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Abstract: In this paper, a low-power and low-noise readout circuit for resistive-bridge microsensors
is presented. The chopper-stabilized, recycling folded cascode current-feedback instrumentation
amplifier (IA) is proposed to achieve the low-power, low-noise, and high-input impedance. The
chopper-stabilized, recycling folded cascode topology (with a Monticelli-style, class-AB output stage)
can enhance the overall noise characteristic, gain, and slew rate. The readout circuit consists of a
chopper-stabilized, recycling folded cascode IA, low-pass filter (LPF), ADC driving buffer, and 12-bit
successive-approximation-register (SAR) analog-to-digital converter (ADC). The prototype readout
circuit is implemented in a standard 0.18 µm CMOS process, with an active area of 12.5 mm2. The
measured input-referred noise at 1 Hz is 86.6 nV/

√
Hz and the noise efficiency factor (NEF) is 4.94,

respectively. The total current consumption is 2.23 µA, with a 1.8 V power supply.

Keywords: low-noise; resistive microsensor; sensor readout circuit; chopper stabilization; recycling
folded cascode instrumentation amplifier

1. Introduction

The resistive micro-electro-mechanical system (MEMS) sensors are widely used to
detect information, such as pressure, temperature, humidity, and biological signals [1–4].
Resistive MEMS sensors have advantages, such as low price, high linearity, and simple
structure. Resistive MEMS sensors are mainly implemented with the Wheatstone bridge
structure, which converts the resistance change into a voltage change with several mV. The
converted voltage is too small to process resistive sensor applications. For this reason, a
readout integrated circuit (ROIC), for resistive sensor signal processing, is required. The
amplification stage in the ROIC is usually implemented with an instrumentation amplifier
(IA). For high precision signal processing, the IA should have low-input noise and high-
input impedance. Since the input signal has only a few of mV, low-frequency noise, such
as flicker noise, can distort the baseline of input signal. Additionally, with the low-input
impedance of IA, the effect of the mismatch with sensor electrode can be large, resulting in
high-input offset and low CMRR of IA. In addition, for portable battery-powered systems,
low-power implementation is required for longer operating hours.

While maintaining low-power consumption, the performances for high, open-loop
gain, fast slew rate, large-output swing, and low-noise characteristics should be achieved
for high precision signal aquation. The folded cascode (FC) topology is widely used for
gain stage in the amplifier, as shown in Figure 1a. However, as shown in Figure 1a, the role
of transistors MN1 and MN2 is only limited to providing the small-signal input current to
the folding node. To overcome this inefficiency, a modified FC was presented, replacing the
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current source with active current mirrors, as shown in Figure 1b, called recycling folded
cascode (RFC) [5].
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Figure 1. (a) conventional folded cascode; (b) recycling folded cascode. 

Many studies have been also reported using RFC structures to enhance power effi-
ciency [6–8]. The current mirror with a 1:K ratio increases transconductance, and the cross-
over connections keeps the small-signal currents, added at the sources of MN5 and MN6, 
in phase. The resulting transconductance and gain bandwidth (GBW) of the RFC are: 
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With gmPM1a, the transconductance of the transistor MP1a and CL the load capacitor is 
shown at the output node, OUT. For the same area and power consumption, the RFC de-
livers wider bandwidth, higher gain, and higher slew rate than the FC topology. 

For resistive-bridge sensor readout, the resistance-to-voltage conversion has an ad-
vantage of relatively large dynamic range; however, nonlinear outputs, due to the effects 
of noise and the nonzero offset by the readout circuit, can occur. To minimize those non-
linearity error components, a precise sensor readout circuit, with low noise and offset, is 
required. The chopper stabilization scheme can reduce low-frequency noises, achieving 
the required low-noise specification [9]. Figure 2 shows the well-known chopping princi-
ple, with chopped amplifier and its ideal time domain waveforms. The input voltage in 
the DC band, Vin, is modulated by a chopper CH1, with clock frequency fch, and it is con-
verted to a modulated AC signal. Next, the modulated AC signal and input offset are 
amplified together with amplifier gain, A. Then the output chopper, CH2, demodulates 
the amplified AC modulated signal back to DC signal. The offset to the odd harmonics of 
fch, modulated by the CH2, can be filtered out after passing the LPF. Thus, the thermal-
noise limited signal-to-noise ratio (SNR) can be achieved. 
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Many studies have been also reported using RFC structures to enhance power ef-
ficiency [6–8]. The current mirror with a 1:K ratio increases transconductance, and the
cross-over connections keeps the small-signal currents, added at the sources of MN5 and
MN6, in phase. The resulting transconductance and gain bandwidth (GBW) of the RFC are:

GmRFC = gmPM1a(1 + K) (1)

GBWRFC =
gmMP1a(1 + K)

2πCL
(2)

With gmPM1a, the transconductance of the transistor MP1a and CL the load capacitor
is shown at the output node, OUT. For the same area and power consumption, the RFC
delivers wider bandwidth, higher gain, and higher slew rate than the FC topology.

For resistive-bridge sensor readout, the resistance-to-voltage conversion has an ad-
vantage of relatively large dynamic range; however, nonlinear outputs, due to the effects
of noise and the nonzero offset by the readout circuit, can occur. To minimize those non-
linearity error components, a precise sensor readout circuit, with low noise and offset, is
required. The chopper stabilization scheme can reduce low-frequency noises, achieving the
required low-noise specification [9]. Figure 2 shows the well-known chopping principle,
with chopped amplifier and its ideal time domain waveforms. The input voltage in the DC
band, Vin, is modulated by a chopper CH1, with clock frequency fch, and it is converted
to a modulated AC signal. Next, the modulated AC signal and input offset are amplified
together with amplifier gain, A. Then the output chopper, CH2, demodulates the amplified
AC modulated signal back to DC signal. The offset to the odd harmonics of fch, modulated
by the CH2, can be filtered out after passing the LPF. Thus, the thermal-noise limited
signal-to-noise ratio (SNR) can be achieved.
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Figure 2. Chopping principle in the time domain (a) chopper; (b) amplifier with chopper; (c) ideal time domain signal
waveforms. Adapted from [9].

In this paper, we propose a low-noise, low-power, and high-input impedance readout
IC for resistive microsensors. To overcome the power–noise tradeoff, the chopper-stabilized,
current-feedback instrumentation amplifier (CFIA), with RFC topology, is proposed. High-
current, efficient operational transconductance amplifier (OTA) using RFC topologies have
been extensively investigated; however, CFIA using RFC topologies, which has two input
differential pairs and acts as differential difference amplifier, are rarely considered. To
the author’s best knowledge, CFIA based on RFC has not been reported. The chopper
stabilization technique is an effective way to reduce low-frequency noise and is widely used
in various instrumentation amplifiers. The RFC topology can reduce power consumption
under the same desired bandwidth. Moreover, the high-input impedance with the tens
femtofarads of small gate capacitance can be achieved with the proposed IA scheme.

This paper consists of the following order. In Section 2, the proposed resistive-bridge
sensor ROIC with chopper-stabilized RFC CFIA is explained with simulation results.
Section 3 describes experimental results and summarized performance of the proposed
ROIC. Additional discussion and conclusions are presented in Section 4.

2. Proposed Resistive-Bridge Readout Integrated Circuit

This section discusses a proposed low-power and low-noise resistive-bridge microsen-
sor ROIC with chopper-stabilized RFC IA. Section 2.1 discusses the top architecture and
sub-blocks of the proposed resistive-bridge microsensor ROIC. Section 2.2 explains the
schematic and operating principles of a chopper-stabilized RFC IA. Section 2.3 explains the
AOCL, LPF, ADC driving buffer, and 12-bit SAR ADC, briefly.

2.1. Top Architecture of the Proposed Resistive-Bridge Microsensor ROIC

Three types of the IAs are mainly utilized: the capacitively-coupled, conventional
3-opamp, and current feedback IAs. To prevent signal distortion, high-input impedance
is an important parameter. In Figure 3a, showing the capacitive-coupled instrumentation
amplifier (CCIA) scheme, the input impedance at the input node of the amplifier is reduced,
owing to the shunt–shunt feedback. The input impedance of the CCIA can be expressed as:

ZIN(CCIA) =

∣∣∣∣ 2
sCin

∣∣∣∣ = ∣∣∣∣ 2
2π fCHCin

∣∣∣∣ (3)
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Its input impedance is typically in the order from several hundred kΩ to several
MΩ, determined by the impedance of the input capacitors and the chopping frequency.
To increase the input impedance, the input impedance boosting schemes, using positive
feedback or input pre-charge techniques, are used; however, the complexity of the stability
and circuits are drawbacks [10,11]. As shown in Figure 3b,c, the 3-opamp IA and the
CFIA receive input signals directly from the gate input node of the amplifier, and only the
small gate input capacitances are only shown at the input node; thus, much higher input
impedance can be achieved than with the CCIA.

The input impedance of the 3-opamp IA and CFIA can be expressed as (4):

ZIN(3−opamp,CFIA) =

∣∣∣∣ 2
sCg

∣∣∣∣ = ∣∣∣∣ 2
2π fCHCg

∣∣∣∣ (4)

where Cg is the gate input capacitance of input transconductance, Gm1. In this design, the
gate capacitance, Cg, is simulated to 272.8 fF, which is total gate capacitance (cgg). From
the power consumption perspective, the CFIA is more efficient than 3-opamp IA because
the output stages are shared. Moreover, by converting the input differential voltage signal
through the input transconductance, Gm1, to differential current, the input common-mode
and the feedback common-mode can be separated, thus CFIA achieve the higher CMRR,
compared to 3-opamp IA [12,13].

The top block diagram of the proposed resistive-bridge microsensor ROIC is shown in
Figure 4. It consists of a chopper-stabilized CFIA, low-pass filter (LPF), ADC driving buffer,
and 12-bit successive-approximation-register (SAR) analog-to-digital converter (ADC).
First, the resistive sensor converts the resistance to the voltage signal, the input signal is
amplified through the first stage (which is the proposed, fully differential CFIA). The gain
of proposed CFIA is determined by the feedback resistors Rf and Rc, and the gain can be
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adjusted to 4-bits (DIN<3:0>) via the programmable resistance, Rc, through the SPI. The
gain of the proposed CFIA can be expressed as:

gain = 1 + 2·
R f

Rc
(5)
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Figure 5 shows the transfer function of the CFIA, in which the gain is adjusted from
70.6 (DIN<3:0> = 1111) to 220.3 (DIN<3:0> = 0000). The amplified signal goes through the
2nd-order LPF, with 500 Hz cutoff frequency and buffer, and finally converts to the digital
signal through the 12-bit SAR ADC.
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2.2. Circuit Implementation of a Chopper-Stabilized, Recycling Folded Cascode
Instrumentaation Amplifier

Figure 6 shows the schematic of the proposed chopper-stabilized RFC IA. To reduce
low-frequency noise, the choppers are added to the input stage and the folded cascode stage.
For using fully differential CFIA topology, the differential difference amplifier (DDA)-style
input stages are needed. The PMOS differential pairs, MP1–MP4, form the recycling folded
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cascode input stage, and MP5–MP8 forms the feedback input stage. MN1–MN4 work as
driving transistors, with a ratio of 5:6, as shown in (6).

MN2 : MN1 = MN3 : MN4 = 5 : 6 (6)
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Figure 6. Schematic of the proposed chopper-stabilized RFC.

The cross-over connections of these current mirrors keep the small-signal input cur-
rents added at the sources of MN7 and MN8, in phase. The Monticelli-style, floating
class-AB control units are implemented using MP15, MN9, MP16, and MN10. By imple-
menting class-AB output stage, Gm and GBW of the RFC can be increased.

The compensation capacitors, CFs, are connected between the output nodes and gate
of the output common source stage in a Miller compensation manner to compensate for
the frequency response. The RCMs and CCMs detect the output common-mode voltage. The
error amplifier for common-mode feedback consists of MP19, MP20, MN13, MN14, and
MN15 to generate the control voltage vcmfb, which controls the bias current of the cascode
stages. The W/L values of the transistors and passive components (in the proposed RFC’s
fully differential difference amplifier) are shown in Tables 1 and 2, respectively.

Table 1. Values of transistors in proposed RFC FDDA.

Transistor Size (W/L) (µm) Transistor Size (W/L) (µm)

MP1–MP8 32/4 MN1, MN4 0.6/10

MP9, MP10 2/1.5 MN2, MN3 0.5/10

MP11, MP12 4/10 MN5, MN6 8/1

MP13, MP14 4/10 MN7, MN8 40/12

MP15, MP16 1/10 MN9, MN10 1/18

MP17, MP18 2/10 MN11, MN12 1/10

MP19, MP20 2/2 MN13, MN14 1/16

- - MN15 0.5/12
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Table 2. Values of passive components in proposed RFC FDDA.

Component Value

CF 200 fF

CE 16.6 pF

RE 466 kΩ

CCM 400 fF

RCM 11 MΩ

The transconductance of the 1st-stage can be increased by 11/5, according to expres-
sion (1) and can be expressed as (7). The gain bandwidth can be determined by the GmRFC
and compensation capacitor, CF, as (8).

GmRFC(1st−stage) =
11
5

gmPM1a (7)

GBWRFC =
GmRFC
2πCF

(8)

The simulated input–output characteristics of the RFC CFIA are shown in Figure 7.
The coefficient of the determination R2 was calculated to be 0.9999, within the resistance
variation (∆R) range of −380Ω~380Ω. Figure 8 shows the closed-loop gain of the proposed
RFC CFIA, based on corner simulation. The closed-loop gain varies from 100.0026 V/V
(at the FF 125 ◦C) to 100.9353 V/V (at the TT 29 ◦C). Figure 9 shows the input-referred
noise, with corner simulation results, when the chopper is enabled and disabled. The input-
referred, low-frequency noise at 1 Hz is reduced from 1.49 µV/

√
Hz (when the chopper

is disabled) to 80 nV/
√

Hz (TT 27 ◦C) (when the chopper is enabled). The input-referred
noise is reduced to 1/18.6 times with the chopper operation. The corner simulation results
of the CMRR and PSRR are shown in Figure 10. The value of the CMRR and PSRR at
100 Hz varies from 237 dB to 267 dB and 165 dB to 199 dB, respectively. With the Monte
Carlo simulations, the high CMRR and PSRR were obtained as shown in Figure 11. The
mean values of the CMRR and PSRR at 100 Hz, with mismatch, are 176.6 dB and 119 dB,
respectively. The simulations were performed with the default feedback gain configuration
(DIN<3:0> = 1000, gain = 100 V/V).
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2.3. AOCL, LPF, ADC Driving Buffer, and 12-Bit SAR ADC

The proposed CFIA circuit used chopper stabilization techniques for low-noise per-
formance, but the undesired offset of the resistive-bridge sensor also be amplified at the
output stage of the CFIA. To solve this problem, we added an automatic offset calibration
loop (AOCL) for offset cancellation. The AOCL consists of a comparator, a 12-bit SAR
logic block, and a 12-bit R-2R digital-to-analog converter (DAC). When offset is amplified
through the CFIA, the output of the CFIA is compared through the comparator input
connected to the CFIA output. The output of the comparator passes through the 12-bit SAR
logic to generate the corresponding 12-bit digital code and is applied as an input to the
12-bit R-2R DAC, which generates the corresponding compensation voltage to compensate
the offset. The low-frequency noise, modulated at the chopper frequency, is shown at the
output as a ripple; the 2nd-order 500 Hz LPF was used to remove the chopper ripple. The
signal amplified through the IA is converted to the digital signal through the 12-bit SAR
ADC, after ADC buffer. The detailed circuit implementations of the 500 Hz 2nd-order LPF,
buffers for driving ADC, 12-bit SAR ADC, and AOCL are described in [14–17].

3. Experimental Results

Figure 12 shows the die photograph of the proposed resistive-bridge readout IC. The
IC is fabricated using a TSMC 180 nm CMOS process, resulting in the RFC CFIA block
size of 293 µm × 183 µm. The printed circuit board (PCB) was designed to evaluate the
performance of the proposed IC, the test board and the measurement environment are
shown in Figure 13.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 13 
 

RFC CFIA

Programmable 
gain array

AOCL

BIAS

Timing generator

500Hz
2nd-order 

LPF

12-bit
SAR ADC

Buffer

 
Figure 12. Die photograph of the proposed resistive-bridge readout IC. 

Test PCB 

3.3 V / 1.8 V 
DC power supply

Signal input

Signal acquisition

DC Power Supply
Agilent / E3631A

Waveform Generator
Keysight / 33500B

Mixed Signal Oscilloscope
Tektronix / MSO2014

Dynamic Signal Analyzer
Agilent / 35670A

Chip on Board 
(COB)

Spectrum analysis

 
Figure 13. Measurement environment of the proposed IC with test board. 

Figure 14 shows the voltage output of the IC, which varies along the pressure applied 
to the resistive strain gauge force sensor, which has 10 kOhm flat resistance; the resistance 
varies from 14 kΩ to 26 kΩ [18]. Figure 15a shows the measured transient response when 
the input source is a 5 mVpp differential sine wave input. Figure 15b shows the measured 
transfer function of the CFIA when the gain setting is maximum (<DIN> = 0000), resulting 
in 46.12 dB DC gain and 580 kHz unit gain bandwidth (UGBW).  

Time (s)

Vo
lta

ge
 o

ut
pu

t (
V)

1 2 3 5 7 94 6 8

0.5

1

1.5

2

0
0

2.5

Pressure change

Force Sensor

Test Board

 
Figure 14. Measured voltage output response, due to pressure changes of the force sensor. 

Figure 12. Die photograph of the proposed resistive-bridge readout IC.



Appl. Sci. 2021, 11, 7982 10 of 13

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 13 
 

RFC CFIA

Programmable 
gain array

AOCL

BIAS

Timing generator

500Hz
2nd-order 

LPF

12-bit
SAR ADC

Buffer

 
Figure 12. Die photograph of the proposed resistive-bridge readout IC. 

Test PCB 

3.3 V / 1.8 V 
DC power supply

Signal input

Signal acquisition

DC Power Supply
Agilent / E3631A

Waveform Generator
Keysight / 33500B

Mixed Signal Oscilloscope
Tektronix / MSO2014

Dynamic Signal Analyzer
Agilent / 35670A

Chip on Board 
(COB)

Spectrum analysis

 
Figure 13. Measurement environment of the proposed IC with test board. 

Figure 14 shows the voltage output of the IC, which varies along the pressure applied 
to the resistive strain gauge force sensor, which has 10 kOhm flat resistance; the resistance 
varies from 14 kΩ to 26 kΩ [18]. Figure 15a shows the measured transient response when 
the input source is a 5 mVpp differential sine wave input. Figure 15b shows the measured 
transfer function of the CFIA when the gain setting is maximum (<DIN> = 0000), resulting 
in 46.12 dB DC gain and 580 kHz unit gain bandwidth (UGBW).  

Time (s)

Vo
lta

ge
 o

ut
pu

t (
V)

1 2 3 5 7 94 6 8

0.5

1

1.5

2

0
0

2.5

Pressure change

Force Sensor

Test Board

 
Figure 14. Measured voltage output response, due to pressure changes of the force sensor. 

Figure 13. Measurement environment of the proposed IC with test board.

Figure 14 shows the voltage output of the IC, which varies along the pressure applied
to the resistive strain gauge force sensor, which has 10 kOhm flat resistance; the resistance
varies from 14 kΩ to 26 kΩ [18]. Figure 15a shows the measured transient response when
the input source is a 5 mVpp differential sine wave input. Figure 15b shows the measured
transfer function of the CFIA when the gain setting is maximum (<DIN> = 0000), resulting
in 46.12 dB DC gain and 580 kHz unit gain bandwidth (UGBW).
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The measured input-referred noise is 86.6 nV/
√

Hz at 1 Hz and 32.6 nV/
√

Hz at
200 Hz, as shown in Figure 16. The minimum current consumption of the IC is 3 µA (where
only IA and bias block are used and if the LPF, buffer, ADC, and timing generator are fully
utilized) the power consumption is 7.954 µA. The noise-efficiency-factor (NEF) is widely
used to compare the power–noise trade-offs [19]. The NEF can be calculated by (9).
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NEF = Vni,RMS·

√
2·Itot

π·UT ·4kT·BW
(9)
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Figure 16. Measured input-referred noise.

The NEF value is proportional to the input reference noise of the IA and the current
consumption, which can be used to determine whether IA with low NEF has performance
advantages. The NEF of the proposed IA is calculated to be 4.94. The performance
comparisons of the proposed circuit, with the previous works regarding resistive-bridge
ROIC, are summarized in Table 3.

Table 3. Performance summary of proposed resistive-bridge ROIC and comparison with other studies.

This Work [20] [13] [21] [22]

Architecture CFIA (with RFC) +
chopping

CFIA + chopping +
RRL CCIA + chopping CCIA + chopping +

CDS + RRL RC + chopping

Technology (µm) 0.18 0.18 0.18 0.13 0.35

Supply voltage (V) 1.8 3.3 1.8 3 5

Total current
consumption (µA) 7.9 200 1200 326 860

Gain of IA 70–220 100 40 16–32 -

Gain bandwidth (Hz) 580 k - - - 2 k

Current consumption
of IA (µA) 2.23 - - - 700

Input-referred noise
(nV/

√
Hz) 86.6 23 3.7 16 4.2

NEF 4.94 6.1 5.0 11.1 4.7

4. Discussion and Conclusions

In this paper, a low-power, low-noise, resistive-bridge microsensor readout circuit
with chopper-stabilized, recycling folded cascode instrumentation amplifier is presented.
The readout circuit consists of a chopper-stabilized RFC IA, AOCL, 2nd-order LPF, ADC
driving buffer, and 12-bit SAR ADC. The RFC structure was used to achieve low-power
consumption. Additionally, low-noise was implemented by applying the chopper stabiliza-
tion technique, and to realize high-input impedance for accurate signal amplifying, CFIA
topology was implemented. The proposed readout circuit was implemented in a standard
0.18 µm CMOS process, with an active area of 12.5 mm2. The measured input-referred
noise at 1 Hz was 86.6 nV/

√
Hz and the noise efficiency factor (NEF) was 4.94, respec-

tively. The total current consumption was 2.23 µA, with a 1.8 V power supply. There were
trade-offs between the input-referred noise and power consumption. The input-referred
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noise in this paper was higher; however, the power consumptions were lower than the
previous research (in Table 3). This chip achieves relatively lower NEF, which shows the
power–noise efficiency. The gain of the proposed IA can be adjusted from 70 to 220, via a
4-bit programmable resistor array DIN<3:0>, so that it can be expected to be available for
various resistive-bridge sensor applications.
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