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Abstract: This research acquired data from the Central Weather Bureau Observation Data Inquiry
System (CODIS) for historical weather information, such as observation time, temperature, humidity,
wind speed, global radiation, etc., and constructed a historical weather database by using Excel
software. Least square support vector machine (LSSVM) was used to forecast wind speed and solar
radiation; then, the power output of wind and solar was derived. Considering factors of the demand
response and the load and electricity pricing, a maximized risk income model of the virtual power
plant (VPP) is established based on conditional value-at-risk (CVAR). An enhanced bacterial foraging
algorithm (EBFA) was proposed to solve the risk dispatch problem of a VPP in this paper. In an
EBFA, the stochastic weight trade-off is embedded to improve the behavior pattern of individual
bacteria to enhance their sorting efficiency and accuracy in a high-dimension solution space. Various
moving patterns of EBFA were considered for improvement, which were demonstrated by using a
VPP system on Penghu island, Taiwan. Many scenarios were created, including various seasons,
power rebate pricings, and confidence levels, so the maximal risk and return of VPP could be
simulated and analyzed. Simulation and tests show a positive result for a VPP to perform the power
dispatch by maximizing risk income. This paper also provides a guideline for the VPP to handle the
risk management.

Keywords: virtual power plant; demand response; conditional value-at-risk; bacterial
foraging optimization

1. Introduction

Climate change due to the greenhouse effect is a major topic in studying the increas-
ingly serious problem of global warming. Controlling greenhouse gases is an important
gateway for international organizations to perform environmental protection. The use
of distributed energy resources (DERs) is a popular trend for friendly energy dispatch
in reducing greenhouse gases. They are generally close to the load and can improve
power quality and reliability [1]. DERs refer to distributed generations (DGs), including
renewable energy and energy storage systems (ESS), which require a dispatch strategy to
coordinate DERs for reliable operations. However, it is difficult to manage and control a
large number of small-scale DERs in a conventional power system. To integrate and control
scattered DERs, the concept of a virtual power plant (VPP) is proposed in [2]. A VPP can
aggregate capacities of many DERs and create a single operating profile to participate in
electricity markets and provide system support. Furthermore, VPP can utilize flexible
loads to perform demand management (DM); it is also attractive to power utilities in
electricity markets.

When selecting DERs for the aggregation of VPPs, it is necessary to understand the
characteristics and correlations of various DERs. A VPP is not only a power provider, but
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it is also a customer who can sell or buy power from the market. It can perform a demand
response to shift a demand profile and reduce peaks. However, VPP operations also inherit
uncertain factors from DERs in the scheduling process [3]. Optimized operation of a VPP
is needed to maximize the profits of DERs and customers [4]. Challenges come from the
intermittent nature of renewables, which are not predictable and are dependent on weather
and other climate factors. By a proper daily dispatch in minimizing the risks of the grid,
a VPP can maximize its profit to ensure higher levels of energy security and reliability.
Profit may be at risk due to uncertainties. While risk is expected in the formation and
operation of VPPs, addressing uncertainties in VPP operations is a key issue when studying
this topic.

Previous studies were conducted to solve the VPP operation problem in relation
to electricity markets. M. Shafiekhani et al. [5] and E.G. Kardakos et al. [6] proposed a
bidding strategy for VPPs in the power market, where a bi-level program with equilibrium
constraints was presented for modeling the behavior of each producer. Based on the
concept of aggregators, a bidding strategy for the dispatch of a VPP was proposed to obtain
maximal profit [7]. VPP architecture was proposed in [8,9] based on a smart producer to
establish an energy management platform by integrating distributed power and energy
storage with demand response. By considering the optimal sizing of DGs, and the price
of electricity, energy management of VPPs was proposed in order to achieve security
issues and technical constraints [10]. Duan et al. [11] established a multi-objective VPP
construction model based on decision area division, and an improved bat algorithm was
used to solve this model. Based on the demand response strategy, the demand bidding
mechanism of the VPP was used in the electricity market [12–14] to help participants obtain
profit. Some approaches, such as the binding scenario identification approach [15], mixed
integer quadratic programming [16], deep learning-based prediction and particle swarm
optimization [17], etc., were used to solve the operation and dispatch problem of VPPs.
In the above studies, VPP problems were addressed by considering the risks without the
related uncertainties, i.e., with the concept of a “deterministic” risk, regardless of the fact
that uncertainties are inherent in risk. Combining the conditional value-at-risk (CVAR)
method and robust stochastic optimization theory, a revenue–risk equilibrium model was
constructed taking into account uncertainties [18]. Risk assessments of VPPs are considered
in energy and reserve markets [19], providing valuable information to decision makers.
Decision makers require comprehensive risk assessments, providing a full distribution
of profitability outcomes before making a decision [20]. By using two risk formulas, the
rolling horizon control was used to explore the risk aversion of VPPs, which can efficiently
solve the risk problem of VPPs [21].

In studies [22,23], the operating cost was minimized while maintaining the power
equality of the system in question. X. Kong et al. [24] used the robust stochastic method to
analyze uncertain factors and solve the optimal scheduling of multi-energy VPPs. For the
uncertainty of electricity pricing, a risk-averse stochastic stage [25,26] was introduced by
using CVAR. R. Lima et al. [27] considered both risk-neutral and risk-averse formulations
that depend on CVAR to solve the optimal operation of a VPP. Value-at-risk (VAR) is
a viable measure for the risk analysis and is generally used by financial institutions to
measure the minimum loss expected in a given portfolio within an assigned period [28,29].
Conditional value-at-risk is the extended risk measure of VAR that quantifies the average
loss over a specified time period of unlikely scenarios beyond the confidence level. It works
similarly to a market risk measure for capital calculation.

This paper used CVAR to model the risk associated with uncertainties in the objective
function and constructed a CVAR-based risk aversion model [25,26]. Uncertainties that are
specific to companies can be acquired and built from operation data. An enhanced bacterial
foraging algorithm (EBFA) is proposed to solve the risk dispatch problem of a VPP. In the
EBFA procedure, stochastic weight trade-off (SWT) is embedded in bacterial foraging to
improve the behavior patterns of each bacterium to enhance its searching efficiency in
high-dimension solution space. Various moving patterns of EBFA were also proposed to
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improve the efficiency and effectiveness, which were demonstrated by using a VPP system
on Penghu island, Taiwan. Many scenarios were created, including various seasons, power
rebate pricings, and confidence levels, so the maximal risk and return of VPPs could be
simulated and analyzed. Simulation results show a positive direction for a VPP to perform
the power dispatch by maximizing risk income. This paper also provides a guideline for
planning a VPP and includes risk management.

2. Problem Formulation

The VPP’s architecture studied in this paper is shown in Figure 1. The VPP control
center has a link to the utilities/independent system operator (ISO), integrating wind
power, solar power, and energy storage systems (ESS), and sells power to aggregated
loads in order to obtain profit. The ISO selling power to the VPP determines whether or
not to perform demand response (DR), which involves money rebate to the VPP. If DR
is performed, the VPP will curtail the aggregated loads and return part of the rebate to
the aggregated load. In the uncertain environment with wind and solar, VPPs seek to
maximize the risk return of power dispatch through power trading and DR.

Figure 1. The VPP’s architecture.

2.1. CVAR Model

Let f (x, y) be a loss function with a set of decision variables x and random variables
y. ρ(y) is a probability density function for VAR with β confidence level and can be
represented in Equation (1). By using the model in [28,29], we have

VARβ(x) = min{α ∈ R;
∫

f (x,y)≤α
ρ(y)dy ≥ β} (1)

CVAR, for a confidence level β, is defined as

ϕβ(x) = E[ f (x, y)| f (x, y) ≥ VARβ(x)] =
1

1− β

∫
f (x,y)≥VaR(x)

f (x, y)ρ(y)dy (2)

CVAR of the cost, calculated in NT$, can be approximated by

Fβ(x, VAR) = VAR +
1

1− β

∫
y∈R

[ f (x, y)−VAR]ρ(y)dy (3)
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In Equation (3), CVAR can be expressed as a discrete function as in Equation (4).

Fβ(x, VAR) = VAR +
1

m(1− β)

m

∑
k=1

[ f (x, yk)−VAR] (4)

Fβ(x, VAR) is an estimated value of CVAR cost. yk are the k samples of variable y.
VAR is an estimate of loss for a given probability of occurrence. The given probability

is called the confidence level, which represents the degree of the VAR. The VAR value is a
threshold. We know the probability of future losses exceeding this threshold, but do not
know how bad the situation is when the loss exceeds this threshold.

CVAR cost refers to the condition where loss exceeds the given VAR value. CVAR
takes into account the characteristics of tail events, satisfaction of positive homogeneity,
transmission immutability, and subadditivity. It can overcome several disadvantages of the
VAR measure and become more accurate in risk assessment. The difference between VAR
and CVAR is shown in Figure 2. VAR relates to the probability of loss excess and CVAR is
the expectation of loss excess. CVAR is generally preferable, is more widely used, and is
used in this paper.

Figure 2. Diagram of the VAR and CVAR calculation.

2.2. The Power Output of the PVs/WTs

In this paper, an Excel database was constructed with data from the Central Weather
Bureau Observation Data Inquiry System (CODIS) [30]. The least square support vector
machine (LSSVM) [31] was developed for wind speed and global radiation forecasts, as
shown in Figure 3. The LSSVM performs model training, where data of the input layer are
trained and transferred to the output layer using the radial basis function network (RBFN)
with kernel function, K(x, y) = e(−σ2|x−y|2). The function can yield a good prediction,
while error is calculated by using mean absolute percentage error (MAPE) as

MAPE =
1
T

T

∑
t=1

∣∣SA
t − SF

t
∣∣

SA
t

× 100% (5)

where SA
t is the ‘time t actual data’ to be forecast, while SF

t is the ‘time t data’ constructed
with LSSVM. T is training time.
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Figure 3. The wind speed/global radiation forecasting using the LSSVM.

By using the predicted value of solar radiation and wind speed, power generation of
PV and WT is simultaneously calculated as

Pt
w_est =

1
2

ρ Cp(λ, θ) Av3
t (6)

Pt
s_est = ηPV × Pt

G × APV (7)

Cp(λ, θ) is assigned as follows.

Cp(λ, θ) = 0.73× ((
151
λi
− 0.58θ − 0.002θ2.14 − 13.2)× e−

18.4
λi ) (8)

λi =
1

1
λ−0.02θ −

0.003
θ3+1

The ON/OFF status of the WT is explained in Equation (9).
vt = vi

t i f vstart ≤ vt ≤ v f ull
vt = v f ull i f v f ull < vt < vstop
vt = 0 i f vstop ≤ vt or vt < vstart

(9)

2.3. The Model for the ESS

The power output of ESS can be calculated as the difference between the stored
energies of two consecutive stages. Regardless of charging or discharging, ESS must be
traded with the VPP. ESS is expressed as follows [32]:

1. If the battery is charging:
− ηcPt

ess ≤ kcQs,max (10)

Qt+1
s = Qt

s − ηCPt
ees∆t (11)

2. If the battery is discharging:
Pt

ees
ηD
≤ kDQt

s (12)

Qt+1
s = Qt

s −
Pt

ees∆t
ηD

(13)

where ηC and ηD are charging efficiency and the discharging efficiency, both are
brand-dependent. Pt

ees is the electrical power of the battery output at the t− th h. Qt
s

is the aggregated capacity of the batteries at t− th h. Qs,max is the rated maximum
storage energy. kc/kD is the maximum portion of the rated capacity that can be added
to/withdrawn from storage in an h. ∆t is the scheduling hour. In this paper, ∆t was
equal to 1 h.
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2.4. Objective Function and Constraints

The VPP needs to plot its daily dispatch in the electricity market, and the proposed
model combines the expected profit and risk. The objective of Equation (14) is to maximize
the VPP’s profit, where risk income is also included. Risk income equals the summation of
the average income of the VPP under various scenarios, and the CVAR considers not only
risk but also economic income. Total income and total cost of the VPP are formulated in
Equations (15) and (16), respectively.

ProfitDA= Max

[
1
m

m

∑
n=1

(R(n)− C(n))+µDA(ξ − 1
m(1− β)

m

∑
n=1

Zn × Rexp)

]
(14)

R(n) =
k−1

∑
t=1

λt
vpp×Pt

load +
l

∑
t=k

(λt
vpp(Pt

load − Pt
cur) + λt

DRPt
DR) +

24

∑
t=l+1

λt
vppPt

load (15)

C(n) =
k−1
∑

t=1
(λt

isoPt
iso ± λt

essPt
ess + λt

wPt
w_est + λt

sPt
s_est) +

l
∑

t=k
(λt

incPt
cur + λt

isoPt
iso ± λt

essPt
ess + λt

wPt
w_est + λt

sPt
s_est)

+
24
∑

t=l+1

(
λt

isoPt
iso ± λt

essPt
ess + λt

wPt
w_est + λt

sPt
s_est )

(16)

The daily dispatch in the objective function is divided in three intervals. DR interval
is performed from h k-th to h l-th. During the NO_DR interval, the profit of the VPP only
comes from selling the electricity to the aggregated load, while the costs of the VPP will
include the cost of buying electricity from ISO, WTs, PVs, and the operating cost of the
battery. The profit of the DR interval includes the profit of selling electricity after load
curtailment (λt

vpp(Pt
load − Pt

cur)) and the provision of ISO to rebate any money (λt
DRPt

DR) to
DR. Similarly, the VPP must provide the rebate money to the aggregated load in the DR
interval (λt

incPt
cur).

The following constraints are also defined with:

(1) VPP energy balance constraint

Pt
load = Pt

iso + Pt
ess + Pt

cur + Pt
w_est + Pt

s_est (17)

(2) demand response

Pt
cur = Pt

load × (1− e−θt(λt
inc
−λt

vpp)) (18)

(3) rebate constraints
λt

vpp ≤ λt
inc ≤ λt

DR (19)

(4) the expected return on investment

ζ − (R(n)− C(n)) ≤ Zn × Rexp (20)

(5) the rate of expected return on investment

Zn =
R(n)− C(n)

C(n)
≥ 0 (21)

(6) the capacity of battery

0 ≤
(

Pinitial
ees +

H

∑
t=1

Pt
ees

)
≤ Pees,max (22)

3. Solution Algorithm

In 2002, ref. [33] proposed a bacterial foraging algorithm (BFA) for numerical analysis.
BFA produces a set of initial solutions, known as E. coli, and then looks for the optimal value
through chemotaxis, reproduction, and elimination–dispersal. Bacteria must constantly
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move the position of individuals in the process of evolution, and gradually move to a
better environment. For efficient performance, BFA is modified by hybrid stochastic weight
trade-off [34] in this paper and is called EBFA. EBFA was developed as follows.

3.1. Bacterial Chemotaxis

The bacterial chemotaxis can be described as

θi(j + 1, k, l) = θi(j, k, l) + C(i)ϕ(j) (23)

where θi(j, k, l) is the location of the i-th bacterium at the j-th chemotactic step, k-th is
the reproduction step, and l-th is the elimination–dispersal event. C(i) is the distance
of the bacterium at each step and ϕ(j) is the tumble direction of the bacterium. Let
J(i, j, k, l) be defined as the fitness value of the i-th bacterium. If the fitness J(i, j + 1, k, l)
of θi(j + 1, k, l) is lower than the fitness J(i, j, k, l) of θi(j, k, l), C(i) will remain in the same
direction. Conversely, ϕ(j) will turn in another direction. Bacterial chemotaxis depends
on the moving distance (C(i)) and the tumble direction (ϕ(j)). If the useful chemotaxis
message is not transmitted among the bacteria, it will lead to a local minimum. In order to
improve the local searching capability, a stochastic weight trade-off is integrated in EBFA.
The bacterial chemotaxis is modified by using Equation (24) as

θi(j + 1, k, l) = θi(j, k, l) + C(i)′ × ξ jr1Sign(r2)ϕ(j) (24)

r1, r2: random number between 0 and 1;
Sign: freak factor.

Sign(r2) =

{
1 r2 > Plet
−1 r2 ≤ Plet

(25)

Plet: the probability of “lethargy”.
C(i)′ is the distance factors, varying according to the stage of optimal process [35] as

C(i)′ = (Cmax − Cmin)
S

Smax
+ Cmin (26)

ξ j is a control parameter, which is used to reduce the stochastic effect linearly. ξ j varies
with the stage of optimal process:

ξ j = (ξmin − ξmax)
S

Smax
+ ξmax (27)

The values of maximum iterations, ξmin, ξmax and Plet are set to 0.5, 2.5, and
0.5, respectively.

3.2. Bacterial Reproduction

Optimization is performed based on the fitness value J(i, j, k, l). For the chemotaxis
step, the fitness value is calculated with Equation (28) as

Ji
health =

NC+1

∑
j=1

J(i, j, k, l) (28)

NC: the maximum step in the chemotaxis step.
In the reproduction process, the bacteria are sorted in ascending order by fitness

and the better half of the bacteria will split into two bacteria, placed at the same location.
Constant population size was used for convenient coding.

3.3. Elimination–Dispersal

The elimination–dispersal of the bacteria is set by the number of chemotaxis (NC).
After a new reproduction process, the new bacteria were dispersed from their original
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location according to the elimination–dispersal rate (Ned) and moved to the best position
within the searching space. The elimination–dispersal process will help to avoid premature
convergence and entrapment in the local optimum.

Figure 4 is the flowchart of the applied EBFA.

Figure 4. The flowchart of applied EBFA.

4. Simulation Results

The proposed algorithm was simulated on a modified Penghu grid with renewables,
as shown in Figure 5. The configuration of the VPP system consists of two WT fields,
one PV fields, one thermal turbine, and one energy storage system (EES). The associated
data for the study system are listed in Table 1. Note that utility is represented by the real
thermal units of Penghu island, capable of providing 129.8 MW power. In general, utility
is transparent to the VPP, which needs the data of power output only, while the utility
may have to deal with many VPPs. Table 1 is also modified by adding “utility” besides
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thermal. The load profile of a typical summer and non-summer day is shown in Figure 6,
for example. Solving the risk dispatch problem of a VPP, hour-driven results are assumed
in this paper, which could be extended to cover a different timespan or to become a daily
operation. Summer and non-summer seasons refer to the two charge rates enforced by
the Tai-Power Company in Taiwan [36]. Many scenarios were tested and analyzed. Two
typical scenarios are shown as examples.

Figure 5. The modified Penghu grid.

Table 1. The associated data of the modified Penghu grid system.

Unit Number of Units Capacity/Unit
(MW)

Total Capacity
(MW)

Wind turbine 8 0.6 4.8

Wind turbine 6 0.9 5.4

Solar power 1 12.9 12.9

Thermal turbine 1 129.8 129.8

EES 1 30 30

Figure 6. Summer and non-summer load profile examples.
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4.1. The Power Output of the PVs/WTs in the Summer/Non-Summer

The weather data used are from 1 July 2018 to 21 July 2018 and 1 December 2018 to
31 December 2018. The time horizon chosen was one day of 24 h. By using LSSVM, the
wind speed and global radiation were forecast simultaneously, where the power output of
WT/PV was calculated using Equations (6) and (7). The number of data samples for CVAR
was 50. The emulation results of WT/PV power output are shown in Figures 7 and 8.
Figure 7 shows the power output of PV in the summer and non-summer seasons, and
Figure 8 shows the power output of WT in the summer and non-summer seasons.

Figure 7. The power output of PV in the summer and non-summer seasons.

Figure 8. The power output of WT in the summer and non-summer seasons.

4.2. Results from Various Scenarios

To analyze the performance of VPPs, the number of data samples, risk level, and
aversion parameter are 50, 95%, and 0.4, respectively. The cost–benefit power trading
between VPP and utility needs to meet aggregated loads. Figure 9 shows the daily profit
of the VPP for the summer and non-summer seasons with renewable uncertainties. Since
the peak load usually occurs in the summer, the control center of the VPP must pay more
rebate to aggregated loads for performing the DR. Table 2 shows the total income and total
cost of the VPP in the daily dispatch. Table 2 shows that the dispatch with DR can gain
more profit in the summer, but not the non-summer period.
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Figure 9. The daily profit of the VPP in the summer and non-summer seasons.

Table 2. The total income and total cost of the VPP in the daily dispatch.

Summer Season Non-Summer Season

Without DR With DR Without DR With DR

Total income (NT$) 15,053,126 15,745,634 14,594,450 14,550,596
Total cost (NT$) 7,134,183 7,462,386 6,916,801 6,896,017

Profit
(NT$) 7,918,943 8,283,248 7,677,649 7,654,579

Figure 10 shows the load curtailment in the summer and non-summer seasons. On a
summer day, the control center of the VPP must curtail more load to satisfy the objectives.
On the contrary, the VPP needs to curtail less of the load to obtain a better profit in the
non-summer season.

Figure 10. The daily load curtailment in the summer and non-summer seasons.

Figure 11 shows the CVAR and the summer daily profit of the VPP with various
confidence levels (β = 100%, β = 95%, β = 90%). The CVAR in Figure 11 shows that a higher
confidence level leads to a lower CVAR of maximal profit, i.e., with a lower risk.

4.3. Convergence Test

Table 3 shows a comparison chart of using evolutionary programming (EP), genetic
algorithm (GA), particle swarm optimization (PSO), BFA, and EBFA in the simulation.
The tests were performed using an Intel Core i7-6700HQ, 3.4 Hz CPU with 8 GB DRAM.
Each algorithm was tested 100 times with the same initial values. It can be seen that
EBFA improves the searching efficiency with the best probability of guaranteeing a global
optimum. Table 3 shows that EBFA can maximize the profit better than EP, GA, PSO, and
BFA, i.e., it yields the greatest profit among all the methods, with the average execution
time only a little longer than BFA. Figures 12 and 13 show the convergent characteristics of
EP, GA, PSO, BFA, and EBFA for the summer and non-summer periods. They also show
that EBFA has a better capability to explore a better global optimum.
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Figure 11. The summer daily profit of the VPP with various confidence levels.

Table 3. Robustness test for EP, GA, PSO, BFA, and EBFA algorithms.

Summer Non-Summer

Algorithm
Maximal

Converged
Profit (NT$)

Average
Execution
Times (s)

Maximal
Converged
Profit (NT$)

Average
Execution
Times (s)

EP 8,174,430 238 7,623,943 245
PSO 8,139,733 227 7,639,699 234
GA 8,190,471 237 7,639,155 244
BFA 8,259,395 213 7,654,015 219

EBFA 8,283,248 227 7,654,580 234

Figure 12. The convergence characteristics of EP, GA, PSO, BFA, and EBFA in summer.
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Figure 13. The convergence characteristics of EP, GA, PSO, BFA, and EBFA in non-summer.

5. Conclusions

This paper developed an EBFA algorithm to solve the risk dispatch of a VPP to obtain
maximal profit. By considering WTs and PVs, uncertainties of load and VAR of power
generation were integrated into the searching process. EBFA can solve the complicated
problem with a better efficiency than other algorithms and can obtain a global optimum. It
has great potential to be further applied to many non-convex problems in power system
planning and operation. The EBFA successfully demonstrated its performance on the
Penghu VPP system. By considering various scenarios, the maximal risk and return of the
VPP were simulated and analyzed. Results show a good opportunity for VPPs to perform
power dispatch by maximizing risk income. The proposed algorithm can be integrated into
real-time operations and applied to many other mixed integer combinational optimization
problems for power systems.
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Nomenclature

Acronyms
CODIS Central Weather Bureau Observation Data Inquiry
CVAR conditional value-at-risk
DERs distributed energy resources
DGs distributed generations
DR demand response
EBFA enhanced bacterial foraging algorithm
ESS energy storage systems
EP evolutionary programming
GA genetic algorithm
ISO independent system operator
LSSVM least square support vector machine
MAPE mean absolute percentage error
PSO particle swarm optimization
PV photovoltaics
SWT stochastic weight trade-off
VPP virtual power plant
WT wind turbine
Constraints
ProfitDA Maximizing risk income
R(n)/C(n) Total income/cost in the context of n samples
µDA/ξ Aversion parameter/auxiliary parameter
Zn/Rexp The rate of return/expectation profit
m/β Number of samples/confidence level
λt

vpp/λt
w/λt

s The sold price of VPP/WT/PV at time t
Pt

load/Pt
iso The load supplied by VPP/the generation supplied by ISO at time t

Pt
w_est/Pt

s_est The generation of WT/PV at time t
Pt

cur/Pt
DR The load curtailed of VPP/user at time t

λt
inc Rebate money of customers by VPP at time t

λt
DR Rebate money of VPP by ISO at time t

λt
iso The price sold of ISO at time t

θt Coefficient of elasticity at time t
λt

ess The operating cost of battery at time t
Pt

ees The capacity of battery at time t
Pinitial

ees /Pees,max The initial/maximal capacity of battery at time t
Variables
A Area covered by the rotor ( m2)
APV The area of the PV array (m2)
Cp(λ, θ) The performance coefficient of wind power
ηPV The efficiency of PV
Pt

w_est The WT output power at time t
Pt

s_est The PV power output at time t
Pt

G The global radiation (w/m2) at time t
Plet The probability of “lethargy”
r1, r2 Random number between 0 and 1
Sign Freak Factor
vt Wind speed ( m/s) at time t
vi

t The current wind speed ( m/s) at time t
vstart The start wind speed ( m/s)
v f ull The rated wind speed ( m/s)
vstop The stop wind speed ( m/s)
λ Tip speed ratio
θ Pitch angle of the rotor blades (deg.)
ρ Air density (kg/m3)
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