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Abstract: Path planning and collision avoidance during autonomous navigation in unknown environ-
ments is a crucial issue for unmanned surface vehicles (USVs). This paper improves the traditional D*
Lite algorithm and achieves multi-goal path planning and collision avoidance for USVs in unknown
and complex environments. By expanding the adjacent search range and setting a safe distance
for USVs, we solve the issue of limited steering maneuverability in USVs with fewer DOF during
autonomous navigation. We propose an approach to optimize the planned path during navigation
by comparing the estimated distance with the actual distance between the current waypoint and
the goal waypoint. A minimum binary heap is used to optimize the priority queue of the D* Lite
and significantly reduce the path search time. Simulation results show that the improved D * Lite
can significantly reduce the path planning time, optimize the planned path and solve the issue of
limited steering maneuverability in USVs. We apply the algorithm to a real USV for further tests.
Experimental results show that the USV can plan an optimized path while avoiding both static and
dynamic obstacles in complex environments with a safe distance during autonomous navigation.

Keywords: path planning; improved D* Lite; unmanned surface vehicle; safe distance; autonomous
navigation; obstacle avoidance; minimum binary heap

1. Introduction

Due to the gradual deterioration in water quality [1], water quality monitoring is crucial
for the protection of river systems. Unmanned surface vehicles (USVs) are widely used
for water quality monitoring because of their advantages of low cost, high mobility and
suitability for conducting dangerous tasks [2]. Path planning is a critical issue for autonomous
navigation and collision avoidance in USVs. However, compared to other robots, such as
UAVs, and due to the limited steering maneuverability and the fewer degrees of freedom
(DOF) of USVs and the interference caused by wind and water flow, path planning is a more
critical issue for autonomous navigation and collision avoidance in USVs.

Scholars have carried out much research on path planning [3–5]. The graph search
algorithm of Dijkstra [6] is a classic path planning algorithm based on the breadth-first
search strategy. However, the path search efficiency of the Dijkstra algorithm is very low
due to its global path search strategy. The RRT* algorithm based on node sampling has
been used to provide asymptotically optimal, computationally tractable and feasible paths
in continuous radioactive space, and it gives a better navigation path than the Dijkstra
algorithm [7]. However, the convergence rate of RRT* is slow. Hart and Nilsson proposed
the A* algorithm [8]. It uses a heuristic function to estimate the path length from any node
to the goal node. As a result, A* searches less space and is thus more efficient. It has been
widely used in path planning and optimization [9]. However, it has to completely replan
the path when the environment is changed, which makes it very inefficient in dynamic
environments [10].
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In 1994, Anthony Stentz, from the Robotics Institute of Carnegie Mellon University,
proposed a Dynamic A* algorithm (D*) [11,12]. It has high path planning efficiency in
partially known or continuously changing environments [13]. The D* was applied on
the Mars probe launched by the U.S. and achieved huge success [14,15]. In 2004, Sven
Koening introduced an approach involving incremental environmental information and
proposed a Lifelong Planning A* algorithm (LPA*) [16], which significantly improves the
path planning efficiency by reusing information [17]. The LPA* algorithm is efficient for
path planning when it has specific start and goal nodes. However, it has to replan the
whole path from the original start node to the goal node when a new obstacle appears
on the path. To efficiently plan a path in a scenario with a changing start node and a
fixed goal node, Koenig, S et al. developed a D* Lite algorithm based on the LPA* and
D* algorithms [18,19]. It combines heuristic and incremental search and achieves fast path
planning from a dynamic start node to a fixed goal node. D* Lite only takes into account the
path information between the current node and the goal node while replanning. Therefore,
its path planning efficiency is much higher than that of D* and LPA*. Thus, D* Lite is now
widely applied to navigation systems for mobile robots and autonomous vehicles, including
the prototypes of the Opportunity and Spirit Mars probes and the navigation system that
won the Urban Challenge held by the Defence Advanced Research Projects Agency [20].
To further reduce the search space, improve the search efficiency and optimize the path
in dynamic and complex environments, scholars are increasingly attempting to combine
incremental search with sophisticated heuristic search for path planning. For example, in
2005, Dave Ferguson, et al. developed a delayed D* algorithm [21], which can improve
the search efficiency by delaying the update of locally inconsistent nodes. KAl-Mutib et
al. developed a D* Lite-based real-time multi-agent path planning algorithm for dynamic
environments [22]. In 2015, Y. M. Sui, et al. proposed a D* lite label algorithm based on
D* Lite, which can accelerate the path planning by preventing some nodes from being
repeatedly updated. Yu, Jabin et al. improved the heuristic function of D* Lite to reduce
the search area and accelerate the planning speed [23]. Yue, Weiya et al. proposed ID* Lite,
which can increase the speed up to five times for a variety of benchmarks [24]. Yun, Soh
Chin et al. proposed an enhanced D* lite and implemented it on a real-life situation using
Team AmigoBot [25]. Le, An T. et al. identified the wasteful inconsistency-correction effort
of D* Lite and proposed D* Lite with Reset for path planning in complex environments [26].
To find a route by which each vehicle can reach all depots to fulfil the demands of all
the customers with the shortest travel distance, Barma, Partha Sarathi et al. developed
a 2-opt guided discrete antlion optimization algorithm [27]. Comparison with heuristic
approaches such as genetic algorithm and ant colony optimization showed that it has
better performance.

This paper improves the traditional D* Lite algorithm in several ways and applies it to
achieve multi-goal path planning and dynamic obstacle avoidance for USVs in unknown
and complex environments. We expand the search neighbor and divide a sharp turn into
several turning steps to solve the issue of limited steering maneuverability in USVs. To
optimize the planned path, we compare the estimated distance with the straight distance
from the current waypoint to the goal waypoint during autonomous navigation. A mini-
mum binary heap is used to optimize the priority queue of the D* Lite, thereby reducing
the path search time and improving the path search efficiency.

Section 2 introduces the concepts of D* Lite. We improve the D* Lite in Section 3 and
analyse the simulation results in Section 4. In Section 5, we apply the improved D* Lite
to a real USV for further tests. Finally, we conclude and discuss future research issues in
Section 6.

2. D* Lite
2.1. Introduction of D* Lite

D* Lite searches reversely from the goal node to the start node. The key point of
the algorithm is the assumption that all unknown areas are free space. Based on this
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assumption, it can incrementally plan the path. It finds a node from the adjacent nodes that
is closest to the goal node by minimizing the distance (rhs(s)) between the current node
and the goal node. When starting to move according to the path, it sets the current node
as the start node. Thus, the path planning time is continuously reduced while moving
towards the goal node.

We assume that Succ(s) denotes the set of successor nodes of node s, Pred(s) represents
the set of predecessor nodes of node s, c(s, s′) denotes the cost from node s to node s′, sstart
is the start node, and sgoal is the goal node. D* Lite represents the cost from a node to the
goal node sgoal with two estimated values, g(s) and rhs(s). The g(s) denotes the estimated
minimum cost from the goal node to the current node s. When expanding to the adjacent
nodes of the current node s, the rhs(s) of each adjacent node is recalculated to ensure that
it is always the minimal estimated value. When rhs(s) is calculated, it will be assigned to
g(s), as shown in Equation (1).

g(s) = rhs(s) (1)

rhs(s) is calculated by its successor’s estimated minimum cost of g(s′) and the cost of
c(s, s′) between node s and s′, which is shown in the following equation:

rhs(s) =

{
0 s = sgoal

mins’⊆Pred(s)(g(s′) + c(s, s′)) otherwise
(2)

where g(s′) is the minimal cost from the successor node s′ to the goal node sgoal , and c(s, s′)
is the edge cost from node s to node s′.

D* Lite stores searched nodes in a priority queue U and ranks these nodes according
to their key(s) value. The key(s) contains two values of k1(s) and k2(s). The node with the
smallest key value will be selected as the next node to be searched. The definitions of k1(s)
and k2(s) are as follows:

k1(s) = min(g(s), rhs(s)) + h(sstart, s) + km (3)

k2(s) = min(g(s), rhs(s)) (4)

where km denotes the distance that the robot (USV in this paper) has moved. We use km to
avoid recalculating the priority queue when replanning the path, which can improve the
computing efficiency.

We let h(sstart, s) be the estimated value from the current node s to the start node sstart,
and we obtain the equation as follows:

h(sstart, s) =

{
0 s = sstart

c(s, s′) + h(s′, sstart) otherwise
(5)

During the process of path planning, D* Lite chooses an adjacent node of the current
node s as the next node to expand, which has the smallest key(s′) value within all the
adjacent nodes. The following equation shows the comparison of key values:

key(s) ≤ key(s′)⇒
{

k1(s) < k1(s′)
k1(s) = k1(s′) and k2(s) ≤ k2(s′)

(6)

2.2. Disadvantages of D* Lite

As we know, D* Lite plans a path faster than other path planning algorithms such as
A*, LPA* and D* in dynamic environments. However, there are some disadvantages that
limit its application to USVs.

• The path planned by D* Lite is close to obstacles, which is unrealistic and risky
for USVs.
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• D* Lite usually searches eight adjacent nodes for expansion. This means that the
steering angle of USVs should be integral multiples of 45 degrees, which may be too
much for a real USV to turn each time due to its limited steering maneuverability. We
can increase the number of adjacent nodes to decrease the steering angle. However,
this will significantly increase the search time for path planning. Thus, we should
comprehensively consider the balance between the steering maneuverability of USVs
and the path planning efficiency.

• D* Lite searches reversely from the goal node to the start node for path planning.
This strategy is beneficial for replanning in dynamic environments. However, the
planned path may have sharp turns [28], which increases the path length and results
in a suboptimal path.

• D* Lite plans path between two nodes (the start and goal nodes). USVs may need to
reach several specific positions during autonomous navigation. This means that it is
necessary to achieve multi-goal path planning for USVs.

• D* Lite spends much computing time on the comparison of the key values of nodes
in the priority queue U as well as push in and out operations on the priority queue.
Each time, when we select a node from the priority queue U to expand, the key
values of all nodes in the priority queue should be traversed and sorted, which is a
time-consuming operation, and its time complexity is O(n). When we plan a path
within a large environment map with thousands of grids, the number of nodes in the
priority queue for expanding is also increased, which can significantly decrease the
search efficiency.

3. Improved D* Lite

To solve the disadvantages of D* Lite for USVs, we propose several approaches to
improve the D* Lite. First, we set a safe distance between the path and obstacles to avoid
collisions when a USV autonomously navigates along with the planned path. Second, we
increase the number of adjacent nodes and add turning constraints to reduce the turning
angle of the planned path. Third, we use a minimum binary heap to optimize the priority
queue U to accelerate the planning process and improve the planning efficiency. Finally,
we expand the D* Lite to be a multi-goal path planning algorithm.

3.1. Setting Safe Distance

As we know, the path planned by D* Lite is very close to obstacles, which increases the
collision risk when a USV sails through these obstacles. To avoid obstacles, multi-criteria
decision making (MCDM) can be used to identify risky areas around obstacles before
path planning [29]. Another simple and widely used approach is to expand the size of
obstacles to maintain a certain distance between the path and obstacles. Here, we also
use an expansion approach to enlarge the boundary of obstacles in order to keep a safe
distance between the USV and obstacles. The pseudocode in Algorithm 1 shows the main
expansion procedure.

We let map be the environmental map in Algorithm 1; rows and cols are the width and
height of the map, and distance represents a safe distance between the USV and obstacles.
If node map[i][j] is an obstacle (map[i][j] = 0), all its surrounding nodes within the distance
will be set as “virtual” obstacles (new_map[x][y] = 0). By this approach, we can expand
the area of obstacles and set a safe distance between the planned path and obstacles.
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Algorithm 1 Set safe distance.

Input: map, rows, cols, distance
Output: new_map

1: function SETSAFEDIS(map, rows, cols, distance)
2: set new_map = map;
3: for i = 0; i < rows; i ++ do
4: for j = 0; j < rows; j ++ do
5: if map[i][j] = 0 then /* node map[i][j] is an obstacle */
6: for x = i− distance; x < i + distance; x ++ do
7: for y = j− distance; y < j + distance; y ++ do
8: if 0 ≤ x < rows and 0 ≤ y < cols then /* node x, y is in the map boundary */
9: set new_map[x][y] = 0; /* set node new_map[x][y] as an obstacle */

10: else /* out of the boundary */
11: continue;
12: end if
13: end for
14: end for
15: end if
16: end for
17: end for
18: return (new_map);
19: end function

3.2. Adjacent Node Expansion and Steering Angle Limitation

In practical applications, obstacle detecting sensors (e.g., Lidar, ultrasonic and stereo
camera) can obtain detailed environmental information around the USV, which is much
more substantial than the information on the eight adjacent nodes required by D* Lite. In
addition, affected by limited steering maneuverability and inertia, USVs can only turn a
limited angle each time. It is difficult to allow a USV to accurately turn an integral multiple
of 45 degrees each time, which the original D* Lite constrains. To increase the flexibility
of steering angles, we first expand the number of adjacent nodes from 8 to 24 and 48,
respectively. Second, we add a restriction for the steering angle each time to simulate a
more realistic scenario for USVs.

3.2.1. Adjacent Node Expansion

From Figure 1, we find that there are eight directions for the search if we plan a path
based on eight adjacent nodes. When the number of adjacent nodes is expanded to 24
and 48, respectively, the search directions are also increased. This means that USVs may
have more steering choices when planning a path. The relationship between the number of
adjacent nodes, minimum steering angle and search directions is shown in Table 1.

(a) 8 adjacent nodes (b) 24 adjacent nodes (c) 48 adjacent nodes

Figure 1. Adjacent nodes for search.
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Table 1. Relationship between number of adjacent nodes, number of search directions and minimum
steering angle.

Number of Adjacent Nodes Number of Search Directions Minimum Steering Angle

8 8 45◦

24 16 22.5◦

48 32 11.25◦

We find from Table 1 that when we increase the number of adjacent nodes from 8 to
24, the search directions are increased from 8 to 16, and the minimum steering angle is
significantly decreased from 45◦ to 22.5◦. This means that the search time is doubled while
the minimum steering angle is reduced by two times. When the number of adjacent nodes
is increased from 24 to 48, the minimum steering angle is decreased from 22.5 degrees to
11.25 degrees.

3.2.2. Steering Angle Limitation

Constrained by the steering maneuverability and the fewer DOF of USVs, the steering
angle of USVs is limited. There may be still some sharp turns on the planned path even if
we expand to 48 adjacent nodes for path planning. To plan a more realistic path for USVs,
the algorithm should consider the steering angle limitation between two adjacent nodes
along its path. When a turning angle is larger than the steering angle limitation that the
USV can steer each time, we should divide it into several turning operations. Therefore,
the steering angle can be constrained within the steering angle limitation. The definitions
of USV heading and steering angle are as follows:

(1) USV heading: the vector from the previous position to the current position of the USV.
Initially, the USV heading is towards the goal position.

(2) Steering angle: assume that the vector from the previous position to the current
position is ~A, and the vector from the current position to the next position is ~B. We
define the steering angle as the angle between ~A and ~B, which is shown in Figure 2.

Figure 2. USV heading and steering angle.

When the steering angle (α) is larger than the steering angle limitation of the USV
(β), we should divide the turning operation into several steps, and we only turn an angle
no more than the steering angle limitation in each step. We let the distance between the
current position and the next position be the radius R. Because α > β, we turn the USV to
the next position with a limited steering angle β. Thus, we can obtain a new position as the
next position for path planning. Figure 3 demonstrates the turning procedure between two
original positions and the calculation for the new next position.

Assume that the coordinate of the current position is (x1, y1). The USV firstly calculates
the current heading according to the previous and current positions. Afterwards, the
original next position (x2, y2) and original steering angle α are calculated. If the original
steering angle is larger than the USV’s maximum steering angle (α > β), then we calculate
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the actual next position (x, y) according to Equation (7). The process is repeated until the
USV’s heading is turned towards the original next position.{

x = (x1 − x2)× cos(α− β)− (y1 − y2)× sin(α− β) + x2

y = (y1 − y2)× sin(α− β) + (x1 − x2)× cos(α− β) + y2
(7)

Figure 3. Next position calculation with steering angle limitation.

3.3. Path Optimization

The reversed path planning in D* Lite is beneficial to replanning when there are
dynamic obstacles. However, there may also be some redundant turns in the path, which
increases the path length. Figure 4 shows a simple path planned by the D* Lite. We find
that when D* Lite starts to plan a path from the goal node to the start node, it detects
an obstacle at position b and makes a left turn towards position a to avoid the obstacle.
Finally, it finds a path from the goal node to the start node. However, we find that the
path between position a and the goal node is not optimal. It contains an unnecessary turn
towards position b. We can reduce the path if we can let the USV drive straight from
position a to the goal node.

Figure 4. Path planned by D* Lite.

To optimize the path, we set the line from the current node s to the goal node as l. We
compare the rhs(s) value with the length of l. If there is no obstacle along the line l and the
rhs(s) value is smaller than the length of l, then we replace the original path segment with
the straight line. Figure 5 shows the main procedure of path planning and optimization.

The main steps of the planning and optimization precedure are as follows:

1. Plan the path using D* Lite.
2. Start to move from the start node Sstart to the goal node Sgoal .
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3. Set the current node as s and calculate the rhs value of its all the successor nodes. Let
node s′ represent the node with the smallest rhs value of the successor nodes.

4. Set a line L from node s to the goal node Sgoal .
5. If there is no obstacle along line L,

(a) Let D be the length of L.
(b) If D ≥ rhs(s′) + c(s, s′), move to node s′; go to step (3).
(c) Otherwise, if α > maxTurn, move to node s′; go to step (3). Otherwise, move

from node s to the goal node Sgoal directly.

6. Otherwise, if there is an obstacle along line L,

(a) Move to node s′.
(b) Go to step (3).

Figure 5. Procedure of path planning and optimization.

3.4. Optimization of Priority Queue

The original D* Lite does not rank nodes in the priority queue U. Thus, it has a
time complexity of O(1) when it pushes a new node into the queue for further expansion.
However, the time complexity is significantly increased to O(n) when it pops up a node
with the smallest key from the priority queue to expand each time, which is a time-
consuming operation for path planning. Therefore, the time complexity for path expansion
is O(n2) if there are n nodes in the priority queue, which is a relatively low efficiency for a
complex environment with thousands of nodes.

To improve the path search efficiency and decrease the search time, we use the minimum
binary heap [30,31] to optimize the priority queue. Figure 6 shows an example of using the
minimum binary heap to store data. The node with the smallest key value is on the top of
the heap and is stored on the first position of the linear array. All its predecessor nodes have
larger key values and are stored on the second and third positions of the array, respectively.

D* Lite has three types of operations on the priority queue: (1) pop up the node with
the smallest key value; (2) search a specific node in the priority queue; (3) push a node into
the priority queue. The characteristics of binary heap guarantee the stability of nodes in the
priority. Table 2 is a comparison of the time complexity of the conventional priority queue
and the minimum binary heap. We find that the time complexity of the pop up operation
on the conventional priority queue is O(n). When we replace the conventional priority
queue with the minimum binary heap, the time complexity of the pop up operation is
sharply decreased to O(1). We find a similar result on the search operation. However, the
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time complexity for the push operation of the minimum binary heap is larger than that of
the conventional queue. On the whole, the time complexity of the minimum binary heap is
much lower than that of the conventional priority queue.

Figure 6. Data storage of binary heap.

Table 2. Time complexity for conventional priority queue and minimum binary heap.

Operation
Time Complexity

Conventional Queue Minimum Binary Heap

Pop up O(n) O(1)
Push in O(1) O(logn)
Search O(n) O(logn)

3.5. Multi-Goal Path Planning in Unknown Environment

In practical applications, sensors on the USV can continuously sense the local sur-
rounding environment during autonomous navigation. Thus, it can only plan a local path
based on the local environment information obtained by sensors each time. Furthermore,
USVs may need to arrive at several special positions for water quality monitoring or water
sampling. Therefore, there are several goal nodes along the planned path. Thus, the D*
Lite must be expanded to support multi-goal path planning. Figure 7 shows the main
procedure of multi-goal path planning in unknown environments.

The main steps of multi-goal path planning in unknown environments are as follows:

1. Initialize the start and goal nodes. Assume that the whole region from the start node
to the goal node is a free space (i.e., no obstacles). Then, plan a path from the goal
node to the start node with D* Lite.

2. The USV detects environmental information with its sensors, starting from the current
node, and verifies whether the goal node is within the detected area. If so, the USV
proceeds to the goal node according to the path planned with D* Lite and the path
planning procedure is finished. Otherwise, go to step (3).

3. Use D* Lite to plan routes within the detected area. When changes to the environmen-
tal information within the detection range are detected, start dynamic route planning
until travelling to the boundary of the detected area. Then, the local path planned
within the detected area is finished. Set the current node as the start node and plan a
new local path within the detected area, and go to step (2).
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Figure 7. Procedure of multi-goal path planning in unknown environments.

4. Simulation Results and Analysis
4.1. Path Planning with Safe Distance

We define an experimental environment on a map with 400 × 400 pixels. The black
shapes are obstacles, and the white regions are free space. We set the start node at the
upper left of the map and the goal node at the lower right of the map. In addition, we set
the safe distance as 10 pixels. We assume that the USV only moves one pixel each time.
Figure 8a shows the path planned by the original D* Lite. We find that the planned path is
very close to the obstacles. Figure 8b shows a path planned with a safe distance based on
Algorithm 1. It shows that there is at least a 10-pixel distance between obstacles and the
path. Thus, we improve the safety for the USV to sail through obstacles.

(a) Planned path with no safe
distance

(b) Planned path with safe
distance

Figure 8. Path planned on 400 × 400 map.
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4.2. Path Planning with Constrained Steering Angle

In practice, USVs can only turn a limited angle each time. We assume that a USV’s
maximum steering angle each time is 30 degrees, and the safe distance is 10 pixels. We de-
fine two experimental maps with a size of 200 × 200 and 400 × 400 pixels, respectively. We
perform the simulations with 8 neighbor nodes, 48 neighbor nodes and 48 neighbor nodes
with a constrained steering angle, respectively. Figures 9 and 10 show the experimental
results on the two maps, respectively.

(a) 8 neighbor nodes (b) 48 neighbor nodes (c) 48 neighbor nodes
with constrained steering
angle

Figure 9. Path planning on 200 × 200 map.

(a) 8 neighbor nodes (b) 48 neighbor nodes (c) 48 neighbor nodes
with constrained steering
angle

Figure 10. Path planning on 400 × 400 map.

From Figures 9a and 10a, we find that because the steering angle of eight-neighbor
search is always an integral multiple of 45 degrees, many turns (marked with red circle)
have a steering angle larger than the maximum steering angle of the USV. Therefore, we
argue that the search approach with eight neighbor nodes is unsuitable for a real USV.

We increase the number of neighbor nodes to 48 and obtain the planned path shown
in Figures 9b and 10b. We find that the number of turns exceeding the maximum steering
angle is reduced. This is because the steering angle of the 48-neighbor search is always an
integral multiple of 11.25 degrees. In most cases, the turning degree of the planned path is
no more than 30 degrees. However, the planned path still has three turns exceeding the
maximum steering angle near obstacles.

We add a constrained steering angle to the algorithm with 48-neighbor search and
obtain new paths, as shown in Figures 9c and 10c. Compared to the planned paths without
the constrained steering angle, the new paths are much smoother, and all the steering angles
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are smaller than the maximum steering angle of the USV. Table 3 shows the experimental
results of the number of searched nodes, path planning time and the number of sharp turns
exceeding the maximum steering angle based on different neighbor search approaches and
the constrained steering angle.

Table 3. Number of exceeding steering angles.

Map Size 200 × 200 400 × 400

Search approach 8-neighbor 48-neighbor
48-neighbor with

constrained
steering angle

8-neighbor 48-neighbor
48-neighbor with

constrained
steering angle

Number of
searched nodes 745 1813 1869 896 2516 2521

Planning time (s) 1.16 4.07 4.14 2.07 5.47 5.63
Number of
sharp turns 25 5 0 29 7 0

We find that when the number of neighbor nodes is increased from 8 to 48 on the
200 × 200 map, the number of searched nodes is also increased from 745 to 1813. This
is because when we increase the number of neighbor nodes, there are more nodes to be
expanded during the path planning process. Thus, the planning time is also increased from
1.16 s to 4.07 s. However, the number of sharp turns exceeding the maximum steering angle
is significantly decreased from 25 to 5 when the number of neighbor nodes is increased
from 8 to 48. When we add the constrained steering angle, the number of searched nodes
and the planning time are slightly increased, but the number of sharp turns is significantly
decreased to 0. We find similar results on the 400 × 400 map. Thus, we can conclude that
the constrained steering angle can ensure that the planned path is more realistic and can be
applied to USVs in practice.

4.3. Path Optimization

We apply the path optimization approach proposed in Section 3.3 on the 200 × 200
and 400 × 400 maps, respectively. Figures 11 and 12 show the planned paths.

(a) Before optimization (b) After optimization

Figure 11. Path optimization on 200 × 200 map.

Figure 11a shows that there are several turns on the planned path between position
a and the goal node. However, optimized by the algorithm, the path between position a
and the goal node is a straight line in Figure 11b. This is because when the USV arrives at
position a, it finds that there is no obstacles on the straight line between position a and the
goal node, and the distance of the straight line is shorter than the planned path. Therefore,
the USV will move directly along the straight line to the goal node. We obtain a similar
result on the 400 × 400 map (Figure12). Figure 13 shows that the length of the optimized
path on the 200 × 200 map is decreased from 224.6 to 212.5 (5.4% reduction). The path
length is also decreased from 488.5 to 475.7 (2.6% reduction) on the 400 × 400 map.
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(a) Before optimization (b) After optimization

Figure 12. Path optimization on 400 × 400 map.

Figure 13. Comparison of path length.

Based on the observation above, we conclude that the path optimization algorithm
can further optimize the path with a shorter length while almost not deteriorating the
planning time.

4.4. Optimization of Priority Queue

In this section, we use the minimum binary heap to improve the priority queue of
D* Lite. To evaluate the efficiency of the minimum binary heap, we simulate D* Lite
with 8-neighbor node search, 8-neighbor node search with the minimum binary heap,
48-neighbor node search and 48-neighbor node search with the minimum binary heap.
We compare their path length, the number of searched nodes and path planning time on
three maps of 500 × 500, 800 × 800 and 1000 × 1000, respectively. Experimental results are
shown in Figure 14

From Figure 14a, we find that when we apply the minimum binary heap to the 8-
neighbor and 48-neighbor searches, respectively, on the three maps, their path lengths
are the same as in the original neighbor search approaches separately. This is because the
minimum binary heap only improves the storage structure of the priority queue, but the
search strategy is the same, resulting in the same path length and number of searched
nodes. We also find that the path length of 48-neighbor node search is much smaller than
that of the eight-neighbor node search. We believe that this is because that the 48-neighbor
node search has more choices to select a steering angle for turning, which can lead to a
shorter planned path. We also find that when we increase the map size from 500 × 500 to
800 × 800 and 1000 × 1000, respectively, the path length is also increased.

Figure 14b shows that the number of searched nodes is also not changed when we
use the minimum binary heap or not in D* Lite. However, when we increase the number
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of neighbor nodes for the search, more neighbor nodes will be expanded, resulting in
an increase in the number of searched nodes. Similar to the path length, the number of
searched nodes is also increased accordingly when the map size is increased.

(a) Path length (b) Number of searched nodes (c) Path planning time (s)

Figure 14. Efficiency evaluation of minimum binary heap.

Figure 14c shows that on the same map, the path planning time of the 48-neighbor
node search is a little bit longer than that of the eight-neighbor node search. The path
planning time is increased from 8.91 s to 15.2 s, from 22.1 s to 37.2 s and from 120.1 s to
218.3 s, respectively, on the three maps with different map sizes. We believe that this is
because the 48-neighbor node search needs to search more neighbor nodes, which increases
the path planning time. When we apply the minimum binary heap to the eight-neighbor
node search on the 500 × 500 map, the path planning time is decreased from 8.91 s to 6.26 s
(29.7% reduction). We find similar results on the 800 × 800 and the 1000 × 1000 maps.

Based on the analysis above, we conclude that the minimum binary heap can significantly
decrease the path planning time for D* Lite while still obtaining the same optimized path.

4.5. Simulation of Multi-Goal Path Planning
4.5.1. Multi-Goal Path Planning in Static Environment

In this section, we improve the D* Lite to support multi-goal path planning and
apply it to a static environment. We set one start node and three goal nodes in the static
environment. Figure 15 shows the static environment and the planned path.

Figure 15. Multi-goal path planning in a static environment.

First, the improved D* Lite plans a path from the goal node (Goal_1) to the start node.
Affected by the obstacles and safe distance, the algorithm plans a straight line between
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Goal_1 and position c, and then turns left to position b. Influenced by the two obstacles
above, there is a curve between positions b and c. Constrained by the maximum steering
angle, the path slightly turns left and moves towards the start node. After planning, the
USV starts to move from the start node to node Goal_1 along the planned path. When
the USV reaches Goal_1, the algorithm starts to plan a new path from Goal_2 to Goal_1.
Finally, the USV reaches the destination of Goal_3 according to the planned path.

4.5.2. Multi-Goal Path Planning in Dynamic Environment

To simulate the path planning in a dynamic environment, we set four random dynamic
obstacles (red ellipses) based on the same environment in Figure 15. The simulation result
is shown in Figure 16.

Figure 16. Multi-goal path planning in a dynamic environment.

First, the improved D* Lite plans the same path shown in Figure 15, and the USV starts
to move from the start node to Goal_1. When it reaches position a, a dynamic obstacle
emerges, and the algorithm replans a new path from Goal_1 to position a to avoid the
obstacle and keep a safe distance between the USV and the obstacle. When the USV arrives
at position b, another obstacle emerges and the algorithm has to replan a new path from
Goal_1 to position b. When the USV reaches Goal_1, the algorithm starts to plan a path
from Goal_2 and Goal_1. A third obstacle emerges when the USV arrives at position c. The
algorithm replans a new path between goal node Goal_2 and position c. Finally, the USV
reaches Goal_2 and stops at the destination of Goal_3.

4.6. Path Planning in Unknown Environments

Nowadays, Lidar, ultrasonic and stereo cameras are widely used on USVs to sense
the surrounding environment and obstacles during autonomous navigation. However, the
detection range of sensors is limited from several meters to hundreds of meters. Therefore,
it is difficult to obtain the full environmental information in advance to plan a global path
for USVs before autonomous navigation. This means that, each time, the USV can only
plan a local path based on the surrounding environment information sensed by the USV.

Here, we assume that the sensor’s detection radius is 100 pixels, and the detection
angle is 360 degrees. Path planning is performed from a start node to a goal node in an un-
known environment. The detection range and local path planning are shown in Figure 17.
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Figure 17. Detection range in unknown environments.

The straight blue line in Figure 17 is the initialized path assuming that the entire
unknown environment is a free space. The purple circles are the detection range for each
time when the USV moves to the next sub-goal node in an unknown environment. Starting
from the start node, the USV acquires obstacle information from the sensors within the first
detection range (prob_1). Because the USV does not detect obstacles until it reaches position
b, the USV follows the initial planned path and moves to position b. Due to obstacles, the
USV slightly turns to the right and moves to the boundary of the first detection range,
which is also the center of the second detection range (position c in Figure 18a,b). The
USV detects surrounding information within the second detection range (prob_2), and
moves from position c to position c, which is at the boundary of the second detection range
and close the obstacle (Figure 18b). Then, the USV continues to move from position d to
position e along with the obstacle. The USV continues to collect obstacle information within
the fourth detection range (prob_4) and plans a local path from position e to g (Figure 18d).
In this way, the USV can finally reach the destination goal node. Figure 19 shows the full
path planned with the improved D* Lite for the USV in the unknown environment.

(a) Detection range 1 (b) Detection range 2 (c) Detection range 3

Figure 18. Cont.
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(d) Detection range 4 (e) Detection range 5 (f) Detection range 6

(g) Detection range 7 (h) Detection range 8 (i) Detection range 9

Figure 18. Local path planned in local environment.

Figure 19. Full path planed in unknown environment.

5. Practical Test on USV
5.1. USV and Components

We apply the improved D* Lite to a real USV to verify the correctness and efficiency
of the algorithm. The USV is a triple-hulled vessel with a size of 160 cm × 85 cm × 45 cm,
which has been developed for water quality monitoring. It is powered by two propellers
installed at the end of two floating vessels. During the navigation, the USV can obtain
accurate GPS positions by the Real-Time Kinematic (RTK) GPS receiver. An electronic
compass can detect the heading of the USV. A Lidar is deployed in the front of the USV,
which can detect obstacles around the USV in real time within 20 m and return cloud points
to identify the distance and the angle between the Lidar and the obstacles. An EXO sensor
is installed at the end of the middle vessel to collect water quality parameters during the
navigation. A camera on the top of the USV can transfer living video to users through 4G
networks. There are two 12 V batteries in the floating vessels to provide power for the
two propellers and all the electronic devices in the USV. We deploy the improved D* Lite
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algorithm in a Raspberry PI to control the autonomous navigation of the USV. The USV
can also be remotely controlled by an Android-based app, which can be operated by the
users. Figure 20 shows the USV and its components.

Figure 20. USV and components.

5.2. USV Communication Architecture

The communication architecture of the USV is shown in Figure 21. To create real-time
communication connection between the USV and the remote-controlled app, a communi-
cation application is developed and deployed on an app server within a data center. All
control commands can be transferred from the Android app to the USV in real time via
the 4G/5G network and the communication application. All water quality and USV status
data, such as GPS position, velocity and heading, are also transferred from the USV to the
data center and the remote app via the communication application. In addition, users also
can access the water quality data through a web platform deployed in the data center.

Figure 21. Communication architecture of USV.

5.3. Safe Distance Test

The USV is tested in a small lake of approximately 104 ×140 square meters. We
manually plan a path with four special goals for the USV on the Google Earth shown in
Figure 22. The safe distance constant is set to 2 m, which means that the USV should keep
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at least 2 m away from obstacles during the autonomous navigation. In addition, we adjust
the output power of the two propellers and set the USV’s velocity to 1 m/s.

Figure 22. Planned and actual path.

We set the start waypoint at the north riverbank of the lake. There are steps down the
north riverbank that allow us to launch the USV. We set the second waypoint (Goal1) in
the middle of the lake and the third waypoint (Goal2) at the side of the west riverbank.
From Figure 22, we find that there are no obstacles along the straight lines between the first
three waypoints. Finally, we set the final waypoint at the northwest of the lake, resulting
in a 220.52 m navigation path. There is a long riverbank composed of stones between the
third waypoint (Goal2) and the final waypoint. The USV must avoid this huge obstacle
(riverbank) and keep a safe distance to the riverbank during the navigation. In addition,
there is a bridge across the river. The USV must pass through the bridge before it can reach
the final waypoint. The purple dots in Figure 22 represent the actual path that the USV
sails. We find that the USV moves along the riverbank with a safe distance. During the
navigation, the live video is transferred from the camera on the USV to the app. Figure 23a
shows a picture on the app that illustrates that the USV is moving along the west riverbank
of the lake. Figure 23b shows that the USV is passing through the bridge to reach the final
waypoint of the planned path. The USV’s GPS positions, speed and heading are all shown
on the app. Users can also adjust the velocity by moving the slider on the bottom left of the
screen. Furthermore, users can manually control the heading of the USV by changing the
direction of the red arrow in the white circle. The Supplementary Videos (Video S2) show
the entire procedure.

(a) Autonomous navigation along the riverbank (b) Sailing through the bridge

Figure 23. Live video from the USV.

5.4. Dynamic Obstacle Avoidance

In this experiment, we bind a red balloon on a remote-controlled (RC) boat to sim-
ulate a dynamic obstacle. We plan a simple path with a straight line. When the USV
is autonomously navigating according to the planned path, we remotely control the RC
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boat to move ahead to the USV (Figure 24a). The Lidar in the front of the USV detects
the moving RC boat and a new path is planned immediately between its current position
and the goal position. The USV turns the left according to the new path to avoid the RC
boat (Figure 24b). Affected by the safe distance, the USV passes through the RC boat with
a safe distance (Figure 24c). Finally, the USV turns right, returning to its original path
(Figure 24d), and continues its autonomous navigation. The Supplementary Videos (Video
S1) show the entire procedure.

(a) Move the RC boat ahead of the USV (b) Turn left to avoid the obstacle

(c) Pass through the obstacle with a safe
distance

(d) Turn right back to the original path

Figure 24. Procedure of dynamic obstacle avoidance.

6. Conclusions

We have improved the traditional D* Lite algorithm and realized multi-goal path
planning and obstacle avoidance for USVs in unknown, dynamic and complex environ-
ments. By expanding the algorithm to search more neighbor nodes and increasing the safe
distance, we have solved the issue of the limited steering maneuverability of USVs during
autonomous navigation. A path optimization algorithm has been proposed to eliminate
sharp turns and reduce the path length. The minimum binary heap has been used to
optimize the priority queue of the D* Lite to reduce the path planning time and improve
the search efficiency. Experimental results show that the improved D* Lite has much better
path planning performance and is more realistic in practice.

In the future, we will further test and improve the stability and efficiency of the
improved D* Lite with other obstacle detection sensors such as a stereo camera and
millimeter-wave radar to further enhance the USV.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/app11177863/s1, Videos S1: Path planning and dynamic collision avoidance. Videos S2:
Keeping a safe distance from riverbank during autonomous navigation.
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