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Abstract: Myocardial infarction (MI) occurs due to the decrease in the blood flow into one part of the
heart, and it further causes damage to the heart muscle. The 12-channel electrocardiogram (ECG)
has been widely used to detect and localize MI pathology in clinical studies. The vectorcardiogram
(VCG) is a 3-channel recording system used to measure the heart’s electrical activity in sagittal,
transverse, and frontal planes. The VCG signals have advantages over the 12-channel ECG to localize
posterior MI pathology. Detection and localization of MI using VCG signals are vital in clinical
practice. This paper proposes a multi-channel multi-scale two-stage deep-learning-based approach
to detect and localize MI using VCG signals. In the first stage, the multivariate variational mode
decomposition (MVMD) decomposes the three-channel-based VCG signal beat into five components
along each channel. The multi-channel multi-scale VCG tensor is formulated using the modes of each
channel of VCG data, and it is used as the input to the deep convolutional neural network (CNN)
to classify MI and normal sinus rhythm (NSR) classes. In the second stage, the multi-class deep
CNN is used for the categorization of anterior MI (AMI), anterior-lateral MI (ALMI), anterior-septal
MI (ASMI), inferior MI (IMI), inferior-lateral MI (ILMI), inferior-posterior-lateral (IPLMI) classes
using MI detected multi-channel multi-scale VCG instances from the first stage. The proposed
approach is developed using the VCG data obtained from a public database. The results reveal that
the approach has obtained the accuracy, sensitivity, and specificity values of 99.58%, 99.18%, and
99.87%, respectively, for MI detection. Moreover, for MI localization, we have obtained the overall
accuracy value of 99.86% in the second stage for our proposed network. The proposed approach has
demonstrated superior classification performance compared to the existing VCG signal-based MI
detection and localization techniques.

Keywords: myocardial infarction; vectorcardiogram; multivariate VMD; deep CNN; accuracy

1. Introduction

The obstruction in one of the coronary arteries of the heart causes the myocardial
infarction (MI) disease [1,2]. Typically, the MI is progressed in three phases [3]. These three
phases are (a) ischemic phase, (b) acute phase, and (c) myocardial necrosis phase. The
12-lead ECG signal is used in the clinical study for the early detection and localization
of MI pathology [4]. The ST-segment elevations, inverted T-waves, and pathological Q-
waves are the morphological changes observed in the ECG signals of different leads in
MI pathology [5]. The morphological changes in the ECG signals of the channels or leads,
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such as V1, V2, V3, and V4, are used to diagnose anterior MI (AMI) [6]. Similarly, inferior
MI is diagnosed based on the variations in the morphologies of ECG signals for II, III,
and aVF channels. Moreover, the morphological variations in the ECG signals of I, aVL,
V5, and V6 channels are used to diagnose left lateral MI pathology [6]. In 12-lead ECG,
no ECG lead capture the information about the diagnosis of posterior MI [6,7]. However,
the reciprocal changes in the V1 and V2 channel ECG signals are used in the clinical
study to diagnose posterior MI [8]. Vectorcardiogram (VCG) is an orthogonal three lead
system which measures the heart’s electrical activity along transverse, sagittal, and frontal
planes, and it has been used for the detection of MI pathology [3,9]. The 12-lead ECG
can be derived from the VCG signal using various transformation techniques [10]. In
VCG, one of the orthogonal leads reveals the posterior view of the heart [11]. Hence, the
method based on the analysis of VCG signal information is helpful to detect and localize
MI pathology. The continuous recording and monitoring of VCG signal information for MI
disease diagnosis is cumbersome, and hence automated approaches have been used for the
accurate detection and localization of MI using VCG signals [3]. The development of novel
approaches to detect and localize MI pathology using the VCG signals is challenging in
clinical study.

In recent years, various approaches have been developed to detect MI using VCG
signals [12–15]. The methods based on the evaluation of various VCG signal morphological
features, such as difference in ST-T vector magnitude, area of ST-segment vector, and
other T-wave features, have been used to detect MI disease [14,16–18]. Similarly, in [13],
authors have applied independent component analysis (ICA) and principal component
analysis (PCA) for projecting VCG signal feature vector into a lower-dimensional space.
They have extracted various morphological features from the VCG signal to formulate
the feature vector. The neural network-based classifier has been used for the detection
of MI using reduced dimension feature vector of VCG signal [13]. In [14], authors have
computed octant and vector-based features from VCG signals and used a decision tree
model to detect MI pathology. These methods require the detection of P, Q, R, S, T-onset
points manually in the VCG signal to compute the morphological features [3]. In literature,
various wavelet-based techniques, such as multi-scale recurrent quantification analysis
(MRQA) [15], and complex wavelet sub-band features [3] have been used to detect MI
using VCG signals. In [15], each channel of the VCG signal is decomposed into sub-band
signals using discrete wavelet transform (DWT). From each sub-band signal, the recurrent
quantification analysis (RQA) based non-linear features have been extracted, and Gaussian
discriminant analysis (GDA) classifier is used for the detection of MI [15]. Moreover, in [3],
the dual-tree complex wavelet transform (DT-CWT) has been used to decompose the VCG
signal into sub-band signals along each channel. The entropy and L1-norm features have
been extracted from each sub-band signal. The relevance vector machine (RVM) classifier
has been used to detect MI from these VCG signals features [3]. Along with cardiac signal
processing, cardiac imaging today represents an important area of clinical research that has
achieved excellent results in recent years, such as deep-learning approaches [19]; especially,
this led to the development of computer-assisted tools capable of segmenting the whole
heart [20,21], as well as identifying specific regions of interest [22]. In the wavelet-based
approach, the pre-defined basis functions and the number of decomposition levels are
used to compute sub-band signals from VCG signal [23]. Additionally, the mentioned
VCG signal-based approaches have considered only for MI detection. The automated
classification of various types of MI pathologies has not been considered using VCG
signals. The existing VCG-based approaches have considered various feature extraction
and machine learning methods to detect MI. In recent years, various deep learning-based
approaches have been used to detect and localize MI using 12-lead ECG signals [2,24,25].
The deep learning-based MI detection and localization methods do not require extracting
features from 12-lead ECG signals [2]. The deep learning-based methods have not been
explored for the detection and localization of MI using VCG signals. Therefore, a deep
learning-based approach can be developed to detect and localize MI using VCG signals.
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The multivariate variational mode decomposition (MVMD) is a recently proposed
signal processing technique to decompose the multi-channel signals into components or
modes [26]. This method is fully signal-driven and does not consider any basis functions
and decomposition levels like DWT to obtain components of non-stationary signals. The
univariate version of VMD has been used for the analysis of ECG signals for the detection
of ventricular tachycardia and atrial fibrillation episodes [27,28]. The VCG is a multi-
channel signal, and, therefore, the MVMD can be used to decompose the signal into modes.
Moreover, deep learning-based methods have been used in the multi-scale or modal
domain of ECG signals to detect cardiac ailments [29]. For VCG signal, the deep learning
method has not been explored in the multi-scale domain to detect and localization of MI.
The novelty of this work is to develop a multi-channel multi-scale deep learning-based
framework to detect and localize MI using VCG signals. The important contributions of
this work are given as follows:

1. The MVMD is introduced to decompose the VCG signals into sub-band signals
or modes;

2. A multi-channel multi-scale two-stage deep convolutional neural network (CNN)
framework is proposed for the detection and localization of MI;

3. The MI types, such as AMI, IMI, ILMI, ALMI, ASMI, and IPLMI, are classified
in the second stage of the proposed multi-channel multi-scale deep CNN (MMD-
CNN) model;

4. The multi-channel multi-scale two-stage deep CNN performance is evaluated using
hold-out and 10-fold cross-validation (CV) schemes.

The remaining sections of this paper are written as follows. The explanation regarding
the VCG signal database is written in Section 2. In Section 3, the proposed approach for MI
detection and localization is described. Section 4 presents the results and discussion of the
proposed approach. In Section 5, conclusions of this paper is summarized.

2. VCG Signal Database

In this work, the VCG signals from the PTB diagnostic database (https://www.
physionet.org/content/ptbdb/1.0.0/ (accessed on 20 June 2021)). were used to develop
the proposed multi-channel multi-scale two-stage deep CNN approach [30,31]. The PTB
database from Physionet comprises both 12-lead ECG and 3-lead VCG recordings of normal
sinus rhythm (NSR) and various heart diseases, such as MI, hypertrophy, cardiomyopathy,
bundle branch block, and dysrhythmia, respectively [30]. Each VCG signal has been
sampled at 1000 samples per second in the PTB database, and the amplitude value of each
lead VCG varied between −16.384 mV to 16.384 mV. In this study, we have used 73 VCG
recordings from 52 healthy controls (HC) subjects of PTB diagnostic database. Similarly,
99 VCG recordings from 148 subjects with MI pathology are used. For MI localization,
13, 20, 11, 21, 21, and 13 VCG recordings from AMI, IMI, ALMI, ASMI, ILMI, and IPLMI
classes, respectively, are considered. In the PTB diagnostic database [30,31], the number
of VCG recordings for MI class is higher than the healthy class. A higher difference in
the number of VCG instances between MI and healthy classes may cause the over-fitting
problem during the training of the proposed MMDCNN model. Due to this reason, we have
considered only 99 VCG recordings from the MI class in this work. Each VCG recording in
the PTB diagnostic database contains three orthogonal leads (Vx, Vy, Vz), which represent
the electrical activity of heart in three different planes [28].

3. Method

The proposed MI detection and localization stages are shown in a flow-chart form in
Figure 1a,b, respectively. The MI detection stage comprises the filtering of VCG signal, seg-
mentation of VCG recordings into beats, decomposition of VCG beat into multi-scale VCG
tensors using MVMD, and deep CNN to detect MI pathology. Similarly, the localization
stage consists of the classification of AMI, IMI, ALMI, ASMI, ILMI, and IPLMI beats using

https://www.physionet.org/content/ptbdb/1.0.0/
https://www.physionet.org/content/ptbdb/1.0.0/
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MI detected multi scale VCG tensor data. The following section briefly discuss each part of
the flow-chart, as shown in Figure 1.

VCG recording, Vx, Vy, and Vz

Segmentation of VCG
Recording into beats

VCG beat

X ∈ R651×3

Multivariate Variational

(5 modes for each VCG channel)

Mode Decomposition (MVMD)
Multiscale VCG Tensor

Multichannel Multiscale

Deep Convolutional

Neural Network (CNN)

Healthy MI

(a)

(b)

MI Detected Multiscale VCG Tensor

Z ∈ R651×3×5

Z ∈ R651×3×5

Stage 1

Stage 2

Multichannel Multiscale Deep

Convolutional Neural Network (CNN)

Anterior MI

Antero-lateral MI

Antero-septal MI

Inferior MI

Infero-lateral MI

Infero-Posterio-lateral MI

Figure 1. (a) Stage1 1: MI detection block using VCG signals. (b) Stage 2: MI localization using MI detected multi-scale
VCG tensor.

3.1. Segmentation of VCG Data

In this work, we have performed the amplitude normalization for each lead of VCG
recording [28]. The samples of raw VCG signal corresponding to each lead is divided by
the maximum absolute value the signal to obtain the normalized VCG signal [6]. After
normalization of each lead VCG recording, we have detected the R-peak in the Vx lead of
VCG signals. The beat by beat segmentation of each VCG recording is performed using a
window of size 651 samples [2]. The 251 samples before each R-peak of the Vx lead VCG
signal and 400 samples after R-peak are considered for the beat by beat segmentation of
VCG signal [2]. The number of MI and NSR VCG beats used for the proposed MI detection
work are shown in Table 1. Similarly, the number of VCG beats evaluated for each type of
MI are also shown in Table 1.

Table 1. Number of VCG beats used for MI detection and localization.

Stage 1: MI detection

Class NSR MI

VCG beats 9874 13982

Stage 2: MI localization

Class AMI ALMI ASMI IMI ILMI IPLMI

VCG beats 1664 1778 3057 2807 3049 1981

3.2. Multivariate VMD for VCG Signal Analysis

In this study, we have used MVMD to evaluate the modes of VCG beat along each
orthogonal lead. The MVMD is the extension of VMD algorithm used to decompose multi-
channel signals into modes [26]. The VCG beat is given as vm(n), with n = 1, 2, ...N. N is
the number of samples in the VCG beat. The parameter m is denoted as the mth orthogonal
lead of VCG beat. The VCG beat synthesized from its modes is given as follows:
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vm(n) =
k

∑
i=1

ui
m(n) (1)

where, ui
m(n) is the ith mode of mth lead VCG signal ui

m(n) =
[
ui

1(n), ui
2(n), ui

3(n)
]

is also
interpreted as the multivariate modulated oscillations of VCG signal with i = 1, 2, ......k,
and k is the total number of modes [26]. The vector analytic representation of ith mode of
mth lead VCG is written as follows [26]:

ũi
m(n) = ui

m(n) + jH
(

ui
m(n)

)
(2)

where, H
(
ui

m(n)
)

is the Hilbert transform of ith mode of mth lead VCG signal [26]. In
MVMD, the objective is to evaluate the modes of VCG signal based on the criteria as (a) the
sum of bandwidth of components or modes of VCG should be minimum and (b) sum of all
modes should recover the VCG signal along each lead [26]. The optimization problem of
MVMD for the decomposition of VCG signal is formulated as follows [26]:

min
ui

m(n),wi

{
k

∑
i=1

M

∑
m=1

∥∥∥∥ ∂

∂n

[
ũi

m(n)e
−jwin

]∥∥∥∥2

F

}

s.t.
k

∑
i=1

ui
m(n) = vm(n), m = 1, 2, and 3

(3)

where, ‖•‖F is the representation of Frobenious norm [26]. The optimization problem in
Equation (3) can be reformulated using augmented Lagrangian and it is given as follows:

L
{

ui
m(n), wi, ηm(n)

}
= β

k

∑
i=1

M

∑
m=1

∥∥∥∥ ∂

∂n

[
ui

m(n)e
−jwin

]∥∥∥∥2

F
+

M

∑
m=1

∥∥∥∥∥vm(n)−
k

∑
i=1

ui
m(n)

∥∥∥∥∥
2

F

+
M

∑
m=1

〈
ηm(n), vm(n)−

k

∑
i=1

ui
m(n)

〉
(4)

where, ηm(n) is the Lagrangian multiplier for mth lead VCG beat, and β is interpreted as the penalty
factor for MVMD. The modes of VCG beat along each lead is iteratively evaluated based on the
solution of Equation (4) using alternating direction method of multipliers (ADMM) [26]. The complete
algorithm of MVMD for the extraction of modes from the non-stationary signals has been given
in [26]. In this study, we have evaluated five modes from the VCG beat along each orthogonal lead.
The multi-scale VCG tensor is formulated using the modes of VCG beat and the size of multi-scale
VCG tensor is 651× 3× 5.

For NSR class, the Vx, Vy, and Vz lead VCG beat are shown in Figure 2a,g,m, respectively. The
modes of Vx, Vy, and Vz lead VCG beats evaluated using MVMD are shown Figure 2b–f,h–l,n–r,
respectively. Similarly, the Vx, Vy, and Vz channel VCG beats for IPLMI class are shown in
Figure 3a,g,m, respectively. For IPLMI class, the modes of Vx, Vy, and Vz lead VCG beats are
depicted in Figure 3b–f,h–l,n–r, respectively. It can be observed from these plots that the modes of
each lead VCG beat have different shape and amplitude values for IPLMI and NSR classes. In VCG
signal, the clinical parameters, such as QRS-complex shape, special QRS-T angle, T-wave shape are
different for healthy and MI cases [32]. The study in [33] has reported the physiological parameters
of VCG signal for MI class, such as QRS-loop maximum vector magnitude, QRS-area perimeter ratio,
and ST-vector magnitude, have higher mean values than those of healthy class. Similarly, the VCG
parameters, such as QRS-loop volume, QRS-loop planar area, maximum of the distance between
QRS-centroid and QRS-loop, and QRS-perimeter have the lowest mean values for MI class as com-
pared to healthy class [33]. For the AMI case, there is abnormal posterior deviation in the QRS-vector
of VCG signal [34]. Similarly, for the posterior-lateral MI case, the pathological changes, such as
oriented T-loop and maximal leftward deviation of frontal plane QRS-vector are observed [35]. The
transverse plane QRS-vector maximum value greater than 1.5 mV is also used as the criteria for the
detection of inferior and posterior MI using VCG signals [11]. These differences in the morphological
parameters of VCG signal for NSR and various types of MI cases can be captured in the modes which
are evaluated using MVMD. Therefore, the deep CNN model designed using the modes of the VCG
beat can be used to detect and localize MI.
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Figure 2. (a) Vx lead VCG signal for NSR class. (b–f) mode 1 to 5 of Vx lead VCG signal for NSR class. (g) Vy lead VCG
signal for NSR class. (h–l) mode 1 to 5 of Vy lead VCG signal for NSR class. (m) Vz lead VCG signal for NSR class. (n–r)
mode 1 to 5 of Vz lead VCG signal for NSR class.
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Figure 3. (a) Vx lead VCG signal for IPLMI class. (b–f) mode 1 to 5 of Vx lead VCG signal for IPLMI class. (g) Vy lead VCG
signal for IPLMI class. (h–l) mode 1 to 5 of Vy lead VCG signal for IPLMI class. (m) Vz lead VCG signal for IPLMI class.
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3.3. Multi-Channel Multi-Scale Deep Convolutional Neural Network
In this work, a novel MMDCNN model is proposed to detect and localize MI. The Python codes

for the MMDCNN model is available at (https://github.com/JayKarhade/MI_VCG_DL (accessed
on 20 August 2021)). The MMDCNN architecture shown in Figure 4 comprises 12 layers. The first
and last layers are interpreted as input and output layers of MMDCNN model. The input layer
contains the multi-scale VCG tensor. The output layer consists of two neurons for MI detection stage,
one for NSR class and the other for MI class. Similarly, for the MI localization stage, the output layer
contains six neurons corresponding to six types of MI classes as AMI, IMI, ALMI, ASMI, ILMI, and
IPLMI, respectively. The MMDCNN contains four convolutions, two max-pooling, and four dense
layers for both MI detection and localization stages. The mathematical expression to compute the tth
feature map for first convolution layer is given as follows [29,36]:

X(l)
t (ñ) = h(

N

∑
n=1

M

∑
m=1

I

∑
i=1

X(n, m, i)Kt(ñ− n +
N
2

, m, i) + bt) (5)

where X(n, m, i) is the input to the MMDCNN and i = 1, 2. . . . . . .I and m = 1, 2. . . M, respectively.
The parameters I and M are total number of modes and channels, respectively. Similarly, the
mathematical expression for the evaluation of feature maps in other convolution layers are evaluated
as follows [29,36]:

X(l)
t (ñ) = h(

N

∑
n=1

C

∑
c=1

X(l−1)
t̃

(n, c)K̃t(ñ− n +
N
2

, c) + b̃t) (6)

X(l−1)
t̃

(n, c) is the t̃th feature map at (l − 1)th convolution layer. Similarly, the feature maps for

second, third and fourth convolution layers are evaluated using Equation (6). The X(l)
t is denoted as

the tth feature map for lth convolution layer. Moreover, the mathematical expression to evaluate the
pooling layer feature map is given as follows [29,36]:

X(l)
t (ñ) = max-pooling(X(l−1)

t (ñ)) (7)

For dense layers, the feature vector is evaluated as follows [37]:

a(l) = h(a(l−1)W(l)
+ b

(l)
) (8)

where a(l) is the feature vector for lth dense layer. W(l) is the weight matrix between (l − 1)th dense

and lth dense layers [37]. b
(l)

is the bias for lth dense layer. The categorical cross-entropy-based cost
function is used for MMDCNN for both detection and localization stages [38]. The hyper-parameters
used for MMDCNN in detection and localization stages are shown in Table 2. In this study, for
both MI detection and localization stages, the hold-out validation and 10-fold cross-validation
(CV) methods [37] are used to select the training and test VCG beats. For hold-out validation
78.75%, 11.25%, and 10% VCG beats are used as training, validation, and testing, respectively, for
MMDCNN model during detection and localization phases. We have used the performance measures
such as accuracy, sensitivity, specificity, and Kappa scores for the MI detection using MMDCNN
classifier [37,39]. Similarly, for MI localization, the overall accuracy (OA), individual accuracy (IA),
and Kappa score are used to evaluate the performance in the second stage MMDCNN [6].

https://github.com/JayKarhade/MI_VCG_DL
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Figure 4. Proposed MMDCNN model to detect and localize MI using VCG beats.

Table 2. Hyper-parameters used MI detection and localization using our proposed MMDCNN model.

Hold-out (MI Detection) 10-fold (MI Detection )

Parameters Optimizer Batch size Epochs Learning rate Batch size Epochs Learning rate

Values Adam 1024 15 0.0001 1024 15 0.0001

Hold-out (MI Localization) 10-fold (MI Localization )

Parameters Optimizer Batch size Epochs Learning rate Batch size Epochs Learning rate

Values Adam 1024 15 0.00004 256 15 0.0001

4. Results and Discussions
The results evaluated using the proposed MMDCNN for MI detection and localization using

VCG signals are shown in this section. In Table 3, we have shown the accuracy, sensitivity, specificity,
and kappa score values for our proposed MMDCNN model with hold-out CV. Similarly, for MI
detection, the accuracy vs. epoch plots for training and validation VCG instances obtained using
MMDCNN are illustrated in Figure 5. It is evident from this plot that both training and validation
accuracy values are 100% after 10th epoch. Similarly, we have shown the confusion matrix obtained
using the proposed MMDCNN for MI detection using VCG signals for one random hold-out trial in
Table 4. The number of false-positive and false-negative values are 1 in the confusion matrix table.
The accuracy, sensitivity, specificity, and kappa values for this random hold-out validation are 99.9%,
99.89%, 99.92%, and 0.998, respectively. The average values of accuracy, sensitivity, specificity, and
kappa scores over five trial-based random validation are more than 99% (as seen from Table 3).
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Figure 5. Graphs of accuracy vs. epochs of multi-channel multi-scale deep CNN obtained using
training and validation VCG instances for MI detection.

Table 3. Classification results of two class multi-channel multi-scale deep CNN obtained for the
detection of MI using hold-out validation.

Accuracy (%) Sensitivity (%) Specificity (%) Kappa

99.58± 0.38 99.18± 0.90 99.87± 0.07 0.990± 0.01

Table 4. Confusion matrix for one-trail of hold-out CV for MI detection.

Predicted

Healthy MI

Actual
Healthy 978 1

MI 1 1390

For MI detection, the classification results obtained for the proposed first stage MMDCNN
using 10-fold CV are shown in Table 5. It can be observed from this table that, the accuracy values are
more than 99.50% for each fold. Similar high percentages in the sensitivity and specificity are seen in
each fold using the first stage MMDCNN method for MI detection. It can also be observed that the
Cohen kappa score is more than 0.99 for each fold. From these 10-fold CV results, It can be noted that
the proposed first stage deep CNN successfully detected MI using the modes of VCG beats.

Table 5. Results obtained using multi-channel multi-scale deep CNN with 10-fold CV.

Folds 1 2 3 4 5 6 7 8 9 10 Value (µ ± σ)

Accuracy (%) 99.7 100 99.95 100 99.74 99.95 100 100 100 100 99.93± 0.11

Sensitivity (%) 100 100 100 100 99.38 100 100 100 100 100 99.93± 0.19

Specificity (%) 99.49 100 99.99 100 100 99.92 100 100 100 100 99.94± 0.16

Kappa 0.993 1 0.999 1 0.994 0.999 1 1 1 1 0.998± 0.002
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The confusion matrix obtained using one random trial-based hold-out validation for MI local-
ization with second stage MMDCNN is shown in Table 6. Similarly, we have shown the accuracy
vs. epoch plots for training and validation of multi-scale VCG tensor instances in Figure 6. It can be
observed from these plots that both training and validation accuracy values obtained are more than
99% after 10th epoch using the second stage MMDCNN model. It can be seen from Table 6 that the
number of true positives for AMI, IMI, ALMI, ASMI, ILMI, and IPLMI classes are obtained as 162,
284, 185, 287, 301, and 201, respectively. Three multi-scale VCG tensor instances, which belong to
IMI, are classified as ALMI class. Similarly, the classification results of the proposed second-stage
MMDCNN obtained for MI localization using hold-out validation are shown in Table 7. It can be
noted that the average IA values are more than 99% for AMI, IMLI, ALMI, ILMI, and IPLMI classes.
For ASMI class, the IA value is 94.38%. The OA and kappa values obtained are 98.77% and 0.982,
respectively, using the proposed second-stage MMDCNN model.

Figure 6. Plots of accuracy vs. epochs of multi-channel multi-scale deep CNN obtained using training
and validation VCG instances for MI localization.

Table 6. Confusion matrix obtained using the proposed second stage multi-channel multi-scale deep CNN classifier for MI
localization.

Predicted Classes

AMI ALMI ASMI IMI ILMI IPLMI

Actual Classes

AMI 162 0 0 0 0 0

ALMI 0 185 0 0 1 0

ASMI 0 0 287 0 0 0

IMI 0 3 0 284 0 0

ILMI 0 0 0 0 301 1

IPLMI 0 0 0 0 0 200
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Table 7. Classification results obtained for MI localization using proposed MMDCNN model with
hold-out validation.

Parameters Value (µ ± σ)

IAAMI (%) 99.79± 0.35

IAALMI (%) 99.64± 0.31

IAASMI (%) 94.38± 5.56

IAIMI (%) 99.53± 0.53

IAILMI (%) 99.66± 0.00

IAIPLMI (%) 99.66± 0.57

OA (%) 98.77± 0.96

Kappa 0.982± 0.014

Moreover, we have shown the classification results of second-stage MMDCNN for MI local-
ization using a 10-fold CV and these results are shown in Table 8. It can be observed from these
results that for ILMI class, the accuracy value of each fold is more than 99%. Similarly, for IMI class,
apart from 5th fold, more than 99% accuracy values are observed for other folds. For IPLMI and
AMI classes, more than 98% accuracy values are obtained in each fold using second stage MMDCNN
model. Similarly, more than 97% accuracy values are obtained using MMDCNN classifier for ASMI
and and ALMI classes. The overall accuracy (OA) values are obtained as more than 99% at each fold.
The kappa value of more than 0.97 is observed for each fold using MMDCNN classifier.

Table 8. Classification results obtained for MI localization using proposed MMDCNN model with 10-fold CV.

Folds 1 2 3 4 5 6 7 8 9 10 µ ± σ

IAAMI (%) 100 98.79 100 99.4 100 100 100 100 100 100 99.81± 0.40

IAALMI (%) 99.43 97.75 97.75 96.57 99.43 98.31 97.19 99.43 97.75 98.3 98.19± 0.99

IAASMI (%) 97.38 95.09 100 97.37 100 100 99.67 98.69 99.01 100 98.72 ±1.64

IAIMI (%) 100 99.64 100 99.28 98.93 99.64 98.57 100 99.64 99.28 99.49± 0.48

IAILMI (%) 99.67 99.66 99.34 99.67 99.01 99.67 99.01 99.67 100 100 99.57 ±0.34

IAIPLMI (%) 99.49 100 98.98 98.48 99.49 99.49 98.48 100 98.98 98.48 99.18 ± 0.59

OA(%) 99.72 99.09 99.44 99.23 99.37 99.65 98.88 99.58 99.37 99.44 99.37 ± 0.25

Kappa 0.990 0.978 0.993 0.979 0.993 0.994 0.986 0.994 0.991 0.993 0.989 ± 0.006

The classification results of MMDCNN models evaluated using the selected modes of each
lead VCG signal, and all modes of high-pass filtered VCG signals for MI detection with hold-out
validation are shown in Table 9. It is observed that the average accuracy value of MMDCNN is
99.58% using mode 1 and mode 2 of each lead VCG signal. The average accuracy value remains
the same as the accuracy of MMDCNN model using all modes of VCG signals for MI detection.
Mode 1 and mode 2 capture the significant information of the VCG signal after decomposition using
MVMD. Henceforth, the accuracy value remains the same for MI detection using selected modes
and the MMDCNN classifier. Moreover, we have also evaluated the classification performance of the
MMDCNN model using all modes of high-pass filtered VCG signal for MI detection. A high-pass
Butterworth filter with a cut-off frequency of 0.5 Hz is applied to each lead VCG signal to remove
baseline wondering artifacts [6,28]. It is observed from Table 9 that average accuracy, average kappa
score, average sensitivity, and average specificity values are improved after the filtering of baseline
wandering artifact from VCG signals. In Table 10, we have shown the individual accuracy value
for each MI class, OA, and kappa scores of MMDCNN classifier for MI localization using mode 1
and mode 2 of each lead VCG signal and all modes of high-pass filtered VCG signals, respectively.
It is observed that the OA value obtained using the MMDCNN model is less using mode 1 and
mode 2 of VCG signals as compared to all modes of VCG signals. Similarly, the OA and kappa
values are improved using the modes of high-pass filtered VCG signals with the MMDCNN classifier.
For MI localization, the IA values for ASMI, IMI, and ILMI classes are also improved using the
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modes of high-pass filtered VCG signals composed with the MMDCNN classifier. Moreover, we
have also evaluated the classification results of the MMDCNN classifier using all modes of VCG
signal with leave one out (LOO) CV strategy. The VCG beats of one recording are considered during
testing of the MMDCNN model, whereas the VCG beats of all other VCG recordings are used to
train the MMDCNN classifier. The same procedure is applied to all VCG recordings, and it can also
be interpreted as a 171-fold CV strategy. The LOO CV or pre-recording-based MI detection results
are shown in Figure 7. It is observed that out of 172 VCG recordings, 114 recordings are correctly
classified with 100% accuracy. The OA value obtained using MMDCNN classifier with LOO CV
strategy is 87.65%.
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Figure 7. Accuracy values obtained using the proposed MMDCNN classifier for MI detection with
leave one out CV strategy.

Table 9. Classification results of MMDCNN obtained using selected modes and all modes for the detection of MI.

Mode Selection Accuracy (%) Sensitivity (%) Specificity (%) Kappa

Mode 1 and mode 2 of each
lead VCG signals 99.58± 0.37 99.17± 0.89 99.86± 0.06 0.991± 0.007

All modes from high-pass
filtered VCG signals 99.92± 0.02 99.84± 0.05 100± 0 0.998± 0.0005

Table 10. Classification results obtained for MI localization using proposed MMDCNN model with
mode selection.

Parameters Mode 1 and Mode 2 from
Each Lead VCG Signals

All Modes from High-Pass
Filtered VCG Signals

IAAMI (%) 100± 0 100± 0

IAALMI (%) 99.17± 0.29 98.55± 2.22

IAASMI (%) 93.09± 5.16 99.26± 0.27

IAIMI (%) 99.30± 0.28 100± 0

IAILMI (%) 99.50± 0.19 99.86± 0.14

IAIPLMI (%) 99.25± 0.50 98.45± 2.45

OA (%) 98.37± 1.43 99.44± 0.56

Kappa 0.976± 0.014 0.992± 0.006

We have also formulated the seven-class classification scheme as (Healthy vs. AMI vs. ALMI
vs. ASMI vs. IMI vs. ILMI vs. IPLMI) using MMDCNN classifier with all modes of VCG signals.
The seven class classification results obtained using the MMDCNN model are shown in Table 11. It
can be observed that for healthy, ALMI, IMI, and IPLMI classes, the IA values are 69.87%, 83.22%,
82.61%, and 41.03%, respectively. The OA value of MMDCNN classifier obtained is 81.48%, which is
less than the proposed two-stage MMDCNN model for MI detection and localization.
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Table 11. Classification results obtained using MMDCNN classifier for seven class classification
scheme with hold-out validation.

Parameters Value (µ ± σ)

Healthy (%) 69.87± 28.87

IAAMI (%) 99.46± 0.38

IAALMI (%) 83.22± 10.14

IAASMI (%) 99.63± 0.25

IAIMI (%) 82.61± 7.93

IAILMI (%) 98.44± 2.28

IAIPLMI (%) 41.03± 18.18

OA (%) 81.48± 0.63

Kappa 0.777± 0.008

The classification performance of the proposed first stage MMDCNN classifier is compared
with the existing techniques for MI detection using VCG signals with a 10-fold CV-based technique.
The comparison results are shown in Table 12. The work reported in [15] has computed features from
each lead of VCG signal using multi-scale recurrent quantification analysis (MRQA). The Gaussian
discriminant analysis (GDA) based classification model has been used to detect MI using MRQA
based VCG features. The sensitivity and specificity values of 96.50% and 75% have been obtained in
their work. Similarly, in [14], the combination of octant and vector-based features have been obtained
using VCG signal. The classification and regression tree (CART) based model has been used for
the detection of MI. The classification performance, such as the sensitivity and specificity values of
97.28% and 96%, respectively, are reported. The complex wavelet sub-band features of VCG coupled
with the RVM classifier have obtained the sensitivity and specificity values of 98.40%, and 98.66%,
respectively, for MI detection [28]. The proposed MMDCNN model has obtained better classification
performance than the existing machine learning-based methods for MI detection using VCG signals.
The advantages of our proposed MMDCNN based approach are given as follows:

• A novel two-stage based MMDCNN model is proposed to detect and localize MI using
VCG beats;

• The multi-scale analysis of VCG signal is performed using MVMD based multi-variate signal
driven approach;

• The approach has demonstrated more than 99% accuracy for MI detection;
• The extraction of raw features from VCG signals are not required using the proposed approach

for both detection and localization stages;
• The second stage MMDCNN model successfully classified six types of MI with an accuracy of

more than 99%.

Table 12. Comparison of proposed MI detection approach with existing methods obtained using VCG signals (with
10-fold CV).

Authors Features Extracted Classifiers
Used

Sensitivity
(%)

Specificity
(%)

Yang et al., 2012 [14] Octant and vector features evaluated
from VCG signal CART 97.28 95

Yang, 2011 [15] DWT domain RQA features from VCG
Signal GDA 96.50 75

Tripathy et al., 2017 [28] Complex wavelet sub-band features
from VCG signal RVM 98.40 98.66

Proposed work Multi-channel and multi-scale domain
learnable features CNN 99.93 99.94
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In this work, the proposed approach has considered only 99 VCG recordings from different MI
classes in the second stage for MI localization. The approach can be tested using VCG recordings
from a huge database containing more subjects. The MVMD based multi-scale approach is used in
this study to decompose the VCG signal. The other multi-scale analysis methods, such as multivari-
ate empirical mode decomposition (MEMD) [40], multivariate projection based empirical wavelet
transform (MPEWT) [41], and fast and adaptive based MEMD [42] can be used for the decomposition
of VCG signals.

5. Conclusions
The multi-channel multi-scale two-stage deep CNN model is proposed to detect and localize

MI using VCG signals. The MVMD is used to decompose the VCG beat into modes along with
each orthogonal lead. The multi-channel multi-scale VCG tensor has been formulated and used as
input to the deep CNN model to detect and localize MI. For MI detection, the proposed first-stage
MMDCNN model obtained an average accuracy value of 99.93% with 10-fold CV. The second-stage
MMDCNN model produced an average overall accuracy (OA) value of 99.37% for MI localization.
The average OA values are more than 99% for AMI, IMI, ILMI, and ILMI classes. The proposed first-
stage MMDCNN classifier obtained a higher accuracy value than the existing VCG based approaches
for MI detection. The MMDCNN model can also be explored to detect other cardiac ailments, such
as atrial fibrillation, hypertrophy, cardiomyopathy, ventricular arrhythmia, and bundle branch block
using VCG signals.
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