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Abstract: To address the problem of poor semantic reasoning of models in multiple-choice Chinese
machine reading comprehension (MRC), this paper proposes an MRC model incorporating multi-
granularity semantic reasoning. In this work, we firstly encode articles, questions and candidates to
extract global reasoning information; secondly, we use multiple convolution kernels of different sizes
to convolve and maximize pooling of the BERT-encoded articles, questions and candidates to extract
local semantic reasoning information of different granularities; we then fuse the global information
with the local multi-granularity information and use it to make an answer selection. The proposed
model can combine the learned multi-granularity semantic information for reasoning, solving the
problem of poor semantic reasoning ability of the model, and thus can improve the reasoning ability
of machine reading comprehension. The experiments show that the proposed model achieves better
performance on the C3 dataset than the benchmark model in semantic reasoning, which verifies the
effectiveness of the proposed model in semantic reasoning.

Keywords: natural language processing; machine reading comprehension; semantic reasoning;
pre-training model

1. Introduction

How to make computers understand human language is the main goal of the field of
Natural Language Processing (NLP) and has been a long-standing challenge for artificial
intelligence research. Machine Reading Comprehension (MRC) tasks are similar to human
reading comprehension tests in which the computer needs to answer questions based on
the content of a given text [1]. In contrast to traditional NLP, MRC requires techniques that
involve multiple aspects of lexical, grammatical and syntactic meanings and also requires a
combination of feature representations analysis of the text context and semantic reasoning
techniques, making it a very challenging NLP task.

In MRC tasks, deep learning models are often used to help machines learn and under-
stand contextual content so that they can answer the corresponding questions correctly.
If machines can perform reading comprehension tasks similarly to humans, and have
reading comprehension capabilities similar to or better than those of the human brain, then
they can be of great value in replacing traditional human reading comprehension tasks.

Among the several types of tasks in MRC (cloze test, span extraction and multiple
choice, etc.), this paper focuses on multiple-choice style tasks. A multiple-choice MRC
task differs from a span extraction task in that it requires not only the text and questions
but also a set of candidate answers from which the machine needs to find the correct
answer, taking into account the semantic information of the text [2]. In contrast to the
cloze test MRC task where the answers are fixed words and phrases, the answers to the
multiple-choice MRC task are artificially generated sentences that are manually rewritten
with complete logic based on the content of the text. Typical English datasets of this type
include MCTest [3], RACE [4] and MCScript [5], and a representative Chinese dataset is
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C3 [6]. A sample of data selected from the RACE dataset for a multiple-choice MRC task is
shown in Figure 1. The RACE dataset is a representative benchmark dataset for multiple-
choice reading comprehension, which is constructed using an English test bank for junior
and senior high schools. The candidates in candidate answer set A in Figure 1 never appear
in the passage, and the machine needs to fully understand the semantic information of
the text context. The machine needs to fully understand the semantic information of the
context and select semantically similar candidates from the candidate set as the answer.

Figure 1. Example of multiple-choice MRC task data.

While the answers to the cloze test and span extraction tasks must come from the
context of the given passage, and the answers to the multiple-choice tasks are not necessarily
sequences in the text. Those answers are manually rewritten and summarized based on
the content of the text, and some answers even need to be inferred together with external
knowledge.Questions and answer candidates for multiple-choice Chinese MRC are written
by humans, which means the content is more flexible and difficult to find out the correct
answer by simple matching.

Through our analysis of the multiple-choice Chinese MRC task, we found these three
factors to make the task challenging: (1) few training data and lack of external knowledge
severely limit the accuracy of the model; and (2) the answer selection for many questions
requires deep semantic interaction to find out the corresponding answer. Repeated semantic
interactions between articles, questions and candidates are crucial, but the learning of them
is inadequate. (3) MRC requires a high level of semantic reasoning, and answer selection
must not only take into account the local information of the related passages but also
consider the global information of the article.

Based on the characteristics and challenges mentioned above, we propose a deep neu-
ral network (DNN) based model. The main contributions of this paper can be summarized
as follows:
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1. We design a multi-granularity semantic information extractor and apply it to our
proposed MRC model to enhance the comprehension of local sematic meanings,
which have been proved beneficial to the model performance in our experiments.

2. We investigate the semantic interactional reasoning aspect and leverage attention
mechanism to extract semantic perceptual information between articles, questions
and candidates. By fusing multiple semantic interaction information, we have further
improved the performance of our multiple-choice MRC model.

3. We model the learning process of global semantic information and local semantic
information, respectively, and jointly construct a deep global and local semantic
multiple-choice MRC model to achieve better deep semantic learning and reasoning
for articles, questions and answers in multiple-choice MRC tasks.

In the first section of this paper, we introduce the background of our research and the
up to date researching progress in related fields. By analyzing existing works, we illustrate
the significance of our proposed idea in Section 2. Then we define the task in formulaic
language and describe the proposed model structure with multi-granularity semantic
reasoning in Section 3. Section 4 describes the dataset, evaluation metrics and settings used
in our experiments. Our experimental results are presented and comprehensively analyzed
in detail in Section 5, and we summarize our work in this paper in the last section.

2. Related Work

For nearly half a century, research on MRC has gone through three stages of develop-
ment: the early era of rule-based MRC, the era of machine-learning-based MRC and the
era of neural networks that use deep learning to build MRC models.

2.1. Rule-Based MRC

When the MRC task was firstly proposed in the 1970s, most of the early approaches
were limited by hand-coded scripts and rules, making them difficult to apply widely in real-
world scenarios. In the late 20th century, Hirschman et al. [7] proposed an MRC dataset for
development and testing that contained 120 reading materials for primary school students
and a number of short question-answer pairs, such as who, where, when, why and what,
consisting of questions and answer pairs. They did not require the model to give an exact
answer, but only needed it to find the sentence where the answer is located in the article.
They also proposed the DEEP READ model for this dataset (which primarily uses a rule-
based bag-of-words model). Charniak [8] et al. fused a rule-based bag-of-words model
with a lexical and semantic similarity-based approach, ultimately achieving an accuracy
rate of 30% to 40% in the reading comprehension task of searching answer location.

2.2. Machine-Learning-Based MRC

In 2013, Richardson et al. [9] proposed the MCTest dataset on which the weighted
distances between questions and answers were calculated to predict the correct answer.
The presentation of this dataset has rapidly advanced the development of machine learning
models [10–12]. In 2015, Wang et al. proposed a max-margin learning framework based on
a heuristic sliding window approach, which improved the model accuracy from 63% to
around 70% on the MCTest dataset by converting each question-answer pair into a textual
implication system for the corresponding utterance. Similar to Wang’s model, most of
the models at that time were based on a simple max-margin learning framework with
some rich linguistic features (such as syntactic dependencies, denotational disambiguation,
semantics, word embeddings, etc.) to fit into passages, questions and answers. Compared
to earlier rule-based MRC approaches, machine learning-based MRC models have shown
good performance. However, we can find that the existing machine learning models still
have significant limitations in terms of performance improvement, and there are two main
reasons affecting the performance improvement: (1) the machine learning models mainly
rely on existing language tools for feature extraction, such as dependency parsers and
semantic role annotator, but these language tools are trained from data in a single domain,
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and their generalization capability is relatively weak; therefore, for MCTest data, there is a
lot of noise in the obtained features; (2) the size of the dataset is too small, thus it cannot
support the adequate training of machine learning models.

2.3. Deep-Learning-Based MRC

In 2015, Hermann et al. [13] presented a large-scale fill-in-the-blank MRC dataset
CNN/Daily Mail for the first time (about 1.26 million training data), and also proposed
the ATTENTIVE READER neural network model for this dataset, which is based on the
attention mechanism model and compared to the traditional ATTENTIVE READER neural
network model, which is based on an attention mechanism and achieves a 12.9% improve-
ment in accuracy compared to traditional NLP models. This marks the beginning of the
DNN era for MRC. In 2016, Rajpurkar et al. [14] proposed SQuAD, an English dataset for
extractive answer-based MRC tasks, which is the first canonical dataset containing large-
scale natural language question-answer pairs in the MRC research community. Relying
on the SQuAD dataset, Wang et al. [15] proposed the Match-LSTM and Answer Pointer
models, which use a bidirectional LSTM model to encode questions and articles, and a
one-way attention mechanism to perform semantic matching between article and question.
Yu et al. [16] proposed QAnet, which uses multi-layer convolution and a self-attentiveness
in the encoding module mechanism to integrate local and global interactions of articles and
questions to improve the performance of the model. Basafa el al. [17] use Longformer [18],
a long document transformer, to learn the abstract meaning of the context. It has been
proved that deep learning-based MRC models have stronger text semantic representa-
tion ability and answer reasoning ability in English compared with traditional machine
learning models.

A set of large-scale datasets for different Chinese MRC tasks and datasets have also
been proposed, such as ReCO [19] for Chinese reading comprehension, ChID [20] for the
cloze-style task on Chinese idioms, CMRC2018 [21] for the extractive task, and C3 [6] for
the multiple-choice task. The proposal of a large number of high-quality MRC datasets has
driven the development of deep neural MRC models. Knowledge-enhanced pretrained
models, such as ERNIE 3.0 [22] and Kepler [23], are able to integrate factual knowledge
into PLMs to achieve better performance. Instead of striving for better objective evaluation,
Cui et al. [24] try to improve the explainability for MRC tasks on multiple-choice datasets.
To the best of our knowledge, few studies have focused on semantic reasoning on different
levels of granularity to address the Chinese MRC challenge. In this paper, we build on
previous work to construct models that have greater comprehension and generalization
capabilities for natural language in the field of MRC.

3. Method
3.1. Task Definition

The multiple-choice MRC task requires the model to select the appropriate answer
from the candidate answers based on the given context, and the answers are not only
limited to words or entities present in the context, which makes the answer format more
flexible. By giving the machine a Document (denoted as D) and a Question (denoted as Q),
which corresponds to a set of options (denoted as O), the goal of the model is to be able to
infer the correct answer from the set of candidate answers.

Then we can define the task as follows: the relationship between document
D = d1, d2, . . . , dm (m denotes the number of words in the article), questions Q = q1, q2, . . . , qn
(n denotes the number of words in the question) and answers Oi = o1, o2, . . . , ok (k denotes
the number of words in the i-th candidate answer) is shown in Equation (1).

F(D, Q, O) = Oi (1)

In this task, our model should find the best answer from all k candidates by learning
from the aforementioned relationship.
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3.2. Model

In this section, we construct a multiple-choice MRC model incorporating multi-
granularity semantic reasoning. Firstly, the articles, questions and candidates are input to
the BERT model for learning, and the semantic information in the articles, questions and
candidates is learned through the multi-layer transformer structure in the BERT model;
secondly, the feature vectors output from the final hidden layer of BERT become the input
to a convolutional neural network (CNN) with multiple windows of different sizes, and the
convolutional kernels with different sizes of windows are used to learn different lengths of
semantic paths. Then, the output of the multi-granularity semantic reasoning information
is spliced with the global feature information output from the CLS position in BERT to
obtain the information of global reasoning and local multi-granularity semantic reasoning;
finally, the spliced information is used to complete the answer selection by using the fully
connected layer and softmax function, and the model structure is shown in Figure 2.

Figure 2. Model diagram of multiple-choice MRC with multi-granularity semantic reasoning.

The model structure is divided into six main layers from bottom to top: input layer,
embedding layer, encoding layer, multi-granularity semantic reasoning layer, information
fusion layer and answer prediction layer.

3.2.1. Input Layer

This layer mainly represents the inputs of the documents, questions and candidates.
According to the input characteristics of the BERT model, the sequence of inputs of docu-
ments, questions and candidates is represented as shown in Equation (2).

S = [CLS]D[SEP]Q[SEP]Oi[SEP] (2)

where D denotes the set of token sequences of documents, Q denotes the set of token
sequences of questions, and Oi denotes the set of token sequences of the i-th candidate.

3.2.2. Embedding Layer

The embeddings we use in our model are divided into three layers: token Embeddings,
Segment Embeddings and position embeddings, Token Embeddings is the conversion of
S in the input layer into a vector of fixed dimensions; Segment Embeddings is used to
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distinguish the front and back parts of the sentence pairs; Position Embeddings is to encode
the position information in the input layer S. The formulae are shown in Equations (3)–(6).

wS = TokenEmbeddings(S) (3)

segS = SegmentEmbeddings(S) (4)

pS = PositionEmbeddings(S) (5)

InputS = wS + segS + pS (6)

where InputS represents the overall output after the BERT embedding layer.

3.2.3. Encoding Layer

This layer is used to encode the input embedded layer sequence through the multi-
layer transformer in BERT. There is a dependency relationship between the multi-layer
transformer and the output of the previous layer transformer is the input of the current
layer transformer, which is calculated as shown in Equations (7) and (8).

h1 = Trans f ormer(InputS) (7)

hi = Trans f ormer(hi−1), i ∈ [1, N] (8)

where hi denotes the output of the transformer’s i-th layer and N is the number of layers
of the transformer in BERT.

3.2.4. Multi Granularity Semantic Reasoning Layer

This layer is mainly used to perform multi-granularity semantic reasoning on the
vectors encoded by BERT using CNN. This process simulates the process of human reading
comprehension by repeatedly focusing on the important semantic information before and
after reasoning, and finally completing the answer selection. The CNN mainly contains
a convolutional layer and a pooling layer, and the convolutional kernel windows used
in our mode are 2, 3 and 4, and the pooling method uses the maximum pooling method.
The calculation method is shown in Equations (9)–(11).

T2 = con_and_maxpooling(hi)2 (9)

T3 = con_and_maxpooling(hi)3 (10)

T4 = con_and_maxpooling(hi)4 (11)

where T2, T3 and T4 represent the results of convolution kernels for 2, 3 and 4 convolutions
with maximum pooling, respectively.

3.2.5. Information Fusion Layer

This layer fuses the output of multi-granularity layer with the feature vector acquired
by the CLS embeddings from BERT. The CLS embedding vectors represent the global
feature information obtained through the BERT model, while the output results of the
multi-granularity layer represent the feature information obtained by reasoning at multiple
local granularities. By fusing the two pieces of information, the model is able to learn more
comprehensive information, which is more conducive to the subsequent answer prediction.
The calculation method is shown in Equation (12).

x = C
⊕

T2
⊕

T3
⊕

T4 (12)

where C denotes the feature vector output from the CLS position, and x is the result of
information fusion operation.
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3.2.6. Answer Prediction Layer

This layer focuses on the prediction of answers for multiple-choice MRC, and after
the fully connected layer, the answer prediction is performed by the softmax function.
The final output is calculated as shown in Equation (13).

ŷ = so f tmax(Wxx + b) (13)

where Wx denotes the weight and b denotes the bias.

3.3. Optimization

Our model uses the cross-entropy loss function as the loss function, which is calculated
by Equation (14) as below:

L = − 1
N

M

∑
c=1

yic log (ŷic) (14)

where N is the total number of inputs, M is the number of categories. yic is the expected
output, which is 1 when the categories are the same with the actual output and 0 when
they are different, and ŷic is the probability of predicting sample i to category c.

4. Experiment
4.1. Dataset

C3: We use the multiple-choice Chinese MRC dataset C3 and perform a statistical anal-
ysis about it. In 2019, researchers at Tencent AI Lab presented the first free-form multiple-
choice Chinese MRC dataset, which contains 13,369 documents (containing both formal and
informal forms) collected from questions in the general domain of the Chinese Proficiency
Test and 19,577 multiple-choice MRC questions associated with these documents.

In order to evaluate the generalization ability of different domain models, the dataset
contains two document types, conversational form documents and non-dialogical doc-
uments with mixed topics (e.g., stories, news reports, monologues, or advertisements).
MRC tasks can be classified into two categories based on the different document types:
C3-Dialogue(C3

D) and C3-Mixed(C3
M), and within these two task types, each document

corresponds to a diversity of question types, such as complete fill-in-the-blank questions
formed by removing spans or sentences from the text, closed-form questions that can be
answered with minimal answers (e.g., yes or no), or free-form questions that reason from
multiple sentences of the text. With 86.8% of the questions in this dataset requiring a com-
bination of internal and external knowledge of the document (general world knowledge)
to better understand the given text, we can say that most questions in this dataset require
rich external knowledge to assist the machine in answering the question.

There is a significant difference between C3
D and C3

M in that most of the documents in
C3

M are formal written texts, while there is a lot of spoken language in the dialogue docu-
ments in C3

D, so there is a larger vocabulary in C3
M compared to the dialogue documents.

The average document length in C3
M is 180.2, and the vocabulary size is 4120, while the

average document length in C3
D is 76.3, and the vocabulary size is 2922. Due to the longer

document length in C3
M, it may be better for assessing MRC for verbose texts.

4.2. Metrics

Multiple-choice MRC tasks generally use accuracy to measure the performance of the
model. The accuracy rate indicates the number of samples that made the correct choice as
a percentage of the total number of samples. A higher value of accuracy means that the
model answered more questions correctly. Accuracy is calculated by Equation (15).

accuracy = − 1
N

M

∑
c=1

I(y′i = yi) (15)
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where I is a function to determine whether the predicted value y′i and the actual value yi
are equal. The output is 1 or 0 for equal or not equal, respectively.

4.3. Experimental Settings

In this paper, our model is built using the pytorch deep learning framework. Af-
ter many experiments, we adjust the parameters in our model to what is shown in Table 1.

Table 1. Model parameter settings.

Parm Type Parm Value

Batch size 32
Learning rate 2 × 10−5

Epoch 10
Max Length 512

Dropout 0.1
Gradient Accumulation Steps 4

Optimization functions Adam

In order to prevent model overfitting and excessive training time, the validation
set is tested every round during the training phase of the model. If there is no further
improvement in accuracy in two consecutive rounds on the validation set, the training
process of the model is stopped, and the model with the highest accuracy round is used as
the final model.

5. Results and Analysis
5.1. Experimental Results

Most of the answers to the questions in the C3 dataset used in this paper require a com-
bination of semantic reasoning, some of which need reasoning on a single sentence, and oth-
ers require multiple sentences to be considered together to find the appropriate answer.
Therefore, this dataset can better verify the effectiveness of multi-granularity reasoning.

To illustrate the effectiveness of the proposed model, the test results are compared
with the test results of several models, and the detailed experimental comparison results
are shown in Table 2.

Table 2. Comparison table of experimental results a.

Model C3
M-Test C3

D-Test C3-Test

Random 27.8 26.6 27.2
Distance-Based Sliding Window 45.8 40.4 43.1

Co-Matching 48.2 51.4 49.8
ERNIE 63.7 64.6 64.1
BERT 64.6 64.4 64.5

Our model 65.234 65.238 65.236
a Results are measured by accuracy, using percentages (%).

From the table above, we can see that our proposed model achieve improvements
of 0.634%, 0.838%, and 0.736% over the benchmark BERT model on C3

M-test, C3
D-test,

and C3-test, respectively, which indicate that the introduction of the multi-granularity
module has a significant improvement over the benchmark BERT model. The results of
our experiment also suggest that the fused multi-granularity semantic reasoning method
we propose can improve the reasoning ability of the model. By convolution and maximum
pooling on the convolution window size of 2, 3 and 4, our model can extract the local
multi-granularity feature information and then combine it with the global granularity
feature information, which can achieve the effect of reasoning from multi-granularity.
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We have also counted the testing results of each round on the validation set to verify
the relationship between the number of training rounds and model performance. The re-
sults are shown in Figures 3 and 4.

Figure 3. Accuracy changes graph with epoch.

Figure 4. Loss changes graph with epoch.

From Figures 3 and 4, we can see that the model converges faster in the first three
rounds of training, and the model convergence becomes steady when the training process
reaches the third round. The model achieves the best performance at the fifth round, which
indicates that the proposed model can achieve a better convergence effect and can complete
the training of the model with fewer training rounds.

5.2. Ablation Studies

In order to verify the effectiveness of global granularity reasoning and local multi-
granularity reasoning in our model, we design a local multi-granularity reasoning model
without fusing the global granularity feature information of the CLS position and using
only the BERT model with convolutional pooling. The experimental results are shown in
Table 3.

Table 3. Results of the ablation studies a.

Model C3
M-Test C3

D-Test C3-Test

BERT 64.6 64.4 64.5
Local Multi-Granularity Model 63.08 63.439 63.25

Local + Global-Granularity Model 65.234 65.238 65.236
a Results are measured by accuracy, using percentages (%).

From Table 3, it is clear that the model considering only local multi-granularity reason-
ing degrades in performance of by 1.52%, 0.961%, and 1.25% over the baseline BERT model
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on C3
M-test, C3

D-test, and C3-test, respectively. This result indicates that only considering lo-
cal granularity reasoning without the global scope information will cause a certain decrease
in the performance of the model. This is consistent with the fact that if humans reason
only in terms of the partial information when answering reading comprehension questions,
it will lead to inaccurate outcomes; thus, further demonstrating the correctness of our
multiple-choice MRC model that incorporates multi-granularity semantic reasoning not
only considering local multi-granularity reasoning but also global granularity reasoning.

5.3. Analysis

To further demonstrate the performance improvement of the proposed model, we
randomly selected some questions from the Chinese multiple-choice MRC dataset that
require different types of reasoning to give answers. Then we conducted experiments on
the benchmark BERT model and our proposed model, and the results are shown below in
Table 4.

Table 4. Comparison table of experimental results a.

Model BERT Our Model
Dataset C3

D-Test C3
M-Test C3

D-Test C3
M-Test

Semantic Reasoning 81.5 81.8 88.9 90.91
Implicative Reasoning 62.5 0 75.0 0
Causal Reasoning 55.6 57.1 66.7 57.1

a Results are measured by accuracy, using percentages (%).

From Table 4, we can see that our fused multi-granularity MRC model has consid-
erable improvement in semantic reasoning, implicative reasoning, and causal reasoning,
respectively, compared with the BERT model. All the results indicate that our proposed
method has higher rationality and feasibility.

6. Conclusions and Future Work

This paper focuses on a multiple-choice Chinese MRC model that incorporates multi-
granularity semantic reasoning. By designing the fusion method of global features and
local semantic reasoning outputs, we effectively improve the performance of the model,
which proves the effectiveness of the proposed method. This research has proved that
studying the patterns of human reading, thinking and learning is an essential way to
conduct research in the field of deep learning. A well-designed local-global semantic
information interaction scheme can provide remarkable enhancement in model perception
capabilities. Our study calls for the research community to go deeper into the utility of
semantic meanings and explores further how to find out a better way to build up a stronger
MRC model.

In the future, we plan to focus on two main aspects. Due to the deficiency discovered
in other types of reasoning experiments, the first aspect is to improve the model’s ability to
handle the referential problems by adapting solutions used in Coreference Resolution tasks.
Secondly, as the proposed model is less capable of processing excessively long context
with various external knowledge, we will further leverage the latest promising knowledge
enhanced approaches to overcome this shortcoming and extend the proposed model to
deal with more challenging settings.
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