronized clocks. Then, with the known TOAs,
AUV depth z, and the fixed buoy locations, the horizontal distance d̂n could be estimated
reversely using algorithms such as the binary search [27]. The main idea is to compare the
arrival time of the median point with the actual propagation time repeatedly so that the
search area could be narrowed down until a precise enough horizontal distance estimate
d̂n is found.

Next, we are able to obtain the position of the AUV with d̂n. If in one signal emit–
receive cycle, the AUV is moving slowly and the position is assumed to be the same when
the three signals from buoys 1, 2, and 3 are received, then we can get a set of nonlinear
equations as:

(x̂(t)− xn)
2 + (ŷ(t)− yn)

2 = d̂n(t)2, n = 1, 2, 3, (17)

by solving which we get the acoustically estimated position (x̂(t), ŷ(t)) of the AUV. Note
that in practice, only two equations are necessary to be solved for (x̂(t), ŷ(t)). Available
functions such as fsolve using trust-region algorithm in Matlab [29] can be applied to
solve Equation (17).
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If the AUV horizontal heading is measured by on board sensors such as the inertial
measurement unit as ψ̂(t), the AUV horizontal pose can be obtained as:

ŷ(t) = [x̂(t), ŷ(t), ψ̂(t)]T (18)

which can be seen as the “measured” system output. In the underwater environment,
signal-to-noise ratio (SNR) is usually used to describe the quality of the received signals.
High SNR of the received signals means more accurate TOAs, which leads to high lo-
calization accuracy. Therefore, due to the uncertainties in measured TOAs, the surface
buoy positions [xn, yn, zn]T, and the yaw angle measurement system, the “measured” AUV
output ŷ(t) is assumed to be subject to random noises ε ∼ N(0, Σ) where ε is anR3×1 vec-
tor, and the covariance Σ = diag([σ2

x , σ2
y , σ2

ψ]) with σx, σy, and σψ being the corresponding
standard deviations.

4. Tracking Control Based on EKF

Considering the nonlinear uncertain AUV dynamics in Equations (1) and (2) with
state feedback information from acoustic localization, we propose the trajectory tracking
controller with MPC and EKF. MPC uses a system prediction model to obtain the system
trajectory over a future finite time interval. Optimization problems are formulated based
on the predicted trajectories and are solved repetitively online in a receding horizon way,
and thus also called receding horizon control. To relieve the possible computational
burden using Equations (1) and (2) as the prediction models, successive linearizations are
applied in the framework of MPC. Moreover, an EKF approach is proposed to handle the
uncertainties in the system and acoustic measurements. Corrected system state information
is obtained and used in the predictive tracking controller design. During the control time
steps when the updated localization information is not available, the dead-reckoning
technique is utilized.

4.1. Successively Linearized Prediction Models

The highly nonlinear and uncertain AUV dynamics in Equations (1) and (2) render the
online optimization based MPC control difficult. The conventional one step linearization
approach was proposed for autonomous surface vessels in [30]. The computational time
is shown to be much shorter than using the nonlinear prediction models directly. How-
ever, the one step linearized model could lead to large linearization errors over the whole
prediction horizon and thus degrade the control performance. Therefore, the successive
linearization approach proposed in [31] is applied to achieve a trade-off between computa-
tional complexity and control performance. The basic idea is to utilize the whole sequence
of control inputs from a previous time step and pre-calculate a shifted system trajectory
for linearizations over all prediction steps. For completeness while avoiding repetitions,
we briefly describe the implemented successive linearization algorithm for the uncertain
AUV dynamics.

Generalize the AUV dynamics Equations (1) and (2) as:

ẋ(t) = f (x(t), u(t), b(t)), (19)

where f : R6 ×R2 ×R2 → R6 is a nonlinear smooth function; x = [ηT, νT]T is the system
full state; u = [ξ, δ]T ∈ R2 is the control input vector; b is defined as before. For numerical
simulations, continuous time model Equation (19) is discretized with zero-order-hold
assumption as:

x(k + 1) = x(k) +
∫ (k+1)Tc

s

kTc
s

f (x(k), u(k), b(k))dt. (20)

where time step k relates with the real time t as t = kTc
s with control sampling time Tc

s . Note
that the control sampling time Tc

s is not necessarily the same with the localization sampling
time Tl

s. At each control time step k, successive linearizations are primarily implemented as:
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1. Shift the optimal control input sequence from the previous step, u∗(i|k − 1), i =
0, 1, . . . , Np − 1 with Np being the discrete horizon steps, to obtain a seed control
input trajectory u0(i|k):

u0(i|k) = u∗(i|k− 1)

for i = 0, 1, . . . , Np − 2 and

u0(Np − 1|k) = u∗(Np − 2|k− 1).

2. Apply u0(i|k) to Equation (20) and obtain a seed state trajectory x0(i|k), i = 0, 1, . . . , Np.
The initial state is set as x0(0|k) = x(k) with x(k) being the current system state.
The seed disturbance values are set as

b0(i|k) = b̄(i|k), i = 0, 1, . . . , Np − 1 (21)

where b̄(i|k) is constant as [V̄c, β̄c] for simplicity without loss of generality. The pro-
posed algorithm is still applicable and works effectively when time-varying values
for [V̄c, β̄c] are available. The EKF that will be introduced in the next subsection is
also based on linearizations at the mean values of random disturbances.

3. Linearize the nonlinear dynamics at the seed trajectories
(

x0(i|k), u0(i|k), b0(i|k)
)

for
i = 0, 1, . . . , Np − 1 as:

x(i + 1|k) = x0(i + 1|k) + A(i|k)∆x(i|k) + B(i|k)∆u(i|k) + E(i|k)∆b(i|k) (22)

where

∆x(i|k) = x(i|k)− x0(i|k) (23)

∆u(i|k) = u(i|k)− u0(i|k) (24)

∆b(i|k) = b(i|k)− b0(i|k) (25)

are small perturbations around x0(i|k), u0(i|k) and b0(i|k), respectively; A(i|k), B(i|k),
and E(i|k) are the corresponding Jacobian matrices, respectively, of the nonlinear
dynamics function Equation (20) evaluated at

(
x0(i|k), u0(i|k), b0(i|k)

)
.

4.2. EKF with Acoustic Localization Information

Kalman filter is a widely used correct-predict formulation to deal with velocity esti-
mation and stochastic environmental disturbances [15]. EKF further extends the system
dynamics to nonlinear types by linearizations to propagate an approximation of the state
estimation and covariance. With the models Equations (18), (20) and (22), we are ready for
the EKF design.

Assuming that Tl
s = nTc

s and n ≥ 2 is an integer. Then, at control time step k while the
new acoustic localization information is available, i.e., the localization step k/n, the AUV
predicted state is corrected by

x̂(k) = x̄(k) + K(k)[ŷ(k)− Cx̄(k)], (26)

where

C =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

, (27)

is the output matrix; x̄(k) is the predicted state by ignoring the uncertainties in the nonlinear
dynamics Equation (20), i.e.,

x̄(k + 1) = fd(x̄(k), u(k), b̄(k)), (28)
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where fd is the discrete function that generalizes Equation (20). Note the the parameters
with a horizontal bar overhead such as b̄ and x̄ all indicate the predicted system information.
The Kalman gain matrix K(k) is derived by

K(k) =

{
P̄(k)CT(CP̄(k)CT + Σ

)−1, if k/n is integer,
[0, 0, 0]T, otherwise.

The covariance matrix P̄(k) for the prediction error x(k)− x̄(k) is computed by the
recursion

P(k) = (I − K(k)C)P̄(k), (29)

P̄(k + 1) = A(0|k)P(k)AT(0|k) + E(0|k)ΣbET(0|k), (30)

where P(k) is the covariance matrix of the estimation error x(k)− x̂(k).
Through this standard Kalman filter procedure, the predicted system state x̄(k) can

be corrected by the acoustically “measured” outputs y(k) whenever this information is
available. The corrected states x̂(k) can then be used for feedback design in MPC. However,
as mentioned earlier, the control cycle is generally shorter than the localization cycle,
i.e., Tc

s ≤ Tl
s, which means y(k) is not guaranteed to be there for each control time step k.

When the acoustic measurement is not available, the predicted state x̄(k) from Equation (28)
is used for feedback, which is commonly known as the dead-reckoning technique [14].

4.3. Predictive Tracking Control

Briefly, at each time step k, MPC computes a future control sequence over the pre-
diction horizon Np based on the current system state. The predicted system trajectory is
then driven close to the given reference. Only the first element of the control sequence
is applied to the system. At the next time step k + 1, this process is repeated over the
shifted prediction horizon with newly measured system states. MPC is based on solving
optimization problems online repetitively and mostly numerically, which naturally and
explicitly handles system constraints. Therefore, MPC is especially suitable to systems
of which analytical control laws are difficult to derive, and suitable to systems with con-
straints. For the AUV tracking problem, system constraints Equations (4)–(6) are imposed.
We next propose the MPC approach to solve the AUV tracking problem with the corrected
information from EKF or the predicted information from dead-reckoning.

Consider at time step k, given the current estimated x̄(k) when the acoustic estimated
state x̂(k) is not available, future predicted trajectories x(i|k) over Np are then made
following Equation (22). Moreover, given a reference path determined by an origin (xo, yo)
and a destination (xd, yd) in the inertial coordinate system, a constant reference speed ud
is set to parameterize path. The reference trajectory over a future prediction horizon Np at
k is calculated as

yr(i|k) =

 xo
yo
ψd

+ udTc
s (k + i)

 cos(ψd)
sin(ψd)

0

, (31)

where ψd = arctan((yd − y0)/(xd − x0)). The tracking problem is then represented by
solving a constrained finite horizon linear programming problem

min
u(i|k)

||ȳ(Np|k)− yr(Np|k)||2Q f
+

Np−1

∑
i=0
||ȳ(i|k)− yr(i|k)||2Q + ||u(i|k)||2R, (32)
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subject to Equation (22) and

x(0|k) = x̂(k) or x̄(k), (33)

umin 6 u(i|k) 6 umax, i = 0, 1, · · · , Np, (34)

ξmin 6 ξ(i|k) 6 ξmax, i = 0, 1, · · · , Np − 1, (35)

δmin 6 δ(i|k) 6 δmax, i = 0, 1, · · · , Np − 1, (36)

where ȳ(i|k) = Cx̄(i|k). The cost function Equation (32) aims to minimize the tracking error
between the predicted state trajectory and the reference trajectory with optimal control
efforts. The three terms are the terminal tracking error cost, the stage tracking error cost,
and the control input cost, respectively; Q f , Q and R are positive definite weighting matri-
ces for the respective cost terms and can be adjusted to set priority between convergence
speed and control efforts. Due to the constraints on system states and control inputs,
the optimization problem does not have an analytical solution, and needs to be solved
numerically repetitively online with newly “measured” system states and time-varying
prediction models. However, due to the successive linearization, the above optimization
problem becomes convex and can be solved efficiently.

Overall, the predictive tracking control algorithm with EKF and acoustic localization
information or dead-reckoning can be summarized as Algorithm 1.

Algorithm 1 Predictive tracking control of AUV with acoustic localization and EKF

1: Initialize at k = 0, set x̄(0) = x(0), x̂(0) = x(0);

2: while The AUV has not arrived the destination do

3: if Acoustic localization counter = n then

4: Obtain ŷ(k) as in Section 3

5: Calculate P̄(k) and K(k);

6: Correct x̄(k) with ŷ(k) and K(k) as in (26);

7: Update P(k)

8: counter→ 0

9: else

10: Update x̄(k) with dead-reckoning as in (28);

11: end if

12: Solve the optimization problem (32) subject to (22), (33)–(36) to obtain u∗(k);

13: Apply u∗(k) to the AUV system (1) and (2);

14: Set k = k + 1, counter + 1→ counter and go to Step 3;

15: end while

5. Simulation Results and Discussions

Simulations are run to demonstrate the effectiveness of the proposed tracking control
algorithms for AUVs. The proposed integrated localization and control algorithm is applied
in following a reference path. Such applications can be seen in sea mapping scenarios
where only waypoints in the concerned ocean region are given. The AUV is positioned at
the initial point [100, 100, 300] m and is controlled to reach the destination [600, 600, 300] m
along the following curved reference path{

xd(t) = 600− 500 cos(πt/1200),

yd(t) = 100 + 500 sin(πt/1200),

for t ∈ [0, 600] s. The three surface buoys are positioned at [0, 0, 0] m, [500, 800, 0]
m, and [1000, 0, 0] m, respectively. The isogradient SSP parameters in (7) are set as:
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a = −0.05 and b = 1540 m/s. In this region, ocean currents exist. The average speed
is predicted to be 0.5 m/s and the angle is predicted to be π/6. However, there might
be prediction biased errors. In the simulations, we will first validate the performance of
the proposed integrated localization and tracking control algorithm with zero prediction
biased errors, i.e., εv = 0 and εβ = 0. Then, to illustrate the inherent robustness (to a certain
degree) of the feedback due to acoustic localization, we also consider non-zero prediction
biased errors with εv = 0.15 m/s and εβ = π/20 rad. Note that the biased errors are not
considered explicitly in the algorithm design, and are only implemented for simulation
purposes to show the inherent robustness due to the feedback from the acoustic localiza-
tion. Moreover, there exist uncertainties with the predicted values following the normal
distribution with covariance Σb = diag([0.1 m2/s2 0.01 rad2]), which means low prediction
accuracy in the ocean current. It should be noted that AUVs with any design may fail at
those worst predictions of the sea. The uncertain acoustic measurement is with covariance
Σ = diag([0.1 m2 0.1 m2 0.01 rad2]). The AUV depth is 300 m, and the buoy depths are all
0 m. Controller parameters are set as follows: prediction horizon Np = 10; weight param-
eter Q f = Q = diag([100 100]) and R = diag([1 180/π]); sampling time Tc

s = 0.5 s and
Tl

s = 1 s, which means the system feedback states are corrected by the acoustic localization
results every two control time steps, i.e., n = 2 in Algorithm 1. Physical system constraints
are: umax = −umin = 2 m/s, ξmax = −ξmin = 86 N, and δmax = −δmin = 13.6π/180 rad.
The REMUS AUV system parameter values are referred to [25]. Note that the practical
parameter values might be different from the above set values. For adverse environmental
situations, the algorithm might not be applicable. All the algorithms are implemented in
MATLAB 2016b [29] with solver Cplex [32] on a platform with Intel(R) Core(TM) i3-7100
CPU @ 3.70 GHz.

5.1. Tracking Control with Acoustic Localization
5.1.1. Localization Results

For the considered scenario, the three buoys are localized at the surface as shown in
Figure 3a. The TOAs of the signals from the three buoys calculated by Equations (8)–(16)
considering the isogradient SSP Equation (7) are plotted in Figure 3b. Since Tl

s = 1 s, there
are a total 600 TOAs being calculated for each buoy. As the AUV moves from the initial
position to the destination, the distance between the AUV and buoy 1 is increasing while
the distances between the AUV and buoys 2 and 3 are decreasing. Therefore, it is observed
in Figure 3b that the TOA trajectory of buoy 1 ascends while the other two trajectories
descend. Note that since the AUV approaches towards buoy 2 faster than buoy 3, the TOA
trajectory of buoy 2 declines also more rapidly than that of buoy 3.
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Figure 4 further shows the distance errors between the real horizontal distances
di(t) and the estimated horizontal distances d̂i(t) as calculated with a binary search algo-
rithm [27]. Small distance errors are observed. The micrometer magnitude in Figure 4 is
because the threshold specified in the binary search algorithm for the estimated horizontal
distance is set to 1× 10−5. The binary search algorithm makes trade-offs in terms of speed
and accuracy.
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Figure 4. Errors between the real horizontal distance and the estimated horizontal distance.

5.1.2. Tracking Control Results without Prediction Biased Errors

For the MPC controller design, system state feedback is necessary at each time step as
in Equation (33). However, due to the uncertainties in system dynamics and measurements,
only estimated system states from EKF or predicted system states from dead-reckoning
with nominal system dynamics can be utilized. Figure 5 shows that the proposed algorithm
can achieve the trajectory tracking goal and control the AUV moving from the initial
position to the destination along the path. In Figure 5, five trajectories are plotted in total:

1. The reference path is determined by connecting the initial position and the destination;
2. The real AUV trajectory is x(t) recorded from the simulations by evolving Equa-

tion (20) based on Equations (1) and (2) with known uncertain ocean currents.
3. The estimated AUV trajectory x̂(t) is the trajectory from the EKF, i.e., from Equa-

tion (26). This trajectory is obtained by correcting the dead-reckoning trajectory using
the acoustic localization feedback information, i.e., the “measured” output, ŷ(t).

4. The dead-reckoning trajectory x̄(t) is calculated from Equation (20) by ignoring the
system uncertainties, i.e., Equation (28).

5. The measured outputs y(t) are obtained from Equation (18) by adding stochastic
uncertainties at the computed results from the TOAs according to Equation (17) at
each localization step.

Overall, the differences among these trajectories are small. Therefore, a zoom-in
around position (300, 300) m is added. The root-mean-square-error for tracking the refer-
ence path is 5.59 m which is qualified in applications such as large-area ocean mapping.
Note that the estimated trajectory and the measured trajectory are plotted with fewer
position points than the dead-reckoning trajectory since the control cycle is faster than the
acoustic localization cycle.
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Figure 5. AUV tracking control trajectories: real-x(t), estimated-x̂(t), dead-reckoning-x̄(t), and
measured-y(t).

Figures 6 and 7 show the speed and control input trajectories, respectively. The control
inputs, i.e., the propeller thrust and the rudder angle, computed by solving the optimization
problem Equation (32) subject to Equations (22), (33)–(36) all satisfy the system constraints.
However, for the speed trajectory, the dead-reckoning speed trajectory satisfies the con-
straints well while small violations of the real and estimated trajectories with respect to the
speed limits are observed. This is because both the optimization problem Equation (32)
subject to Equations (22), (33)–(36) and the dead-reckoning trajectory use the nominal
system dynamics without uncertainties. If all the constraints Equations (22), (33)–(36) are
satisfied in the optimization problems, the dead-reckoning trajectory will also satisfy the
constraints. However, compared to the dead-reckoning trajectory, the real trajectory further
incorporates the uncertainties in ocean currents, and the estimated trajectory further incor-
porates the uncertainties in measurements. These uncertainties push the dead-reckoning
trajectories that are already on the constraint boundary out of the feasible zone. Approaches
such as buffer zone design in [31] can be applied to deal with this issue. Note that the
differences between the estimated and dead-reckoning speed trajectories are small, and the
root-mean-square-root value between these two trajectories is 0.03 m/s. This difference
demonstrates the correction capability of the EKF as in Equation (26).
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Figure 6. Speed trajectories and constraints.
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To relieve the potential computational burden of the MPC online optimization prob-
lems, successively linearized prediction models Equation (22) are used. Therefore, only
linear programming online problems need to be solved. Figure 8 shows the solver times of
the proposed tracking controller. Mostly throughout the simulation, the solver times are
between 10 ms to 20 ms, and are smaller than the system control sampling time Tc

s = 0.5 s,
which indicates the potential of the proposed algorithm for real-time applications.
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Figure 8. Solver times of the MPC online optimization problems.

5.1.3. Tracking Control Results with Prediction Biased Errors

When there are biased errors in the predicted ocean current information, due to the
inherent robustness of the MPC feedback control by using the updated states from acoustic
localization, the AUV can still follow the reference path, as shown in Figure 9. However,
compared to Figure 5 where there are no prediction biased errors, the AUV trajectory
sees larger fluctuations. The root-mean-square-error for the reference tracking increases to
6.17 m compared to 5.59 m in the case of no biased errors. The larger tracking errors are
partly due to the modeling errors, i.e., the error between the model used for the controller
design and the model used for simulations. Furthermore, we also run a simulation where
no ocean current information is used in the controller design, i.e., the predicted mean
current speed, angle, and their covariances are all set to zero in the controller. In this
case, infeasibilities occur and the simulation could not continue. Therefore, a proper
consideration of the influence of ocean currents is necessary.
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dead-reckoning-x̄(t), and measured-y(t).

5.2. Tracking Control without Acoustic Localization

In order to demonstrate the role of acoustic localization for the AUV tracking control,
we also run a set of simulations without acoustic localization. The system states used for
MPC feedback are purely provided by the dead-reckoning module. This is the case when
the AUV is not equipped with any positioning devices in an underwater environment.
In this case, the AUV can never even reach the destination. Therefore, we set the simulation
time the same as in the case with acoustic localization, and the tracking results are shown
in Figure 10. It can be observed that the trajectory deviates far away from the reference
path. The tracking task fails which means the tracking control algorithm with purely dead-
reckoning is not acceptable in practical applications. Compared with Figure 5, Figure 10
further demonstrates the effectiveness of the proposed integrated acoustic localization and
tracking control approach. Note that since no acoustic localization feedback is used, there
is no measured trajectory and the estimated trajectory coincides with the dead-reckoning
trajectory. Moreover, since now the controller is purely based on the dead-reckoning states
which are subject to no disturbances, the dead-reckoning trajectory can follow the reference
path well.
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and dead-reckoning-x̄(t).
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6. Conclusions and Future Work

For the two challenges that face the autonomy of AUVs, i.e., localization and ocean
currents, this paper proposes a systematic approach. Firstly, the localization problem is
solved with the aid of three surface buoys. By leveraging the different latencies of the
three surface signals arriving at the AUV, the position of AUV can be calculated every
localization cycle. The acoustically calculated position can then be utilized to correct
the predicted and possible inaccurate position in dead-reckoning with EKF. Moreover,
the uncertain ocean currents and full state reconstruction can also be incorporated in the
framework of EKF. An MPC controller is designed to handle system constraints and control
metrics based on the estimated full states from EKF. Simulation results demonstrate that
the proposed integrated acoustic localization and tracking control approach outperforms
the tracking control without acoustic localization. The potential of applying the proposed
algorithm to AUVs is illustrated especially in addressing the challenges of underwater
localization and ocean currents. Future research will consider extending the AUV dynamics
to three dimensional space and the possibility of cooperative localization and control with
multiple AUVs.
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Appendix A

The involved REMUS AUV model matrices and parameter values are presented as
follows [14,25].

The rigid-body and added mass matrices are

MRB =

 m 0 0
0 m mxg
0 mxg Iz

, MA =

 −Xu̇ 0 0
0 −Yv̇ −Yṙ
0 −Nv̇ −Nṙ

.

The rigid-body and added Coriolis and centripetal matrices are

CRB(t) =

 0 0 −m
(
xgr + v

)
0 0 mu

m
(
xgr + v

)
−mu 0

,

CA(t) =

 0 0 Yv̇v + Yṙr
0 0 −Xu̇u

−Yv̇v−Yṙr Xu̇u 0

.
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The linear and nonlinear damping matrices are

DL =

 Xu 0 0
0 Yv Yr
0 Nv Nr

,

and

DNL(t) =

 −X|u|u|u| 0 0
0 −Y|u|v|v| −Y|v|v|r| −Y|u|r|v| −Y|r|r|r|
0 −N|u|v|v| − N|v|v|r| −N|u|r|v| − N|r|r|r|

.

Hydrodynamic derivatives follow the SNAME nomenclature. For instance, the hydro-
dynamic added mass force X along the x axis due to an acceleration u̇ in the x direction is
written as

X = −Xu̇u̇, Xu̇ :=
∂X
∂u̇

,

which implies {MA}11 = −Xu̇. The REMUS AUV parameter values are listed in Table A1.

Table A1. REMUS AUV parameter and values.

Parameters Values Parameters Values Parameters Values Parameters Values

m 30.48 Xu 0 Yv̇ −35.3 N|r|r −94
ine Iz 3.45 X|u|u −1.62 Yṙ 1.93 N|u|v 10.62
ine xg 0 Xu̇ −0.93 Y|u|r 6.15 Nv̇ 1.93

ine Y|u|v −28.6 Yv 0 Nv 0 Nṙ −4.88
ine Yr 0 Y|r|r 0.632 Nr 0 N|u|r −3.93

ine Y|v|v −1310 N|v|v −3.18 - - - -
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