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Abstract: Icon design is an important part of UI design, and a design task that designers often
encounter. During the design process, it is important to highlight the function of icons themselves
and avoid excessive similarity with similar icons, i.e., to have a certain degree of innovation and
uniqueness. With the rapid development of deep learning technology, generative adversarial net-
works (GANs) can be used to assist designers in designing and updating icons. In this paper, we
construct an icon dataset consisting of 8 icon categories, and introduce state-of-the-art research and
training techniques including attention mechanism and spectral normalization based on the original
StyleGAN. The results show that our model can effectively generate high-quality icons. In addition,
based on the user study, we demonstrate that our generated icons can be useful to designers as design
aids. Finally, we discuss the potential impacts and consider the prospects for future related research.

Keywords: user interface; icon design; deep learning; generating adversarial network

1. Introduction

Icons are an international language that can be observed ubiquitously in everyday life
and are one of the most critical parts of a user interface (UI). It is a carrier between the user
and the graphical interface, a mutual integration of function and aesthetics. A high-quality
icon should not only enable users to quickly recognize and understand the meaning of the
function it represents, but should also bring out the commercial character of the brand to
some extent [1,2].

The design team often needs to design different types of icons according to different
application scenarios and customer needs, while the design process often requires sig-
nificant communication and coordination between designers and customers. The design
team needs to make the icon language-independent and provide quick navigation for
users in different countries in an interactive interface of limited size, while it has to fit the
brand concept and reflect the unique ethos of the brand’s product. The drafting phase,
where an icon is conceived and created, is considered to be the most time-consuming
part of the entire design process, and this phase often requires the design team to invest
extra time and a wealth of inspiration. The designer must ensure that the icon created
expresses both the functionality of the application and its own uniqueness. In particular,
the large number of new applications created every day and the graphic structure of the
icon that fits the psychological metaphor of most people brings about the phenomenon of
similarity in design (Figure 1), thus requiring designers to constantly adjust design details
and strive for innovation in the icon design process to avoid too much similarity with icons
of similar products.

The use of artificial intelligence technology to assist in design and art creation has
always been an interesting and meaningful research problem. With its superior computa-
tional and memory capabilities, artificial intelligence technology is able to provide the best
design solutions through continuous accumulation of empirical knowledge and continuous
optimization. Previous studies have proved that this technology has been successfully
applied in the fields of apparel design [3], layout design [4], and circuit design [5].
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Figure 1. When searching for weather apps in the Apple Store, you can see a strong similarity in the 
icon design of these apps. 

The use of artificial intelligence technology to assist in design and art creation has 
always been an interesting and meaningful research problem. With its superior computa-
tional and memory capabilities, artificial intelligence technology is able to provide the best 
design solutions through continuous accumulation of empirical knowledge and continu-
ous optimization. Previous studies have proved that this technology has been successfully 
applied in the fields of apparel design [3], layout design [4], and circuit design [5]. 

With the success of Generative Adversarial Networks (GANs) [6] in image genera-
tion related tasks [7–10], researchers have started to apply this technique to design, where 
GANs can learn from a large number of past design cases to find the regularities and 
eventually generate high-fidelity and diverse design solutions. For example, Liu et al. pro-
posed a GAN-based model to assist designers in chair design, which consists of an image 
synthesis module and a super-resolution module to generate high-quality chair design 
solutions [11]; Li et al. proposed a LayoutGAN that enables automatic page layout, and 
for a random set of input parameters, the model can output an improved set of parameters 
in a wireframe layout [12]; and HouseGAN++ [13] proposed by Nauata.N et al. enables 
the task of automatic design of house floor plans. 

GANs has also applied to icon design. The earliest related research could be traced 
back to Sage et al. in 2017, where they first constructed a large-scale logo dataset contain-
ing 60w corporate logos, and gave the icons different labels by clustering methods to 
avoid the mode collapse that often occurs in GANs, and finally achieved the logo genera-
tion task [14]. Mino et al. combined the ACGAN [15] with the WGAN-GP [16] to construct 
the LoGAN, which is based on the LLD-logo datasets [17] and eventually generated 12 
types of logos with color as the label [18]. In 2019 this team constructed the LoGANv2, 
thus realizing the task of high-resolution icon generation, and the study was conducted 
on the StyleGAN [19] architecture. It experimented with conditional extensions and 
demonstrated that adding high-quality conditions to the unconditional model can effec-
tively control the output of the synthetic network [20]. 

Since then, inspired by research combining logo design with GANs, researchers have 
started to focus their attention on the icon generation task. In graphic design, both logos 
and icons are visual symbols, but a logo is more to carry a company’s values, and its pur-
pose is to spread the value connotation of the brand; while an icon has stronger function-
ality and unity, it carries more single information, and its existence value makes it easier 
for users to identify and understand when using or browsing a product. Thus, unlike the 
logo generation task, the generated icon needs to have more functional characteristics and 
not just be an abstract visual symbol. Sun et al. constructed a bi-conditional GAN with 
color and shape for the first time in 2019, which could automatically color the icons de-
sired by designers [21]. Takuro Karamatsu et al. used the CycleGAN [22] for the domain 
transformation task from natural images to icons [23]. 

However, there are two key challenges in applying GANs directly to the research of 
icon design: (1) Icon styles differ (linear, faceted, etc.), and the icons applicable to different 
scenarios have little in common (medical treatment, emotion, traffic, etc.). Therefore, for 

Figure 1. When searching for weather apps in the Apple Store, you can see a strong similarity in the
icon design of these apps.

With the success of Generative Adversarial Networks (GANs) [6] in image generation
related tasks [7–10], researchers have started to apply this technique to design, where GANs
can learn from a large number of past design cases to find the regularities and eventually
generate high-fidelity and diverse design solutions. For example, Liu et al. proposed a
GAN-based model to assist designers in chair design, which consists of an image synthesis
module and a super-resolution module to generate high-quality chair design solutions [11];
Li et al. proposed a LayoutGAN that enables automatic page layout, and for a random set
of input parameters, the model can output an improved set of parameters in a wireframe
layout [12]; and HouseGAN++ [13] proposed by Nauata.N et al. enables the task of
automatic design of house floor plans.

GANs has also applied to icon design. The earliest related research could be traced
back to Sage et al. in 2017, where they first constructed a large-scale logo dataset containing
60w corporate logos, and gave the icons different labels by clustering methods to avoid the
mode collapse that often occurs in GANs, and finally achieved the logo generation task [14].
Mino et al. combined the ACGAN [15] with the WGAN-GP [16] to construct the LoGAN,
which is based on the LLD-logo datasets [17] and eventually generated 12 types of logos
with color as the label [18]. In 2019 this team constructed the LoGANv2, thus realizing the
task of high-resolution icon generation, and the study was conducted on the StyleGAN [19]
architecture. It experimented with conditional extensions and demonstrated that adding
high-quality conditions to the unconditional model can effectively control the output of
the synthetic network [20].

Since then, inspired by research combining logo design with GANs, researchers have
started to focus their attention on the icon generation task. In graphic design, both logos and
icons are visual symbols, but a logo is more to carry a company’s values, and its purpose
is to spread the value connotation of the brand; while an icon has stronger functionality
and unity, it carries more single information, and its existence value makes it easier for
users to identify and understand when using or browsing a product. Thus, unlike the
logo generation task, the generated icon needs to have more functional characteristics
and not just be an abstract visual symbol. Sun et al. constructed a bi-conditional GAN
with color and shape for the first time in 2019, which could automatically color the icons
desired by designers [21]. Takuro Karamatsu et al. used the CycleGAN [22] for the domain
transformation task from natural images to icons [23].

However, there are two key challenges in applying GANs directly to the research of
icon design: (1) Icon styles differ (linear, faceted, etc.), and the icons applicable to different
scenarios have little in common (medical treatment, emotion, traffic, etc.). Therefore, for
deep learning models such as GANs, it is challenging to capture the local correlation in the
icon. (2) GANs require a large quantity of high-quality data; no such relevant icon datasets
currently exist, and this could hinder research progress.

In view of the two aforementioned challenges, in this study, we constructed a large-
scale icon dataset comprising 8 different categories. This study is the first icon generation
study based on a large dataset (about 20,000 samples), but in addition, in contrast to previ-
ous studies, which used color and shape as the classification conditions, we classified the
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icons according to application scenarios. Inspired by the study of Cedric Oeldorf et al. [20],
in this study, we introduced conditional information on the StyleGAN to enable it to gener-
ate icons by category. Besides this, we added a self-attention mechanism and a spectral
normalization operation to the original model to improve the quality and diversity of the
model. We also adopted the idea of “relative accuracy” in the RGAN [24] and reconstructed
the loss function of the model, which gives RGAN better training stability and generation
effects with a limited number of samples.

The main contributions of this study are as follows.

1. It is an effective attempt to introduce deep learning techniques into the field of icon
design, and for the first time the task of icon generation is implemented based on
GAN, expanding the field of this research.

2. The first construction of an icon dataset consisting of 8 types of icons with differ-
ent styles.

3. Applying conditional constraints in the StyleGAN and introducing new methods
such as the self-attention mechanism to make it have better icon generation results.

4. Making some suggestions for future related research.

2. Materials and Methods

GANs have achieved good results in image generation since they were proposed,
but due to the training challenges of the original GANs such as training instability, mode
collapse, and difficulty in judging convergence [25], researchers have therefore successively
proposed various improvements to GANs, such as WGAN [26], WGAN-GP [16] and other
models for penalty functions, StackGAN [27], ProGAN [28], etc. in terms of structural
improvements. In this section, we give a brief introduction to GAN, StyleGAN and some
improvements introduced in the original model.

2.1. Generative Adversarial Network, GAN

GAN is a deep learning model which consists of two modules, the generator and the
discriminator (Figure 2a), and the samples generated by the generator obey the real data
distribution by adversarial training [6]. Among them, the discriminator aims to determine
whether the input samples are real samples or fake samples generated by the generator;
while the generator tries to generate samples that the discriminator cannot distinguish,
and the two modules have opposite objectives and are trained alternately in an attempt to
reach Nash equilibrium in this “MiniMax” game [29].

Figure 2. (a) The basic framework of GAN. Where G is the generator; D is the discriminator; z is generally random noise
sampled from a Gaussian distribution, z generates a false sample G(z) after passing through the G; x is the true sample, and
the discriminator makes a true or false judgment on the input sample. (b) The structure of CGAN. The biggest difference to
traditional GAN is that the label of the sample will be used as input to both the generator and the discriminator.

The mutual game process between generator and discriminator can be expressed
by a value function, and the generation problem of the model can also be transformed



Appl. Sci. 2021, 11, 7890 4 of 15

into a minimax problem solving V(G, D), and the objective function of the GAN can be
expressed as:

min
G

max
D

V(D, G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1− D(G(z)))], (1)

where x is a real sample and z is random noise. The goal of the generator is to minimize the
upper expression, and the goal of the discriminator is to maximize the upper expression.

2.2. Conditional Generative Adversarial Network, CGAN

The conditional GAN (CGAN) carries out conditional constraints on the basis of the
original GAN and introduces the condition variable into the generator and discriminator
to change the model from an unsupervised network to a supervised network [30], thus
guiding the data generation process (Figure 2b).

Based on the original GAN, the objective function of the CGAN can be expressed in
the following form:

min
G

max
D

V(D, G) = Ex∼pdata(x)[logD(x|y)] + Ez∼pz(z)[log(1− D(G(z|y)))] (2)

The input of the generator in the model is noise, z, a conditional variable, y, and the
conditional data that can guide the training process of the generator.

2.3. Style-Based Generator, StyleGAN

The traditional GAN samples noise z from a Gaussian distribution as input, which
essentially learns the mapping function from the Gaussian distribution to the real image
distribution through a neural network. StyleGAN [19], on the other hand, uses a style
parameter to determine the output of the generator, which essentially learns the mapping
from the style space to the real image distribution, and thus can artificially control the style
of the generated image.

StyleGAN borrows the progressive structure of ProGAN [28], and the authors of
the original paper designed a nonlinear Mapping Network consisting of 8 sets of fully
connected networks to process the transformation Z →W (w ∈W) in the potential space.
A learnable affine transformation is then introduced to transform w into y = (ys, yb), and
y undergoes an adaptive instance normalization (AdaIN) after passing through each set
of convolution layers in the Synthesis Network. Each set of convolution layers in the
Synthesis Network is followed by an AdaIN operation [20].

AdaIN(xi, y) = ys, i
xi − µ(xi)

σ(xi)
+ yb, i , (3)

where xi is the feature map after performing normalization and then combining with y for
scaling and biasing.

In addition, the model authors add a Gaussian noise layer after each convolution,
thus providing the generator with a way to generate random details. The generator and
discriminator structure follows the progressive structure proposed by ProGAN, which has
been successfully able to significantly generate higher resolution images [19].

2.4. Self-Attention Mechanism

Since the receptive field size of GANs based on CNNs is limited, the convolutional
kernel can only cover a small area around the central pixel, and thus there is a shift in the
key locations in the generated image [31]. By contrast, the self-attention mechanism could
compute the relationship between any 2 pixels in the image, and thus learn the global,
long-range dependencies for generating images. Mirza, M. noted that the self-attention
mechanism in the GAN could significantly improve the diversity of the generated images
and, simultaneously, improve the quality of the generated images [32].
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2.5. Spectral Normalization

Unlike previous models such as WGAN [26] or WGAN-GP [16] that make the discrim-
inator satisfy Lipschitz continuity [33] by adding a constraint term to the objective function,
spectral normalization directly constrains the Lipschitz constants of the discriminator by
constraining the weight parameters of each layer of the GAN discriminative network, thus
improving the stability of the GAN during training [34]. This operation is computationally
simple and can be applied to GANs with different structures. Also, the original authors
compared it with the existing normalization operation [35,36] and demonstrated that the
spectral normalization operation has a more significant improvement on the diversity and
quality of the generated images.

Specifically, when each parameter is updated during the training process, spectral
normalization decomposes the weights of each layer of the model with singular values and
normalizes their will to be limited to 1.

2.6. Relativistic Generative Adversarial Network, RGAN

The discriminator of a traditional GAN is designed to measure the probability that
the generated data is true, while the discriminator of RGAN measures the probability that
the generated data is “more real” than the real data. The researchers used relative distance
measurements to measure this relative truth [23]. In other words, the traditional GAN
attempts to increase the probability that the generated sample looks true, while the RGAN
simultaneously attempts to reduce the probability that the real data looks true, which
leads to faster convergence. Meanwhile, compared with GAN, Spectral GAN [24], and
WGAN-GP [25], RGAN can generate higher quality samples, even when sample size is
limited (approximately 2000 samples).

Specifically, the essence of the GANs is to make the generated distribution approximate
to the unknown true distribution. The loss function in the GAN measures the distance
between the two distributions and attempts to minimize it as much as possible. RGAN’s
loss function applied to the original GAN is stated as:

LGAN
G = Exr∼P[g1(C(xr))] + Ez∼Pz

[
g2

(
C
(

x f

))]
;

LGAN
D = Exr∼P[ f1(C(xr))] + Ez∼Pz

[
f2

(
C
(

x f

))] (4)

RGAN modifies the loss function of traditional GAN by replacing C(xr) and C
(

xg
)

with C(xr)− C
(

xg
)

to measure the relative authenticity of the measured input samples
of the discriminant. The authors of RGAN have also successfully demonstrated that the
relative discriminator is highly versatile, can be trained in combination with any type
of GAN, and could obtain better performance together with techniques such as spectral
normalization and gradient penalty.

LRGAN
G = E(xr , x f )∼( P, Q)

[
g1

(
C(xr)− C

(
x f

))]
+ E(xr , x f )∼(P, Q)

[
g2

(
C(xr)− C

(
x f

))]
LRGAN

D = E(xr , x f )∼( P, Q)

[
f1

(
C(xr)− C

(
x f

))]
+ E(xr , x f )∼(P, Q)

[
f2

(
C(xr)− C

(
x f

))] (5)

3. Experiments and Results

The study is based on StyleGAN to enable it to generate corresponding icons by class
according to the category of icons, and we hope to demonstrate that the generated icons can
assist the design to some extent from a subjective and objective point of view. This section
consists of four main parts: collection and processing of the dataset, model improvement
and training details, generation results, and evaluation of subjective subjects.

3.1. Data

In our study, we used icons from www.iconfont.cn (accessed on 19 April 2021) [37]
and www.icons8.com (accessed on 19 April 2021) [38], which contain a large number of

www.iconfont.cn
www.icons8.com
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unwatermarked high-definition icons. We selected the top 30,000 flat style icons according
to the number of downloads and collections. Flat style icons were selected as they are more
available than other styles, such as linear style or 2.5D style icons.

In addition, the number of samples was confirmed and the icons were divided into
8 major categories and application scenarios, such as weather, emotion, and human, and
the remainder of the icons were deleted. In the 8 categories selected, we also attempted to
ensure the diversity of samples in each category. For example, there are trees, leaves, and
flowers in the plant category icon, and planes, cars, and motorcycles in the transportation
category icon. Simultaneously, we deleted some samples that were notably repetitive in
style, excessively low in resolution, or rarely appeared in the same category (such as ties
and socks in the clothing category), or where the background of the icons was uniformly
processed into white, and set the resolution to 256× 256 in PNG files (Figure 3). The
final sample set consisted of 21,000 icon images, with a sample size exceeding 2000 in
each category.
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Figure 3. T-SNE [39] was used to visualize part of the dataset (Perplexity = 30, learning rate = 150, iterations = 1500). We
selected the 8 categories of icons with the largest sample size from the collected samples: emotion, weather, human, plant,
avatar, clothes, house, transport. It should be noted that human icons are mainly images of people with different movements
and postures, while avatar icons are mostly busts of people with different professions.

3.2. Model Structure

The original StyleGAN is an unsupervised model. In this study, we change the label
of the samples into the mapping network, style generator and discriminator, thus changing
it into a supervised model conditional on the icon category. Meanwhile, both the generator
and discriminator of the original StyleGAN are 9-layer progressive structure, and the
generator starts from a feature map of size 4× 4 to gradually generate images of size
1024× 1024. Considering the size of our samples, the progressive structure is changed to
7 layers in this study, and the final image generation size is 256× 256 (Figure 4).
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Figure 4. The improved model based on StyleGAN in the study. We input the label embedding of
the samples into the mapping network with discriminator; we added the self-attention mechanism in
the generator and discriminator 64× 64, 128× 128 and 256× 256 feature maps.

Introducing the self-attention mechanism in GANs and imposing it on large feature
maps could more efficiently improve the multi-class learning capability of GANs and
generate more diverse images [31]. Thus, we add the self-attention mechanism to the
64× 64, 128× 128 and 256× 256 sets of feature maps in the generator and discriminator.
In addition, the spectral normalization not only improves the quality and diversity of the
generated images, but also could be applied to any GANs [32,34]; thus, we applied spectral
normalization in each convolution layer and linear layer of the generator and discriminator.

3.3. Train Detail

In the experiment, two NVIDIA Tesla P100-16GB units were selected as the GPU. The
two-timescale update rule [40] was adopted to set the learning rate, the generator learning
rate was set at 0.0002, and the discriminator learning rate was set at 0.0004.

Other hyperparameters in the model training include: Both the generator and discrim-
inator optimizer used the Adam optimizer [41], the parameters of the optimizer used are
0.5 and 0.999; the hidden vector length is set to 256, the batch size is set to 8, and 50 epochs
are trained.

Wang, Z. et al. pointed out that the form of RGAN can be introduced into any GAN
model (IPM-GANs) whose objective function employs integrated probabilities, so in our
study we chose the WGAN-GP loss function belonging to the form of IPM-GANs [32].
WGAN-GP uses the Wasserstein distance to calculate the distribution of the generated
samples and the real samples of the loss function and applies a gradient penalty to the loss
function [16].

In addition, we use one-sided label smoothing (Change the label 1 of the real sample
to 0.9, thus guiding the discriminator to make some smoother predictions [25]) and feature
matching (the comparison of the output value of the last layer in the original objective
function is replaced by the comparison of the output of the penultimate layer [25]) to
improve the model’s performance.

3.4. Generate Results

The results generated in the study are shown in Figure 5.
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We conducted a comparison experiment using the StyleGAN as the baseline, under
the same experimental environment and training parameters, and the generation results
are shown in Table 1, where the data are randomly collected from the icons generated
at the 50th epoch. Intuitively, the icons generated by the improved model have clearer
contours and less noise, and we will further compare the results of the two models in
Sections 3.5 and 3.7.
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3.5. Quantitative Evaluation

We used the Inception Score (IS) [42] and the Frechet Inception Distance (FID) [40] to
compare multiple sets of experiments, which are effective metrics for measuring the quality
and diversity of the generated images. Where IS is a method to quantitatively evaluate



Appl. Sci. 2021, 11, 7890 9 of 15

the results of the generative model by calculating the KL divergence with the help of the
Inception-v3 network [43]:

IS = exp(Ex∼pg(x)KL( p(y|x)||p(y))), (6)

where p(y|x) is the probability of a category for a generated image x, after feeding it
to the pre-training network Inception-v3 classification network, and p(y) represents the
expectation of the probability of the category output by this pre-training network for
all generated images. For high-quality generated images, the classification network will
determine the image as a certain category with a high confidence level, when p(y|x) has a
small entropy value. In addition, when p(y) has a large entropy value, this indicates that
the generated images are diverse. Therefore, when p(y|x) has a lower entropy value and
p(y) has a higher entropy value, the KL divergence between the two is greater at that time,
and so the IS value is higher, which means that the generated samples have higher quality
and diversity.

FID, by contrast, compares the real samples with the generated samples, again by
feeding the generated samples into the Inception-v3 classification network and calculating
them by computing the distance between the real and generated sample feature maps. A
lower value indicates that the generated sample is closer to the statistics of the real sample,
i.e., the generated image has higher quality and diversity.

FID = µdata − µg
2 + Tr

(
∑data +∑g−2

(
∑data ∑g

)1/2
)

, (7)

where (µdata, ∑data) and
(

µg, ∑g

)
denote the mean and covariance matrices of the real

and generated samples, respectively, and Tr denotes the trace of the matrix.
We conducted several sets of comparison experiments, and the quantitative compari-

son of IS, and FID showed that our model has a more significant improvement relative to
the original StyleGAN. Among them, the self-attentive mechanism has the greatest effect
on the model to improve IS, and the relative discriminator has the greatest improvement
on FID (Table 2).

Table 2. Quantitative evaluation according to IS and FID.

Model IS FID

StyleGAN 5.29 157.67
StyleGAN + AM 12.23 134.35
StyleGAN + SN 7.87 144.59
StyleGAN + RD 8.80 112.83

Ours 16.54 101.52

3.6. Visualization of the Generation Process

We visualized the generation process (Figure 6). In general, the model learns both
the outline and the color combination of icons. After 1 epoch of training, the model
generates abstract images with various color combinations; after 5 epochs, the model can
gradually learn some general outlines of the icons and the composition of the body color;
after 10 epochs, the model can already generate clearer icons of people’s postures, but
other categories of icons have not yet been able to generate obvious shape features; after
15 epochs, more categories of icons are gradually generated and the outline is clear, such as
weather, clothes, avatar, etc., while we find that the model has not been able to generate
house and plant icons with clear outline; after 25 epochs, some details of icons start to be
reflected; and after 40 epochs, the model has been able to generate icons with clear outlines
and less noise, and the generated icons have stronger diversity.
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Figure 6. Visualization of the generation process.

3.7. User Study

We conducted a subjective evaluation experiment in the form of a visual Turing test
with a questionnaire. A total of 105 subjects aged between 22 and 35 years old participated
in our study, consisting of 60 males and 45 females. Among them were 25 graduate stu-
dents in design, 15 graduate students in artificial intelligence, 35 UI designers or product
designers from the Internet and finance industries, and 30 practitioners from other indus-
tries (specifically those not related to the design industry) (Figure 7). Twenty of the other
industry practitioners were found through the Credamo online platform [44], which is
a professional online research platform and allows for restrictions on participants’ age,
occupation, and other information. Other than that, all other subjects conducted their
research offline.

Figure 7. Profile distribution of the participants of our user study; (a) Age, (b) Gender, (c) UI design experience, (d) Deep
Learning/Machine Learning experience.

3.7.1. Visual Turing Test

We randomly selected 15 samples from each of the 8 categories of icons for the visual
Turing test, and subjects were asked to determine whether the given samples were from
real icons or generated icons. Each class of test icons was equally divided into those from
real icons and those generated by StyleGAN and ours, respectively.

We show 5 random icons in the test page (Figure 8), which may come from real icons,
StyleGAN-generated icons, or icons generated by our improved model, and we want
to get the most direct judgment from the subjects, so we ask them to complete each set
of judgment tasks within 8 s, and each subject needs to complete 24 sets of judgment
experiments. The results are shown in Table 3.
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Table 3. The visual Turing test accuracy of 8 types of icons.

Weather Emotion Clothes Plants House Avatar Human Transport Total

StyleGAN 86.3% 83.5% 97.4% 88.9% 83.4% 99.2% 94.5% 100% 91.6%
Ours 68.4% 77.0% 87.5% 76.2% 71.7% 75.6% 89.1% 97.1% 80.3%

By comparing the judgment accuracy in the visual Turing test, the icons generated
by the improved model are harder to recognize as generated (lower judgment accuracy),
although it should also be noted that the improvement in the correct judgment rate is
also very limited (the overall value decreases by 5.8%), indicating that there is still a
large visual moment of difference between most of the generated icons of the improved
model and the real icons. The visual effect of Avatar icons generated by the improved
model is the most improved, from 99.2% correct judgment rate to 75.6%. The weather,
house and expression icons have lower judgment accuracy in both models, i.e., the most
“realistic” effect, while the traffic and character gesture icons have the highest judgment
accuracy, which also indicates that the visual effect of these two categories is poor. Another
interesting phenomenon in the study is that subjects with more design experience did not
have higher accuracy rates (73.6% for those with no design experience; 75.4% for those
with design experience), contrary to our assumptions.

3.7.2. Questionnaire Survey

We selected 24 design graduate students and 20 UI designers to conduct a question-
naire study on the quality of the generated icons. The survey was conducted offline, and
all participants had experience in designing visual symbols such as icons or logos. The
UI designers were mainly from the UX Lab of Samsung Electronics China Research &
Development Center in Nanjing.

We combined the icon design requirements and suggestions for developers from
Apple’s official website [2], and selected 5 subjective evaluation criteria for icon quality:
legibility, simplicity, uniqueness, artistry and attraction. We asked the subjects to evaluate
the generated 8 categories of icons (10 generated icons of each category were randomly
selected) based on the aforementioned five criteria (Table 4). In addition, we also set a
question at the end of the questionnaire: ‘How helpful do you think the generated icons in
this study are to your daily icon design work?’. All the aforementioned questions were
asked using 5-point Richter scale points. The 5-point scale is expressed as ‘1 = very low,
2 = little low, 3 = moderate, 4 = little high, 5 = very high.’

Table 4. Quantitative metrics of our model from the user perceptual study.

Legibility Simplicity Uniqueness Artistry Attraction

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

Weather 4.31 1.06 3.93 0.86 3.29 1.51 3.04 1.29 3.23 1.39
Emotion 3.41. 1.09 3.56 1.15 2.75 0.95 2.40 1.02 2.60 1.23
Cloths 3.52 0.81 2.36 1.04 2.95 0.85 2.20 1.11 2.27 1.14
Plants 3.54 1.05 3.11 0.75 2.50 1.19 2.90 1.53 2.65 1.36
House 3.80 1.09 3.18 0.83 2.27 1.23 2.54 1.19 2.38 1.15
Avatar 3.97 0.78 3.59 0.49 3.00 0.43 2.25 1.13 2.40 1.19
Human 3.75 1.22 3.02 0.83 3.09 0.70 1.95 0.82 2.90 1.32

Transport 2.90 0.79 2.43 1.07 2.23 1.22 1.72 0.78 1.97 0.72
Average 3.78 1.05 3.12 0.88 2.76 1.13 2.38 1.21 2.55 1.22

Generated icons scored higher on average on the recognizability and simplicity metrics
than on others, with legibility being rated highest and artistry being lowest. As with the
results of the visual Turing test, the traffic and human gesture icons scored relatively lower
than the other categories of icons. We believe that the reason for this phenomenon is that
there are fewer commonalities in these two icon categories-specifically, the traffic category
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contains more categories, such as trucks, motorcycles, cars, etc., while the human gesture
category is more challenging to generate due to the rich diversity of human actions.

We conducted the aforementioned research on the results generated by StyleGAN
in the same environment, and the comparison between the results and our final model
is shown in Figure 9a: we can see that our model has the most obvious improvement for
uniqueness and legibility, while the improvement effect of artistry and attractiveness is
weaker, so overall the improved model has better generation results. The results of the
survey on the extent to which the generated icons help design work are shown in Figure 9b:
more designers chose moderate (17) and little high (13), indicating that the generated
icons in the study can assist designers’ icon design work to a certain extent. Furthermore,
surprisingly, through the communication with all the participating designers at the end
of the questionnaire, it was found that the figure pose icon was given the most favorable
comments, and they thought that although the visual effect of this type of generated icon
was poor, as a more abstract icon, it could give designers more inspiration in creating
human movements.
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4. Discussion

This study is an effective attempt at the intersection of icon design and deep learning.
A large dataset consisting of 8 categories of icons is constructed, and StyleGAN is slightly
improved and conditioned to generate icons by category. By comparing the IS and FID
metrics with 105 visual Turing tests, the self-attention, spectral normalization, and relative
discriminative distance operations added to the original model can improve the quality
and diversity of the generated icons. Among them, the self-attention mechanism operation
improves the IS most significantly, while the relative discriminative distance improves the
FID most. We also visualize the icon generation process, and we can see that the model
learns both color combinations and contour shapes. Notably, the model generates the
first clear silhouette for the pose icons, which are considered to be of poor quality (about
5 epochs), while the house icons, which are of good quality, start to generate a clearer
silhouette at the 28th epoch.

In addition, five evaluation indexes were defined according to Apple’s icon design
requirements and suggestions: legibility, simplicity, uniqueness, artistry and attraction,
and 44 subjects with previous icon design experience were asked to evaluate the generated
icons through a questionnaire. In the end, the three categories of expressions, weather and
houses received higher scores, while the traffic and people’s gestures categories received
the lowest scores, which is consistent with the results of the visual Turing test. At the same
time, the recognizability and simplicity of the generated icons were more recognized by
the designers, and most of the UI designers who participated in the study thought that the
generated icons could assist them in their daily icon design work. One interesting point
in the study is that, compared with the weather and plant icons, which gave the subjects
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higher visual perception and evaluation, the quality of the generated icons was poorer
than that of the character pose icons, but the participating designers generally thought
that they could get more inspiration from the generated icons for character movement,
thus improving their design efficiency and quality. Therefore, more abstract visual symbol
generation can be studied in future research.

Our study also has limitations: firstly, the data set we constructed in our study is
only a small class of icons, and the quantity and quality of the training data are crucial
for generation models like GAN. We believe that a major focus of future icon generation
research is still on the construction of datasets, and it would be interesting to try to study
other categories or styles of icons in addition to the 8 categories of face icons covered in
our study. However, notably, in the process of icon collection, we found that the number of
icons of other styles (linear, 2.5D icons) was significantly smaller compared to face icons,
which would make it challenging for related generation studies. It is also shown in our
study that when there is less commonality in the sample, it affects the quality of generated
icons. Of course, with the rapid development of GANs on few-shot learning [44], it is
believed that the generation of high-quality images on a small number of samples will
gradually become mainstream in the future, which will undoubtedly give great help to icon
generation studies. In addition, future research should be expanded on the applications
related to the combination of icons and even interface design with GANs to make it more
application-worthy, so that it could better assist designers in their work.

5. Conclusions

How to rely on artificial intelligence techniques to aid design is an interesting research
direction, and with the success of generative adversarial networks in deep learning, new
research ideas and methods have been provided for this crossover area. The factors
limiting the intelligent generation of icons are the scarcity of data sets and the necessity
of the generated icons to reflect the corresponding functions, both of which challenge
the training and generation effectiveness of the models. The research in this paper is
an effective attempt in this field and can be used as a basis for related research. We
constructed a dataset of 20,000 icons and realized the generation of icons by class based
on StyleGAN, and combined it with user research methods to confirm that the generated
icons are functional and minimalistic, and can assist designers in their design work to a
certain extent. However, it should be pointed out that the generated icons can meet the
designers’ initial draft requirements in terms of functionality and simplicity, but designers
still need to add artificial design elements to make them more artistic and attractive.

With the rapid development of GANs, greater progress has been made in the fields
of image super-resolution reconstruction, image style conversion, etc. Thus, how such
models could be introduced into the field of icon creation and even graphic design is a
problem worthy of further research. Finally, it would be an interesting research direction to
understand the design process from this perspective by better visualizing the generation
process of these GANs to understand this abstract learning process.

The importance of high-quality data for GANs-based design assistance is self-evident.
However, when the data we collect has certain universality, the generated samples also
have certain universality, that is, it is difficult to generate more unique samples according
to different application scenarios. Therefore, how to make better use of the computing
power, learning ability and memory ability of AI technology in the future, so that it can
more reasonably model and analyze different design problems or application scenarios,
and generate optimal design solutionswill be worth more in-depth research and discussion.
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