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Abstract: This paper examines the dynamics and control of a variable blade pitch wind turbine
during extreme gust wind and subject to actuators saturation. The mathematical model of the wind
turbine is derived using the Lagrange dynamics. The controller is formulated using the Takagi–
Sugeno fuzzy model and utilizes the parallel distributor compensator to obtain the feedback control
gain. The controller’s objective is to obtain the generator electromagnetic torque and the blade pitch
angle to attenuate the external disturbances. The (T–S) fuzzy controller with disturbances rejection
properties is developed using the linear matrix inequalities technic and solved as an optimization
problem. The efficacy of the proposed (T–S) fuzzy controller is illustrated via numerical simulations.

Keywords: wind turbine; (T–S) fuzzy model; parallel distributor compensator (PDC); linear matrix
inequality (LMI); actuator saturation; disturbances

1. Introduction

The dynamic and control of large and medium-size wind turbines remain a consider-
able challenge for scientists and engineers despite the substantial research done in the last
few decades, for instance, considering the wind turbine complex nonlinear dynamics, the
convoluted behavior of the wind, the maximum power that can be withdrawn from the
system being constrained by the Betz Equation [1], and the overall performance affected by
the disturbances.

The stability analysis in the presence of disturbances of a complex system was widely
investigated; a synopsis of novel methods is cited in [2]. Concerning control system design
applied to the wind turbine technology, an ample amount of literature is cited in [3–12].
Over the last decades, the design of controllers using fuzzy logic approach has been used
widely as a substitute to traditional control technic especially for nonlinear systems [13].
The Takagi–Sugeno (T–S) fuzzy model is considered one of the most popular forms of
fuzzy systems [14]. The stability analysis of a dynamic system represented by the (T–S)
fuzzy model can be performed using a Lyapunov function approach [15]. Therefore, many
control problems have been concluded, and some excellent results have been disclosed in
the literature. The (T–S) fuzzy model was expanded to include systems undergoing external
disturbances. A considerable amount of work was done to prove the stability of disturbed
dynamic systems. For instance, Zheng et al. [16] developed an output feedback control
for a (T–S) fuzzy system with multiple time-varying delays and unmatched disturbances.
In [17], the author proposed a fuzzy sliding mode control method combined with a deep
learning algorithm to approximate the dynamics model and to counteract the disturbances.
The Takagi–Sugeno–Kang is used in [18] to derive a robust fuzzy control for a Magnetic
Bearing System Subject to Harmonic Disturbances. Yan Cao et al. [19] proposed a robust
H∞ to reduce the disturbance of uncertain discrete-time fuzzy systems. Yoneyma [20]
design a stable filter with disturbance attenuation of Takagi–Sugeno fuzzy systems with
immeasurable premise variables. An innovative fuzzy-observer-design technic for Takagi–
Sugeno fuzzy models with unknown output disturbances is presented in [21]. Vu and
Wang [22] designed an observer and a Controller for Takagi–Sugeno (T–S) fuzzy systems
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with an enlarged class of disturbances. In [23], a fuzzy disturbance observer controller is
developed and applied to a nonlinear system under internal and external disturbances. A
robust adaptive sliding-mode control for fuzzy systems with mismatched uncertainties
and exogenous disturbances in which the uncertainties in state matrices are mismatched
and norm-bounded. In contrast, the exogenous disturbances are assumed to be bounded
with an unknown bound, which is estimated by a simple and effective adaptive approach
is developed in [24]. In [25], the author analyzes the unknown slippage in wheeled mobile
robots and proposes a fuzzy adaptive tracking control method to counteract the dynamic
disturbances. Chen et al. [26] proposed a novel-function approximator; the authors use the
Fourier series expansion and fuzzy-logic system to model unknown periodically disturbed
systems. Then, an adaptive backstepping tracking-control scheme is developed. Other
advanced methods like output feedback [27,28], neuro-fuzzy [29], genetic algorithm [30],
model predictive [31], and interval type-2 fuzzy systems [32] were used.

This paper introduces a (T–S) fuzzy control method for disturbance rejection applied
to a medium-size wind turbine subject to extreme gust wind and actuators saturation.
The wind turbine is equipped with a blade pitch mechanism to adjust the blade pitch
angle accordingly to minimize the effect of the disturbances mainly caused by the extreme
variation of the wind. The controller is constructed based on the (T–S) fuzzy model of
the wind turbine and utilizes the parallel distributed compensator (PDC) technique to
obtain feedback gain. Note that the feedback gain is obtained while the initial condition
is unknown but bounded. The control problem is formulated in terms of linear matrix
inequalities and solved using an optimization technic such as the interior point method. A
numerical simulation is provided to analyze the capability of the proposed controller.

2. Materials and Methods
2.1. Wind Generator Dynamic Model

A simplified dynamic model of the wind turbine and its drive train based on the
two-mass system is illustrated in Figure 1. The drive train consists of a rotor, a generator,
and a gearbox. The mathematical model based on this configuration has been used to
design linear and nonlinear controller [33,34].
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Figure 1. Wind turbine model.
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With the assumptions that the moment of inertia of the gearbox and the damping
effect of the blades can be ignored, the equations of motion are derived using Lagrange
dynamics and written in the following form:

Jrω̇r = Ta − Tls − Brωr

Jgω̇g = Ths − Bgωr − Tem

β̇ = − 1
τ β + 1

τ βd

(1)

where Jr, ωr represents the moment of inertia and the angular velocity of the rotor, Tls is the
torque on the low-speed shaft, Br is rotor damping coefficient, and Ta is the aerodynamic
torque, it and can be modeled as

Ta =
1
2

ρπ R3Cq(λ, β)V2 (2)

where ρ is the air density, R is the rotor radius, V is the wind speed, Cq(λ, β) is the torque
coefficient in which β is the blade pitch angle, and λ is tip speed ratio, and it can be
written as

λ = R
ωr

V
(3)

Jg, ωg represents the moment of inertia and the angular velocity of the generator, Bg
is generator damping coefficient, Tem is the electromagnetic torque, and Ths is the high-
speed shaft torque. It is worthwhile to mention that the third equation in Equation (1)
represents the electromechanical pitch systems model where τ is a time delay constant
and βd is the desired pitch angle. It is worth mentioning without going into many details
that the flux-weakening control technique, which is considered one of the most practical
solutions [35–40], is used to limit the generator speed, to achieve an extended constant
power range, to eliminate the use of multiple gear ratios, and to reduce the power inverter
volt-ampere rating.

The low-speed shaft torque can be written as

Tls = Kls(θr − θTls) + Bls(ωr −ωls) (4)

and for an ideal gearbox with a ratio ng, the following relationship holds [41]:

ng =
Tls
Ths

=
ωg

ωls
=

θg

θls
(5)

Using Equations (1)–(5), the nonlinear model of the wind generator can be written in the
following form.

ω̇r =
1
Jr

[
− Klsθr +

Kls
ng

θg − (Bls + Br)ωr +
Bls
ng

ωg + Ta

]
ω̇g = 1

Jg

[
Kls
ng

θr − Kls
n2

g
θg +

Bls
ng

ωr − ( Bls
n2

g
+ Bg)ωg − Tem

]
β̇ = − 1

τ β + 1
τ βd

(6)

where, x = [θr θg ωr ωg β]T represents the state vector, and u = [Tem βd]
T is the the control

input vector. Note that the torque coefficient Cq(λ, β) can be approximated as follows [41]:

Cq(λ, β) =
1
λ

[
c1(

c2

λ1
− c3β− c4)e

−c5
λ1 + c6λ

]
(7)
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where
1

λ1
=

1
λ + 0.08β

− 0.035
1 + β3 (8)

2.2. Takagi–Sugeno Fuzzy Model

A nonlinear dynamic system with disturbances is be represented by the following
(T–S) fuzzy model:

Model Rule i: IF z1(t) is about µi1[z1(t)], . . . , zp(t) is about µip[zp(t)], THEN{
ẋ(t) = Aix(t) + Biu(t) + Di ϕ(t)
y(t) = Cix(t)

(9)

where µij[zp(t)] is the grade of the membership of zp(t), x represents the state vector, u is
the control input vector, y is the output vector, (i = 1, 2, . . . , r) specifies the number of fuzzy
rules, and ϕ(t) represents the disturbance. Ai, Bi, Di, and Ci are known constant matrices
with appropriate dimensions. The firing strength of each rule can be determined using
T-norm product as follows:

wi[z(t)] =
p

∏
j=1

µij[zp(t)] (10)

and the normalized membership functions are computed as

hi[z(t)] =
wi[z(t)]

r

∑
i=1

wi[z(t)]
(11)

connecting all the rules, the (T–S) fuzzy model takes the following form:

ΣT−−S :


ẋ(t) =

r

∑
i=1

hi[Aix(t) + Biu(t) + Di ϕ(t)]

y(t) =
r

∑
i=1

hiCix(t)
(12)

There are many advantages of using fuzzy logic controllers over conventional controllers.
For instance, if the (T–S) fuzzy model is derived using the sector nonlinearity approach [42], it
will provide a way to obtain an exact representation of the full nonlinear model as a weighted
combination of linear submodels, where the nonlinearities of the system are shifted into the
membership functions. Moreover, the advantage of the fuzzy logic controller is its aptitude for
dealing with nonlinearities and uncertainties. Other advantages of the Fuzzy logic controller,
to mention a few, can be illustrated as follows:

• They are cheaper to develop, they cover a wider range of operating conditions, and
they are more readily customizable in natural language terms.

• They are quick to comprehend conceptually, the ideas underlying them are funda-
mental.

• They are flexible, they enable emerging Fuzzy structures to be applied to their features
by applying new information to established rules.

• They are tolerant of incorrect data, complex uncertainty, and unmodeled dynamics.

Because of these advantages, (T–S) fuzzy model structures are an ideal basis for the
design of controllers and observers.

In this paper, we derive an approximated (T–S) fuzzy model Equation (12) by linearizing
the nonlinear model equations around different operating points and using predefined fuzzy
membership functions to combine the linear submodels to an overall nonlinear model.
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For instance, when the rotor is operating around the nominal speed, the aerodynamic
torque might be estimated as

Ta ≈
∂Ta

∂ωr
ωr +

∂Ta

∂β
β +

∂Ta

∂V
V (13)

Considering the following premises variable represented by two rules each:
ωr ∈ [0.1 3] rad/s
β ∈ [0 30] deg
V ∈ [0 30] m/s

(14)

and the state vector x = [θr θg ωr ωg β]T , and the control input vector u = [Tem βd]
T ,

then the dynamic model represented by Equation (6) takes the form of Equation (9). The
matrices Ai, Bi, Di, and Ci in Equation (9) are obtained by local approximation in fuzzy
partition space of the premise variables ωr, β, and V, and is shown below.

Ai =



0 0 1 0 0
0 0 0 1 0

−Kls
Jr

Kls
ng Jr

1
Jr

[
∂Ta
∂ωr
− (Bls + Br)

]
Bls

ng Jr
1
Jr

∂Ta
∂β

Kls
ng Js

− Kls
n2

g Js

Bls
ng Js

− 1
Js

[
Bls
n2

g
+ Bg

]
0

0 0 0 0 − 1
τ



Bi =


0 0
0 0
0 0
− 1

Js
0

0 0 1
τ

 ; Di =


0
0

1
Jr

∂Ta
∂V
0
0

 ; Ci =

[
0 0 1 0 0
0 0 0 0 1

]
; i = 1, 2 . . . 8

2.3. Fuzzy Controller Design

Consider the dynamic system represented by the following fuzzy model.

ΣT−−S :


ẋ(t) =

r

∑
i=1

hi[Aix(t) + Biu(t) + Di ϕ(t)]

y(t) =
r

∑
i=1

hiCix(t)
(15)

Furthermore, in this paper, we assume that the following inequalities can describe the actua-
tors amplitude constraints.

||u||2 ≤ δ (16)

Furthermore, the initial condition is unknown but bounded such that.

||x(0)|| ≤ σ (17)

2.4. Parallel Distributed Compensation Control

Wang et al. [43] introduced the Parallel Distributed Compensation (PDC) witch can be
used to design a fuzzy controller from a given (T–S) fuzzy model. A full state feedback
control law for each model rule is designed from the corresponding rule of the (T–S) fuzzy
model. The control rule is represented as follows:

Control Rule i: IF z1(t) is µi1[z1(t)], . . . , zp(t) is µip[zp(t)], THEN.

ui(t) = −Kix(t) i = 1, 2, . . . , r (18)



Appl. Sci. 2021, 11, 7865 6 of 14

where Ki represents the control feedback gain matrix. The complete control input is formulated
as follows:

u(t) = −
r

∑
i=1

hiKix(t) (19)

Note that the PDC controller described by Equation (19) has a simple form and is easy
to implement.

2.5. Controller Structure

The disturbance rejection can be realized by minimizing the H∞ norm of the system, i.e.,
Minimize: γ
Subject to

sup
||ϕ(t)||2 6=0

||y(t)||2
||ϕ(t)||2

≤ γ (20)

The fuzzy controller design is formulated as an optimization problem using linear ma-
trix inequalities (LMIs). The feedback gains Ki stabilizing the system given by Equation (12),
and satisfying the control input constraint Equation (16), and unknown bounded initial con-
dition Equation (17), and minimize the H∞-norm can be achieved by solving the following
linear matrix inequalities (LMIs). We refer the reader to [44] to see the detailed proof.

Minimize: γ2

Subject to
X ≥ σ2 I (21)[

X MT
i

Mi δ2 I

]
≥ 0 (i = 1, 2, . . . , p) (22)

 M(1, 1) − 1
2 (Di + Dj)

1
2 X(Ci + Cj)

T

− 1
2 (Di + Dj)

T γ2 I 0
1
2 (Ci + Cj)X 0 I

 ≥ 0 (23)

where

M(1, 1) = −1
2
(XAT

i −MjBT
i + AiX− Bi Mj + XAT

j −MT
i BT

j + AjX− Bj Mi)

such that i, j = 1, 2, . . . , r, i ≤ j, and X is a positive definite matrix. If a feasible solution
exists, the feedback gain can be computed as

Ki = MiX−1 (24)

The design process can be summarized as shown in the following Figure 2.

Wind GeneratorPDC

T-S Fuzzy ModelLMI Solver

Model 
Validation

u

iK

𝑢 =  − ℎ𝑖(𝑧)𝐾𝑖𝑥(𝑡)

𝑟

𝑖=1

 

min
𝑆𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜

𝛾      𝑠𝑢𝑝
 𝜑(𝑡) ≠0

 𝑦(𝑡) 

 𝜑(𝑡) 
≤ 𝛾 𝑥  𝑡 =   ℎ𝑖[𝐴𝑖𝑥 𝑡 + 𝐵𝑖𝑢 𝑡 + 𝐷𝑖𝜑 𝑡 ]

𝑟

𝑖=1

 

𝐴𝑖 , 𝐵𝑖 , 𝐷𝑖 , 𝜑(𝑡) 

𝑥 = 𝑓(𝑥, 𝑢) 

Wind Gust 

Figure 2. Flowchart of the design and controller process.
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3. Results
3.1. Fuzzy Model Validation

The performance of the fuzzy controller depends on the accuracy of the fuzzy model
witch in return depends on the number of fuzzy rules used to approximate the nonlinear
dynamic model. On the other hand, many rules will increase the computational cost. Fuzzy
systems modeling has been verified to be universal approximators [45]. Nonetheless, for the
approximation to be accurate, a large number of fuzzy rules is needed, in particular when
the input membership functions are defined on a space with high dimensions. In general,
a large rule number may lead to inefficiency and difficulty in system implementation.
A fuzzy system with many rules may be hard to design and have high computation
complexity, and poor convergency in parameter tuning [46].

A numerical simulation of the nonlinear model represented by Equation (6) was
conducted and compared to validate the (T–S) fuzzy model described by Equation (12)
using a set of 2 rules for each premise variable and a constant control input u = [0 0.1]T

and initial conditions x0 = [0 0 0.8 0.8 0]T . The membership functions of the rules 1, 2
are illustrated in Figure 3 and the physical parameters of the wind turbine are shown in
Table 1.

0 0.5 1 1.5 2 2.5 3

r
  [rad/s]

0

0.5

1

i[
r]

Rule 1 Rule 2

0 5 10 15 20 25 30

 [deg]

0

0.5

1

i[
]

Rule 1 Rule 2

0 5 10 15 20 25 30

V [m/s]

0

0.5

1

i[V
]

Rule 1 Rule 2

Figure 3. Fuzzy membership function.

The results of the simulation of the nonlinear and the fuzzy model shows that with a
set of eight rules, the (T–S) fuzzy model present an adequate approximation, however the
result can be improved further by adding more rules. The plots of the wind speed, blade
pitch, the angular displacement, and the angular velocity of the rotor and the generator are
presented in Figures 4–6.
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Table 1. Parameters of the wind turbine.

Parameters Symbole Values

Rotor radius R 21.65 m
Rotor inertia Jr 34.4 kg·m2

Generator inertia Jg 34.4 kg·m2

Shaft damping coeff Bls 9500 N·m/rad·s−1

Shaft stiffness coeff Kls 2.691×105 N·m/rad·s−1

Rotor friction coeff Br 27.36 N·m/rad·s−1

Generator friction coeff Bg 0.2 N·m/rad·s−1

Gearbox ratio ng 43.165
Air density ρ 1.225 kg/m3

time delay τ 0.1 s
torque coeffs c1 . . . c6 0.5176, 116, 0.4, 5, 21, 0.0068
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Figure 4. Wind speed and blade pitch angle.
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Figure 5. Angular displacement.
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Figure 6. Angular velocity.

3.2. Numerical Results

The efficacy of the fuzzy controller Equation (19) is tested by considering the wind
speed input profile 6 m/s ≤ V ≤ 30 m/s as shown in Figure 7.

0 5 10 15 20 25 30 35 40 45 50

t [s]

6

8

10

12

14

16

18

20

22

W
in

d
 S

p
e

e
d

 [
m

/s
]

Figure 7. Wind Speed.

Note that the dynamic model of the wind turbine does not consider the deflection
of the blades, so in the simulation, we use the static wind speed instead. However, more
accurate scenarios should investigate the use of effective wind speed. The MATLAB toolbox
YALMIP [47] is used to solve the LMIs in Equations (21)–(23). YALMIP is a solver used to
model and solve optimization problems typically occurring in systems and control theory.
It is important to mention that one way to tune the controller is by solving the LMIs in
Equations (21)–(23) using different conditions. For instance, if the maximum actuators
amplitude δ are known, we can modify the condition in Equation (16) accordingly and solve
the LMIs in Equations (21)–(23) to obtain the control law that satisfies the parameters of the
chosen actuator. This flexibility gives the proposed fuzzy controller great advantages over a
traditional controller. Another approach is to obtain a feasible solution using different initial
conditions by modifying the parameter σ in Equation (21).

The results of the simulation are shown in Figures 8–10. It is evident that the proposed
controller is able to stabilize the wind generator subject to extreme and sudden gust wind
reaching 75 km/h.
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Figure 8. Angular displacement.
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Figure 9. Angular velocity.

As it is shown in the Figure 11, by comparing the desired blade pitch βd with the actual
blade pitch β we conclude that the proposed fuzzy controller performance is satisfactory.
Considering for instance the absolute error ∆β = ||βd − β|| = 0.7031◦.

In addition, it is essential to acknowledge that the proposed (T–S) fuzzy controller
has certain advantages over traditional controllers, for instance, the actuator amplitude
saturation, which depends on the value of δ in Equation (16), and the initial condition
described by Equation (17) are solved simultaneously. This advantage allows the design
engineer to choose the best actuator to perform the task appropriately. Finally, the (T–S)
fuzzy controller has a simple form and is easy to implement (see Equation (19)).
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Figure 10. Blade pitch angle, desired blade pitch angle, and electromagnetic torque.

0 5 10 15 20 25 30 35 40 45 50

t [s]

0

5

10

B
la

d
e
 p

it
c
h
 a

n
g
le

 [
d
e
g
]

 Desired Blade Pitch Angle 
d

Actual Blade Pitch Angle 

0 5 10 15 20 25 30 35 40 45 50

t [s]

0

2

4

6

|
d
 -

 
| 
[d

e
g
] Obsolute Error

Figure 11. Absolute error of the desired and actual blade pitch angle.

4. Conclusions and Future Work

This paper applied a (T–S) fuzzy controller with disturbance rejection properties
to a medium-size wind turbine operating in extreme gust wind conditions. The design
procedure of the fuzzy controller is accomplished using the Takagi–Sugeno (T–S) fuzzy
model, and the control law is realized by solving a set of linear matrix inequalities (LMIs).
The controller performs the required task considering the actuators’ amplitude constraints,
and the stability is guaranteed with unknown bounded initial conditions. Numerical
simulations demonstrate the performance of the proposed fuzzy controller.

It is important to mention that this paper does not analyze the effect of wind gusts on the
tower supporting the wind generator, nor the deflection of the blade was taken into account.
The stress and the deflection of the tower and blades should be carefully studied. Thus, a
complete dynamic model involving the dynamic effect of the tower and the deflection of the
blades should be developed. For instance, more accurate scenarios should use the effective
instead of the static wind speed described in [48] by the following equation.

ve = v− (ẏT + ẏB) (25)
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where yT and yB represents the deflection of the tower and the deflection of the blades
respectively. In other words, the static wind speed is corrected by the tower and blade
motion effects. Another avenue to investigate is the description of the generator dynamics
included in the complete wind turbine system model. When advanced control designs have
to be investigated, an explicit generator model might be required. In this situation, a simple
first-order delay model can be sufficient, as described in [48] by the following equation.

Ṫg = − 1
τg

Tg +
1
τg

Tgd (26)

where Tgd represents the desired generator torque and τg the delay time constant.
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