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Abstract: The rotation accuracy of the aerostatic spindle can easily be affected by shaft shape errors
due to the small gas film clearance. Thus, the main shaft shape errors with the largest scale—that is,
the roundness and cylindricity errors—are studied in this paper, and a dynamic mathematical model
is established with the consideration of the roundness, cylindricity errors, and spindle speed. In order
to construct the shaft model, the discrete coefficient index of the shaft radius based on roundness
measurement data are proposed. Then, the simulation calculations are conducted based on the
measured cylindricity data and the constructed shaft model. The calculation results are compared
with the spindle rotation accuracy measured using the spindle error analyzer. The results show that
the shaft with a low discrete coefficient is subjected to less unbalanced force and smaller rotation
errors, as obtained by the experiment.

Keywords: rotation accuracy; aerostatic spindle; roundness; cylindricity; dispersion coefficient

1. Introduction

In contrast with traditional spindles, an aerostatic spindle uses compressed gas to
form a gas film, which has the characteristics of high precision, high speed, and low noise.
The film thickness of an aerostatic spindle is usually about 10 micrometers, which meets the
high requirements regarding manufacturing errors relating to the shaft [1]. Manufacturing
errors can be classified as dimensional errors and shape errors, which include roundness,
cylindricity, waviness, and roughness. Shape errors of the shaft will cause the uneven
distribution of the gas film in the bearing. When the shaft rotates, the thickness of the
gas film in the bearing will change continuously, which will cause pressure fluctuation,
and then produce an unbalanced force on the shaft. The unbalanced force will affect the
stability and rotation accuracy of the spindle.

Pande et al. [2] pointed out that the shape errors of journal bearings can generally
reduce the load-carrying ability and increase the flow rate. Song et al. [3] calculated the
half frequency whirl phenomena and the instability threshold speeds for the bearings with
shape errors. They found that the precision of the shaft is much more important than
that of the bearing. Sun et al. [4] studied the effects of shape errors of a shaft-bearing
system on dynamic characteristics, and results show that the rotating speed at which the
fluid whip occurs increased when shape errors existed. In order to reduce the radial error
motion, Cappa et al. [5] analyzed the influence of several manufacturing errors, bearing
parameters and feeding geometries of an aerostatic journal bearing and suggested that
the radial error motion is mainly influenced by the shape errors of the shaft. Cui et al. [6]
presented research on the manufacturing errors of aerostatic porous journal bearings,
and found that the circumferential waviness errors caused the obvious inhomogeneity
of the flow field and the transformation of the morphology of the high-pressure region.
Zhang et al. [7] established a new approximate model to predict the radial error motion of
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hydrostatic journal bearings, and pointed out that the main working harmonic components
in roundness errors had a major influence over rotation accuracy. Wang et al. [8] proposed
a numerical model using linear perturbation theory for the research on the influence of
journal rotation and bearing surface waviness on the dynamic performance of aerostatic
journal bearings. Lee et al. [9] examined the influence of the waviness errors of a hydrostatic
journal bearing by considering the rotational and bearing installation angles, and revealed
that the load-carrying capacity varied according to the amplitude and phase angle of
the waviness functions. Li et al. [10] investigated the effects of different forms of surface
waviness on the stability of the hydrodynamic journal bearing system by using non-linear
dynamic analysis and calculation method, and the results show that the existence of the
surface waviness causes the oil film of the system to wave and increases the energy loss
of the system. In order to study the surface roughness effects in hydrodynamic bearings,
Quiñonez et al. [11] developed an analytical solution method based on the Reynolds equa-
tion using perturbation techniques under the assumption of waviness coupled with linear
superposition that can be used in wide exponential land slider bearings. Lin [12] analyzed
the effect of surface roughness on the dynamic stiffness and damping characteristics of
hydrostatic thrust bearings; according to the results, the mean stiffness and damping be-
haviours are significantly affected by the roughness pattern and the height of the roughness.
Kumar et al. [13] studied the effect of stochastic roughness on performance of a Rayleigh
step bearing operating under thermo-elastohydrodynamic lubrication. The results show
that the directional orientation of the surface roughness could affect the performance of a
bearing significantly. Based on the stochastic method and the Ng–Pan turbulent model,
Zhu et al. [14] calculated the turbulent lubrication performance of a journal bearing with
an isotropic rough surface. Kim et al. [15] proposed an approach with both stochastic
and contact characteristics to evaluate the effects of surface roughness for a slider bearing
operating under partial or boundary lubrication, and found that the influence of roughness
parameters on friction and load capacity increased rapidly upon the application of asperi-
ties contact. Maharshi et al. [16] proposed a stochastic analysis of hydrodynamic journal
bearings including the effect of surface roughness and development of the efficient radial
basis function based uncertainty quantification algorithm. By using Galerkin’s technique
to solve the Reynolds equation, Rajput [17] indicated that the performance of a journal
bearing system is significantly deteriorated due to the geometric imperfections.

In the above references, the waviness and roughness in the shaft shape errors are
mostly studied. However, the roundness and cylindricity are the largest errors among
the shaft shape errors, usually between 1 and 4 micrometers. These errors have the most
obvious impact on the aerostatic spindle’s rotation accuracy. Although Zhang et al. [7]
studied the radial error motion of the bearing in a quasi-static state considering roundness
errors of the shaft, the rotation accuracy of the aerostatic spindle will change with rotation
speed, which is not considered in the present study. Therefore, it is necessary to study the
dynamic rotation accuracy of the aerostatic spindle under the effects of roundness and
cylindricity errors.

Therefore, a dynamic mathematical model considering roundness, cylindricity er-
rors and spindle speed is established by using the finite difference method based on the
Reynolds equation in this paper. The roundness and cylindricity errors of the shaft are
measured by Taylor Hobson 585 LT cylindricity meter. The measured data are resampled
and filtered and then brought into the model for calculation. Through the comparison of
the simulation and the experiment, it is proved that the shaft roundness and cylindricity
errors will produce an unbalanced gas film force on the shaft and affect the spindle’s
rotation accuracy. Based on the measurement data of roundness error, the evaluation index
of the dispersion coefficient is proposed. The research shows that this discrete coefficient
is a more effective index to predict the spindle’s rotation accuracy compared with the
roundness and cylindricity.



Appl. Sci. 2021, 11, 7912 3 of 15

2. Mathematical Model
2.1. Modeling of the Aerostatic Spindle

The schematic illustration of the aerostatic journal bearing with shaft shape errors is
shown in Figure 1. This bearing has two column orifice restrictors at the front and rear,
and each column includes eight orifices. The compressed gas flows into the clearance
between the bearing and the shaft through the orifice, and then flows out from both ends
of the bearing.

Due to the shape errors of shaft surface, the film thickness of different positions in
the circumferential and axial directions of the bearing is different. In Figure 1b, O0 is the
bearing center, O1 is the shaft center, and R is the bearing radius. h is the film thickness at
point A on the shaft surface that can be denoted as

h = R−
∣∣∣−−−→O0O1 +

−−→
O1 A

∣∣∣ (1)

When θ is the angle between
−−→
O0 A and the x-axis,

−−−→
O0O1 = (ex, ey), and

−−→
O1 A =

(cxθ , cyθ), the film thickness at θ is

hθ = R−
√
(cxθ + ex)

2 +
(
cyθ + ey

)2 (2)

If the shaft is rotating clockwise at a constant angular velocity ω, then at t time,
θ′ = θ + ωt + α− 2Nπ

cxθ = xθ′

cyθ = yθ′

(3)

where α is the initial angle of the shaft, N is the integer number of rotations of the shaft,
and the values of xθ′ and yθ′ come from the measurement results of the cylindricity meter.

Figure 1. Illustration of the aerostatic journal bearing with shaft shape errors: (a) axial direction;
(b) circumferential direction.

By combining Equations (2) and (3), the film thickness at any angle at any time can
be obtained.

In order to study the pressure distribution of the gas film in the bearing, the circumfer-
ential cylindrical coordinates system is used to reconstruct the journal bearing. Figure 2 is
the partial schematic illustration of aerostatic journal bearing in circumference cylindrical
coordinates. The circumferential direction of bearing’s inner surface is the x-axis and the
y-axis points and is perpendicular to the bearing axis, and the z-axis is parallel to the
bearing axis.

This spindle system incorporates the following assumptions:
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1. The spindle is cooled sufficiently—that is, the bearing, shaft and gas film is isothermal;
2. There is no axial and angular movement of the shaft;
3. The gas flow is laminar.

Figure 2. Circumference cylindrical coordinates.

The modified Reynolds equation for this type of aerostatic journal bearing [18] is

∂

∂x

(
ph3 ∂p

∂x

)
+

∂

∂z

(
ph3 ∂p

∂z

)
= 6ηu

∂(ph)
∂x

+ 12η
∂(ph)

∂t
+ 12ηpVin (4)

where p is the gas film pressure, η is the dynamic viscosity of the gas, u is the velocity of
the gas in x direction, and Vin is the injection velocity at the orifice entrance and can be
expressed by Equation (5) [19]

Vin = −Ps − p
4ηl

[
d2

4
− (x− xi)

2 − (z− zi)
2] · δi (5)

where δi = 1 at the orifice entrance, whereas it is zero elsewhere.
By employing the dimensionless parameters

x = x0X, z = z0Z, h = h0H, t = τ
x0

u
, p = paP, Λ =

12ηux0

h2
0 pa

, Q =
24ηx2

0

h3
0 p2

a
Vin (6)

Equation (4) can be written as:

∂

∂X

(
H3 ∂P2

∂X

)
+

x2
0

z2
0

∂

∂Z

(
H3 ∂P2

∂Z

)
= Λ

∂PH
∂X

+2Λ
∂PH
∂τ

+ QP (7)

2.2. Numerical Analysis

With reference to paper [20], some items in Equation (7) are rewritten as follows by
using the finite difference method:

∂

∂X

(
H3 ∂P2

∂X

)
=

H3
i+0.5,j

∆X2

(
P2

i+1,j − P2
i,j

)
−

H3
i−0.5,j

∆X2

(
P2

i,j − P2
i−1,j

)
(8)

∂

∂Z

(
H3 ∂P2

∂Z

)
=

H3
i,j+0.5

∆Z2

(
P2

i,j+1 − P2
i,j

)
−

H3
i,j−0.5

∆Z2

(
P2

i,j − P2
i,j−1

)
(9)

∂PH
∂X

=
Hi+0.5,j − Hi−0.5,j

2∆X
Pi,j +

Hi+0.5,j

2∆X
Pi+1,j −

Hi−0.5,j

2∆X
Pi−1,j (10)

∂PH
∂τ

=
Hi,j

∆τ
Pi,j −

H(τ−∆τ)(i,j)

∆τ
P(τ−∆τ)(i,j) (11)

where H(τ−∆τ)(i,j) and P(τ−∆τ)(i,j) in Equation (11) are Hi,j and Pi,j in (τ − ∆τ) time, respectively.
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By substituting Equations (8)–(11) into Equation (7), the equation is simplified as

Ei,jP2
i,j + (Fi,j + Ii,j)Pi,j − Ki,j = 0 (12)

with

Ai,j =
H3

i+0.5,j

∆X2 (13)

Bi,j =
H3

i−0.5,j

∆X2 (14)

Ci,j =
x2

0
z2

0

H3
i,j+0.5

∆Z2 (15)

Di,j =
x2

0
z2

0

H3
i,j−0.5

∆Z2 (16)

Ei,j = Ai,j + Bi,j + Ci,j + Di,j (17)

Fi,j = Λ
Hi+0.5,j − Hi−0.5,j

2∆X
(18)

Gi,j = Λ
Hi+0.5,j

2∆X
(19)

Hi,j = −Λ
Hi−0.5,j

2∆X
(20)

Ii,j = 2Λ
Hi,j

∆τ
+ Q (21)

Ji,j = −2Λ
H(t−∆τ)(i,j)

∆τ
(22)

Ki,j = Ai,jP2
i+1,j + Bi,jP2

i−1,j + Ci,jP2
i,j+1 + Di,jP2

i,j−1 − Gi,jPi+1,j − Hi,jPi−1,j − Ji,jP(t−∆τ)(i,j) (23)

The dimensionless gas film pressure in τ time is given by

Pi,j =

√
(Fi,j + Ii,j)

2 + 4Ei,jKi,j − Fi,j − Ii,j

2Ei,j
(24)

3. Data Acquisition and Processing

In addition to the basic parameters of the spindle, it is necessary to know the initial
distribution of the gas film to solve the pressure distribution using Equation (24). That
is, the H of any node at τ = 0 time is needed, which is very critical. It can be seen from
Equations (2), (3), and (6) that in order to calculate H, the shape errors of the shaft should
be measured. A cylindricity meter was used to measure the roundness and cylindricity
errors for study in this paper.

3.1. Roundness and Cylindricity Errors Measurement of Shaft

In this paper, we processed 4 shafts with the same parameters and technique. The round-
ness and cylindricity errors of the working area of these shafts corresponding to the journal
bearing was measured using the Taylor Hobson 585 LT cylindricity meter, and 21 sections
of each shaft were collected. The section interval was 5 mm, and the number of sampling
points was 18,000 points per section. Figure 3 shows the roundness and cylindricity error
measurement process, and the cylindricity error results of shaft 1 are shown in Figure 4.
The data on the left-hand side represent the runout of each section, which is equal to
the roundness errors under the least square method. The data on the right side repre-
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sent the measured height. The cylindricity errors of four shafts are 4.00, 4.50, 4.25, and
4.15 µm, respectively.

Figure 3. The roundness and cylindricity errors measurement process.

Figure 4. The cylindricity error measurement results of shaft 1.

3.2. Data Processing

Since the data collected by the cylindricity meter were based on relative coordinates,
it was necessary to calibrate the measured data with the actual radius of the shaft. The cal-
culation method is shown in Equation (25)

xθ′ = xcθ′
Rc√

x2
cθ′+y2

cθ′

yθ′ = ycθ′
Rc√

x2
cθ′+y2

cθ′

(25)

where xcθ′ and ycθ′ are the data collected by cylindricity meter, and Rc is the shaft radius
measured by micrometer.

In the data measured by cylindricity meter, each section had 18,000 data points.
The average value of each adjacent 50 data points was taken to save the computing time,
and the number of data points was reduced to 360. Gaussian filter was used for roundness
filtering with 150 UPR (undulations per revolution) cut-off [21]. The number of axial nodes
increased from 21 to 41 by using Equation (26)

hi ,k+0.5 =
hi ,k + hi ,k+1

2
(k = 1, 2, . . . , 20) (26)
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3.3. Calculation Settings

Programs were compiled according to Equations (7)–(24); Table 1 shows the parame-
ters of the spindle. The measured data of shaft 1, shaft 2, shaft 3, and shaft 4 were used for
calculation, respectively. The initial eccentricity was (ex, ey) = (0, 0), and the speed range
was [500, 10,000] r/min.

Table 1. Spindle parameters.

Parameters Value

Bearing diameter (D/mm) 32
Bearing length (L/mm) 100

Nominal radius clearance (h0/mm) 0.01
Orifice diameter (d/mm) 0.16

Orifice length (l/mm) 2
Column number of feeding orifices 2
Number of orifices on each column 8

Atmospheric pressure (patm/Pa) 1.013 × 105

Supplied pressure (ps/Patm) 4
Gas dynamic viscosity (η/Pa·s) 18.448 × 10−6

Shaft Material Ti-6Al-4V
Shaft density (ρsha f t/kg/m3) 4.51 × 103

4. Results and Discussions
4.1. Simulation Results

First of all, an ideal shaft without shape errors is used for the calculation to verify the
correctness of the numerical model and the simulation program; Figure 5 shows the result
of dimensionless pressure distribution when the shaft rotates 180◦ at 6000 r/min. It can be
seen that the pressure distribution on the shaft surface is very regular, which is consistent
with the calculation results in reference [22]. In this ideal case, the gas film force acting on
the shaft is zero.

Figure 5. Dimensionless pressure distribution of ideal shaft.

Figure 6a–d show the dimensionless pressure distribution of shaft 1 at 6000 r/min
when it rotates 90◦, 180◦, 270◦ and 360◦ with the same coordinate scales, respectively.
Due to the roundness and cylindricity errors, the gas pressure on the shaft surface varies
greatly. As the shaft rotates, the pressure changes obviously. Thus, the shaft will produce
an unbalanced gas film force, which changes both in size and direction, and then affects
the rotary accuracy of the spindle.
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Figure 6. Dimensionless pressure distribution of shaft 1 at 6000 r/min at different angles: (a) 90◦;
(b) 180◦; (c) 270◦; (d) 360◦.

Figure 7a–d are box charts of the surface pressure distribution of shaft 1, shaft 2, shaft 3,
and shaft 4 at different speeds with the same coordinate scales. With the increase in rotating
speed, the distribution of pressure value becomes more and more divergent. By comparing
the interquartile range (IQR) and the range within 1.5IQR of the dimensionless pressure
in Figure 7a–d, it can be observed that the pressure fluctuation of shaft 2 is significantly
greater than that of the other three shafts.

Figure 7. Box charts of surface pressure distribution: (a) shaft 1; (b) shaft 2; (c) shaft 3; (d) shaft 4.
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If the pressure is known, the gas film force acting on the shaft can be calculated using
Equation (27) [23]: (

Fx
Fy

)
=
∫ L

0

∫ 2π

0
(p− patm)

(
cos θ
sin θ

)
rdθdz (27)

Figure 8a shows the gas film force (with 5 revolutions) of shaft 1 at 6000 r/min.
With the rotation of the shaft, the direction and size of the force change, and the shaft
adopts an unsteady state. Plotting the average force of the shaft at different speeds
in Figure 8b, it can be seen that with the increase in speed, the force on the shaft in-
creases basically. The force of shaft 2 at each speed is significantly higher than that of
the other three shafts. According to the force from large to small, the order is as follows:
shaft 2 > shaft 1 > shaft 4 > shaft 3.

Figure 8. Gas film force of shaft: (a) gas film force of shaft 1 (5 revolutions) at 6000 r/min; (b) gas
film force of shafts in different speeds.

4.2. Comparison with Experimental Results

The aerostatic spindle used in this paper to validate the simulation results is mainly
used for precision milling. For ensuring the stability of continuous running, the spindle
is water-cooled. The four shafts are fitted into the spindle in turn, and the bearing, motor
and other parts are installed. The motor is a Kollmorgen KBMS-10X01 frameless motor
with the rated speed of 18,600 r/min. The driver belongs to Sieb and Meyer’s SD2S series.
After two stages of drying and filtering, the gas supply pressure is set to 0.4 Mpa (same as
the numerical calculation). This system is mounted on a natural granite cubic base with a
side length of 200 mm. For the consistency of the measurement results, other parts and
related configurations remain unchanged throughout the test, except for the replacement
of the shaft.

Using sensors to measure the standard gauge installed on the spindle, the rotation
errors are usually measured without load, and the track of the ideal axis of the rotation of
the spindle is fitted as the basis of the analysis. Due to the small size of the spindle, there is
not enough space to install the standard gauge and there is a section of finish-machined
cylinder in the front of the shaft as an alternative.

The dynamic radial rotation errors were measured using the Lion Precision CPL290
spindle errors analysis instrument. The bandwidth of the sensor is 15 kHz and the reso-
lution is 0.01 µm. The spindle speed range is set to 500 to 10,000 r/min, and the data are
collected every 500 r/min. Figure 9 is the test rig of the spindle rotation error measurement,
and the results of shaft 1 at 1000 r/min are shown in Figure 10. Following measurement,
the data of the four shafts are plotted in Figure 11.
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Figure 9. Test rig of spindle rotation error measurement.

Figure 10. Result diagram of spindle radial rotation errors.

Figure 11. Spindle radial rotation errors of four shafts.

As can be seen from Figure 11, in the rotation speed range of [500, 10,000] r/min, the ro-
tation radial errors of shaft 1, shaft 3 and shaft 4 are always close to each other, except for
individual speeds. When the speed exceeds 2000 r/min, the errors of shaft 2 are obviously
larger than those of the other three shafts, and the “particularity” of shaft 2 in Figure 11 is
consistent with that in Figures 7 and 8b. In the analysis results of Figures 7 and 8, the origi-
nal data are obtained from the measurement of the roundness and cylindricity errors of the
shaft. It can be seen that there must be a correlation between the measurement results of
the roundness and cylindricity errors of the shaft and the rotation errors.

The roundness errors of all shaft sections measured using the cylindricity meter are
plotted, as shown in Figure 12. It can be seen that the roundness error lines of the four shafts
overlap with each other and the difference is not obvious. For example, the roundness error
values of section 11 of shaft 1 and section 15 of shaft 2 are both 2.69 µm, and the roundness
error values of section 19 of shaft 2 and section 10 of shaft 4 are both 2.25 µm. Figure 13 is a
composite drawing of roundness errors for section 19 of shaft 2 and section 10 of shaft 4. It
can be seen that although the roundness errors values are the same (2.25 µm), their actual
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shapes are quite different. Therefore, the roundness error values cannot reflect the shape of
the shaft.

Figure 12. Roundness errors of four shafts.

Figure 13. Composite drawing of roundness error for section 19 of shaft 2 and section 10 of shaft 4.

4.3. Evaluation with Dispersion Coefficient

The shape of the shaft determines the gas film thickness between the shaft and the
matched bearing. The more uniform the film thickness, the smaller the pressure fluctuation
in the shaft; therefore, the discrete coefficient index of shaft radius can be used to quantify
the section shape of the shaft. The calculation is conducted by means of Equation (28):

VS =
1
r0

√
1

n− 1

n

∑
i=1

(ri − r0)
2 (28)

where n is the node number of single section, ri is the radius of the shaft at the i-th node,
and r0 is the average radius of the shaft in the current section.

The radius dispersion coefficients of all sections are calculated using Equation (28)
and the results are plotted in Figure 14. It can be seen that the dispersion coefficients of all
sections of shaft 2 are significantly larger than those of the other three shafts, which indicates
that there are great fluctuations in radius for each section of shaft 2. The particularity results
here are consistent with those shown in Figures 7, 8 and 11. Although the roundness errors
of section 19 of shaft 2 and section 10 of shaft 4 are identical, the differences in the dispersion
coefficients shown in Figure 14 are significant. Therefore, it is not reliable to infer the shaft’s
rotational accuracy based on only its roundness and cylindricity errors.

To further study this problem, sections with similar roundness errors (see Table 2) and
similar discrete coefficients (see Table 3) are found from all cross sections of four shafts
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to construct the ideal shafts (Figure 15 is a schematic diagram), and then the unbalanced
gas film forces are analyzed in Figure 16. Because the shaft is constructed with a single
section, the roundness errors are equal to the cylindricity errors. Figure 16a,b have the
same coordinate scales to ensure the comparability of data.

Figure 14. Dispersion coefficients of four shafts.

Figure 15. Schematic diagram of an ideal shaft constructed by single section.

Table 2. Sections with similar roundness.

Shaft-Cross Section S1-C7 S2-C19 S3-C1 S4-C10

Roundness (µm) 2.27 2.25 2.24 2.25
Dispersion Coefficient (×10−5) 3.07 4.57 2.34 2.60

Table 3. Sections with similar discrete coefficients.

Shaft-Cross Section S1-C2 S1-C8 S4-C13 S4-C18

Roundness (µm) 2.87 2.11 2.46 2.69
Dispersion Coefficient (×10−5) 2.96 2.99 2.97 3.01
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Figure 16. Unbalanced gas film force of ideal shaft: (a) ideal shaft with similar roundness; (b) ideal
shaft with similar discrete coefficients.

It can be observed from Figure 16a that, although these shafts have the same roundness,
the unbalanced film forces of these four shafts are quite different. The order of the force from
large to small is section 19 of shaft 2 > section 7 of shaft 1 > section 10 of shaft 4 > section 1 of
shaft 3, which is consistent with the order of the discrete coefficients in Table 2. As presented
in Figure 16b, for the similar dispersion coefficient, the forces of the four shafts are generally
similar, the lowest of which is for section 2 of shaft 1. In Table 3, the roundness errors of
section 2 of shaft 1 is the largest among the four ideal shafts, but its discrete coefficient is the
smallest. It can be proved that, compared with roundness errors, the discrete coefficient can
be used more reliably to predict the unbalanced film force generated by the shaft due to the
shape errors. In addition, when the results are combined with the data in Tables 2 and 3, it
can be seen that if the roundness is similar, the discrete coefficient may be very different,
but if the discrete coefficient is similar, the roundness difference is not large, so the discrete
coefficient can be used to evaluate the processing quality of the shaft.

5. Conclusions

In this paper, the roundness and cylinder error data of the shaft are collected by the
Taylor Hobson cylinder meter as the data source of FDM simulation. The influence of shaft
shape errors on spindle rotation accuracy is verified by comparing the simulation results
with experimental results. The following conclusions have been drawn.

1. Because of the errors of roundness and cylindricity in the shaft, the film thickness
inside the spindle will be different at different places, resulting in an uneven distribu-
tion of film pressure. With the rotation of the shaft, the pressure of the gas film will
keep changing, resulting in an unbalanced film force, which will affect the stability of
the spindle;

2. The errors of roundness and cylindricity of the shaft can not adequately reflect the
distribution of film thickness inside the spindle. Shafts with similar errors may have
large differences in unbalanced film force and rotation errors;

3. The dispersion coefficient reflects the fluctuation of the shaft radius. Shafts with
similar discrete coefficients will not demonstrate much difference in their roundness
error values, and the unbalanced film forces acting on the shaft during rotation are
close to each other. Compared with roundness and cylindricity errors, the discrete
coefficient is a better index to predict the spindle rotation accuracy. Therefore, dur-
ing the design and manufacturing process of the spindle, the shaft radius dispersion
coefficient should be controlled and measured for better spindle rotation accuracy.
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