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Abstract: The shunt active power filter (SAPF) is a widely used tool for compensation of disturbances
in three-phase electric power systems. A high number of control methods have been successfully
developed, including strategies based on artificial neural networks. However, the typical feedforward
neural network, the multilayer perceptron, which has provided effective solutions to many nonlinear
problems, has not yet been employed with satisfactory performance in the implementation of the
SAPF control for obtaining the reference currents. In order to prove the capabilities of this simple
neural topology, this work describes a suitable strategy of use, based on the accurate estimation
of the Fourier coefficients corresponding to the fundamental harmonic of any distorted voltage or
current. An effective training method has been developed, consisting of the use of many distorted
patterns. The new generation procedure uses random combinations of multiple harmonics, including
the possible nominal frequency deviations occurring in real power systems. The design of the
generation of reference signals through computations based on the Fourier coefficients is presented.
The objectives were the harmonic mitigation and power factor correction. Practical cases were
tested through simulation and also by using an experimental platform, showing the feasibility of
the proposal.

Keywords: electric power quality; harmonic compensation; multilayer perceptron; neural network;
shunt active power filter; feedforward

1. Introduction

The increase in disturbances in the electric power distribution networks due to the
presence of harmonics has given rise to an exhaustive search for solutions in the past three
decades. The compensation objectives to enhance the electric power quality (EPQ) may
be varied, including issues such as reactive power compensation, reduction in harmonic
distortion, or correction of unbalanced three-phase currents. Therefore, different active and
passive filter configurations have been proposed to solve these problems. Among them,
the most important tool for improving the EPQ is the active power filter (APF), and in
particular, the shunt APF. This compensation system is more and more relevant, thanks to
the development of signal processing and power converters [1,2].

The shunt APF consists of an electronic power converter for use in three-phase sys-
tems, connected in parallel with the load to supply compensation currents. The converter
is typically based on insulated gate bipolar transistors (IGBTs) and the pulse width mod-
ulation technique (PWM), and provides the currents that mitigate the EPQ problems. A
control system must generate the appropriate trigger pulses to switch the on-off states of
the electronic power devices of the converter, in order to achieve the right output currents.
Previously, depending on the compensation goal, the appropriate reference signals for
those currents had to be generated. This means that two essential elements in the APF
control are the generation of the reference signals and the PWM control method, such
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as hysteresis band control (HB) [2]. Other important issues are the control of the power
converter DC side [3] and the phase synchronization techniques [4]. The purpose of some
APF control methods is limited to harmonic distortion mitigation, whereas many others try
to achieve both harmonic suppression and reactive power compensation and may include
addressing the load currents unbalance.

The use of artificial neural networks (ANN) in the field of power engineering is well
known. They make use of parallel computing, allowing the design of control circuits of high
speed and reliability. In fact, ANNs have been systematically applied in the development
of APF-based equipment, even though there are countless examples of non-ANN control
techniques, as in [5–7]. A type of ANN usually applied to the APF control is the Adaline,
based on the adaptive algorithm of Widrow–Hoff. Thus, in [8,9], the Adaline network is
used for extraction of the reference currents and the multilayer perceptron network (MLP)
replaces the HB control. Moreover, in [10–13], the core of the APF control is an Adaline
network, which works with an on-line algorithm, under different load conditions. The
work in [14] shows a comparative review of several control methods, including the study
of the Adaline, highlighting some of its advantages. However, in these adaptive cases, the
appropriate choice of the learning parameter for each problem is very important in order to
avoid convergence problems; this is one of its weaknesses. However, recent works [15–17]
illustrate that researchers continue to propose advances in the application of the Adaline.
Other ANN types have also been applied to the APF, but with less relevance. This is the
case of the radial basis function networks (RBF) and different topologies of recurrent neural
networks (RNN). The RBF has been applied in [18] for extracting harmonic amplitudes,
in [19] to support a complex adaptive sliding mode control (SMC), and in [20], it is used in
combination with the P-Q power theory to obtain reference signals. Regarding the RNN,
which has a structure close to the MLP, but with internal feedback connections, in [21,22], it
supports complex types of sliding mode controls in the APF. The authors of [23] achieved
good results using the so-called NARX recurrent network for extracting the reference
signals. Additionally, the RNN called echo-state network (ESN) has gained importance in
recent years for extracting fundamental current components [24,25].

The feedforward or MLP networks have shown to be useful in replacing the HB
controller to generate the IGBTs trigger signals [8,9,17,26,27]. Some authors have applied
the MLP [28–30] to replace the extended PI control [31] of the DC side capacitor voltage,
Vdc, of power converters. To a lesser extent, the MLP networks have also been used
to obtain the reference signals [32,33], with variable results. MLP networks seemed to
be a promising tool for harmonic detection and mitigation many years ago [32,34–36].
Nevertheless, they could not be successfully applied for the generation of the reference
currents when trying to achieve accurate APF control for all kinds of distortions. They are
not adaptive, requiring a previous off-line training using the backpropagation algorithm
(BP). Some researchers directly claim limitations of the MLP by generating the reference
signals, due to the diversity of loads and kinds of electric disturbances [24,33]. Even the
works which conclude supporting the capabilities of this ANN type show poor results [32]
and weaknesses—it is difficult to apply a training capable of covering high order harmonics,
as well as the possible practical frequency deviations.

It is also worth mentioning the numerous methods combining fuzzy logic and ANNs
in different ways. As an example, in [37], a combination of fuzzy and neural network tech-
niques is used for improved DC voltage control by an APF, where a fuzzy logic controller
extracts the training dataset for the neural network. In [38], an adaptive backstepping
fuzzy neural network controller is designed to suppress the harmonics in a SAPF.

In this paper, the main features are as follows. Firstly, a new MLP-based control
method for three-phase shunt APFs, able to obtain the reference signals, is proposed. It will
prove that this ANN type can provide an alternative tool, which will allow taking advantage
of the benefits of MLPs, such as simplicity, no need of online training, fast response, and
the absence of internal feedback connections within the network. Secondly, the strategy of
use of the ANN consists of estimating the Fourier coefficients of the fundamental harmonic
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of phase currents and voltages, enabling higher MLP learning capacity than different
methods tested by the authors. Thirdly, an effective training method was designed, in
which the waveform patterns are automatically generated using random combinations of
many different harmonics. Variable fundamental frequencies were included in the patterns,
representing the possible nominal frequency deviations in the grid, ensuring a robust
control response in different real cases. This method has shown to be more efficient for
the MLP learning than any other previously applied. It provides a deep training with a
high, but limited, number of patterns. Fourthly, for a compensation strategy that pursues
harmonic distortion mitigation and power factor correction, the power theory was applied
to develop the computation steps, from the coefficients of every phase current and voltage
that lead to the reference currents. The method also will be able to correct the currents’
unbalance, in the case of balanced supply voltages. The paper is structured as follows. In
Section 2, the fundamentals of the control strategies are described. Section 3 addresses
the explanation of the neural network configuration and the training steps carried out. In
Section 4, practical cases are simulated and thoroughly tested using the MATLAB-Simulink
platform, and a practical case is tested in laboratory. Finally, the conclusions highlight the
contributions of the work.

2. Principles of the Compensation Methods

Figure 1 shows the scheme of a nonlinear three-phase load compensated by a shunt
APF. The currents generated by the APF must be such that they satisfy the compensation
requirements and verify Kirchhoff’s currents law.

iS = iL − iC (1)
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Figure 1. Typical nonlinear three-phase load compensated by a shunt APF, illustrating the power
converter control based on neural networks.

Two main compensation objectives are considered: harmonic compensation (HC)
and unit power factor compensation (UpfC). The HC pursues a source current without
distortion. The UpfC aims to obtain a source current in phase with the voltage, in addition
to harmonic compensation. The foundations of both techniques are established in the
following subsections.
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2.1. Harmonic Compensation Method

The first compensation objective considered here is the mitigation of the harmonic
distortion of the load current. It is well known that the waveform of a distorted current can
be represented by the sum of different sinusoidal components with frequencies that are
a multiple of a fundamental frequency. Equation (2) shows the expression for a generic
phase current of a nonlinear load.

iL,i(t) =
√

2 I1,i cos(ω t− ϕ1,i) +
√

2 ∑
∀ h≥2

Ih,i cos(h ω t− ϕh,i) (2)

ic,i(t) = iL,i(t)− is,i(t) =
√

2 ∑
∀ h≥2

Ih,i cos(h ω t− ϕh,i) (3)

Equation (3) consists of all the distortion components of the load current. The compen-
sation current (3) allows obtaining a set of sinusoidal currents; thus, after compensation,
the source currents are given by (4):

is,i(t) = iL1,i =
√

2 I1,i cos(ω t− ϕ1,i) (4)

The currents (4) can be expressed through their rectangular components, (5):

is, i(t) =
√

2 I1,i cos(ω t− ϕ1,i) =
√

2 I1,i cos ϕ1,i cos ω t +
√

2 I1,i sin ϕ1,i sin ω t =

AI,i cos ω t + BI,i sin ω t
(5)

where AI,i and BI,i are real numbers that represent the rectangular coefficients of the funda-
mental harmonic of the phase current. It follows that the obtaining of each fundamental
harmonic rectangular component of the phase currents determines the currents given by
(5), and therefore, the compensation currents (3), which are finally expressed according
to (6):

ic,i(t) = iL,i(t)− (AI,i cos ω t + BI,i sin ω t) (6)

Three ANNs can estimate the pairs of rectangular coefficients, AI,i, BI,i. They constitute
the core calculation of the reference currents for the APF control (Figure 2).
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If a balanced three-phase system is assumed, the rectangular coefficients of the phase
quantities are equal; in this case the second subscript i becomes unnecessary, with the
coefficients becoming AI, BI. A single ANN would allow estimating the rectangular
coefficients AI, BI, and hence the compensation currents (6), that can now be expressed
according to (7):

ic,a(t) = iL,a(t)− (AI cos ω t + BI sin ω t)
ic,b(t) = iL,b(t)− (AI cos(ω t− 2π/3) + BI sin(ω t− 2π/3))

ic,c(t) = iL,c(t)− (AI cos(ω t + 2π/3) + BI sin(ω t + 2π/3))
(7)

Figure 2 shows the block diagram for the calculation of compensation currents; these
are the reference signals in the APF control for HC. The sampling of the phase currents
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makes up the set of the neural network inputs. Its outputs are the rectangular coefficients
that allow us to build the fundamental harmonic of each phase current. The subtraction
with respect to the load currents provides the compensation currents. For a balanced
nonlinear load, from (7) it follows that only a neural network is necessary, and therefore, it
would only be necessary to sample a load current signal.

2.2. Unit Power Factor Compensation Method

In this second compensation method, the APF is required to inject the appropriate
currents with the objectives of both mitigation of the harmonic distortion and achieving
a unit power factor, measured from the source. The unit power factor objective will be
achieved when the source current is in phase with the voltage, that is, when the source
generates the so-called active current. In fact, it has been well established in the literature
on electrical power that the active current is the current that carries the load active (average)
power and is collinear with the source voltage. Hence, the phase currents of the source
after compensation will take the form (8):

is,i(t) = G vi(t) (8)

where G is the so-called equivalent conductance parameter of the load defined by (9):

G =
P

V2 =
P

V2
a + V2

b + V2
c

(9)

In (9), P is the average power consumed by the load and V is the rms value of the
three-phase voltage determined from the rms values of the phase voltages, Vi. Appendix A
describes the way to obtain the value of G by knowing the voltage and current rectangular
coefficients. In general, it requires six ANNs, according to Equation (A8): three ANNs for
the six voltage rectangular coefficients, AV,i, BV,i, and three ANNs for the six rectangular
coefficients of the current fundamental harmonic, AI,i, BI,i. It could be thought that perhaps
it is a better strategy to train an ANN directly for estimation of G, instead of the coefficients,
but in the authors’ experience, this strategy would require the use of a very high number of
combinations of distorted waveforms of the six signals involved (three voltages and three
currents), and would result in an excessive amount of data for the training algorithm.

If the source voltage is considered sinusoidal and balanced, then the different phase
voltages are given by (10):

vs,i(t) =
√

2 Vi cos(ω t + αi) (10)

where i = a, b, c. With Va = Vb = Vc, and αa = α, αb = α − 2π/3, αc = α + 2π/3. Thus, as in
(4), the three phase voltages can be expressed according to (11):

vs,a(t) = AV cos ω t + BV sin ω t

vs,b(t) = AV cos(ω t− 2π/3) + BV sin(ω t− 2π/3)

vs,c(t) = AV cos(ω t + 2π/3) + BV sin(ω t + 2π/3)
(11)

A single ANN can estimate the values of the voltage rectangular coefficients, AV, BV.
In the same way, for currents, a single ANN can estimate the rectangular coefficients of the
current fundamental harmonic, AI, BI, (7). Taking this into account, it follows that, in the
case of balanced voltages and loads, only two ANNs are necessary and the expression in
(A8) to obtain G would be as shown in (12):

G =
AV AI + BV BI

A2
V + B2

V
(12)
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The voltage and current rectangular coefficients can be estimated by the ANNs from
the sampling of any of the phase quantities; that is why in (12), the double subscript i is no
longer necessary.

The source currents after compensation can be identified with the active currents, (8),
being the compensation currents injected by the APF given by (13):

ic,i(t) = iL,i(t)− Gvs,i (13)

with G set as in (A8) or determined by (12) if the three-phase system is balanced. The
relationship gives the reference waveforms for the compensation currents to be supplied
by the APF.

When the voltage is sinusoidal and balanced, which can be considered reasonable
from a practical point of view in many situations, from (11) and (13), the compensation
currents can be obtained using two ANNs, and expressed by (14):

ic,a(t) = iL,a(t)− G(AV cos ω t + BV sin ω t)
ic,b(t) = iL,b(t)− G(AV cos(ω t− 2π/3) + BV sin(ω t− 2π/3))

ic,c(t) = iL,c(t)− G(AV cos(ω t + 2π/3) + BV sin(ω t + 2π/3))
(14)

As a result of the injection of the currents in (14), the APF allows us to obtain a
unit power factor from the source with balanced and sinusoidal currents, that is, free
of distortion.

Figure 3a shows the scheme of a generic nonlinear load in a three-phase system
with the UpfC compensation. Figure 3b shows the calculation scheme of the reference
compensation currents for the APF control. The voltage and current signals acting as
inputs for the six ANNs are sampled. The neural networks’ outputs will be the rectangular
coefficients of the phase voltages and currents. From these coefficients, the equivalent
conductance G is calculated, and the active phase currents are generated. The subtraction
shown in (13) or (14) gives the compensation currents.
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Figure 3. Unit power factor compensation method. (a) Full system diagram showing the ANN block
estimating the rectangular coefficients. (b) Details of the control method, where the computation
of the equivalent conductance G allows to generate the active phase currents and the reference
waveforms for the compensation currents.

From (12), it becomes clear that if the source voltages are balanced, and the scheme
in Figure 3b is simplified. In the case of a balanced three-phase system, Figure 3b may
be simplified even more, since only two ANNs will be necessary, and the compensation
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currents are generated according to (14). Further details on the ANNs performance will be
presented in Section 3.

3. MLP Neural Network and Training

Since the purpose is to use feedforward neural networks capable of identifying the
fundamental harmonic in periodical distorted waveforms, next follows the description
of the MLP network and the training method. The ANN must obtain the rectangular
coefficients that enable the generation of the reference signals. Due to the infinite possible
harmonic distortions, a large amount of data is necessary for the training. This section
presents the way in which the MLP can be configured and trained using a high, but limited,
number of patterns.

3.1. MLP Neural Networks

The multilayer perceptron neural network consists of a determined number of neurons,
organized in two or more layers, highly interconnected [39]. The neuron operation consists
of applying a determined transfer function to a weighted sum of its inputs. The MLP
topology can be seen in Figure 4. It is usual the choice of a “tan-sigmoid” transfer function
for hidden layers and a “linear” function for output layer.
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of the neuron function, where pj are the neuron input values, wj are the connection weights, and the
subindex “j” stays for the different neuron inputs.

The MLP network requires supervised learning. It uses a given set of input-output
pairs for adjustment of the interconnection weights. The backpropagation learning algo-
rithm is applied to adjust the weight array, W, associated with the interconnections. For
each learning cycle, the ANN receives the input vectors (organized in the input matrix
array containing the patterns, P). The resulting output vectors are compared to the desired
outputs contained in the learning patterns (organized in the output matrix array containing
the targets, T), and the performance index is calculated. This index is the mean squared
error, “mse” [40], given in (15). Figure 4a shows the MLP with the inputs and outputs
used in the training process. Figure 4b shows the operation of a neuron in any of the
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layers. The mathematical backpropagation algorithm determines the re-adjustment of the
interconnection weights to reduce the mse. This cycle is iteratively repeated until the mse
reaches a small enough value, previously given as the training goal.

The performance index, mse, taken as the accuracy goal whose value must be mini-
mized, is defined as in (15):

mse =
1
m

m

∑
i=1
‖yi − ti‖2 (15)

where m is the number of training patterns, and yi, ti, are the output and target vectors
corresponding to the pattern i. The difference yi − ti is the error vector for that pattern,
and ‖yi − ti‖ expresses the error vector length in the output space. In particular, with a
two-neuron output layer, the output space is bidimensional. The sum of the squares of
those error lengths, divided by m, gives the mean squared error, which is calculated after
every iteration or epoch.

Among the different available backpropagation algorithms, the default algorithm
applied in feedforward ANN training by the Neural Network Toolbox in MATLAB is the
Levenberg–Marquardt algorithm, LM. It is also known as Damped Least-Squares, DLS.
The authors have also tested other algorithms, such as the Scaled Conjugate Gradient, SCG.
However, the best results were, in general, obtained with the LM algorithm.

The required number of neurons and neuron layers is selected after some tests of
convergence. We have experienced with one, two, and three hidden layers.

The work stage after the training usually consists of some simulation tests to check the
performance of the resulting network, evaluating its “generalization” capability. It consists
of checking the ability of the ANN to give the correct output for input vectors different
from those used for training.

3.2. Training for Fundamental Harmonic Detection

In [32], the MLP networks were trained to estimate the amplitude and phase of
the main harmonics in distorted waveforms, from order 3 up to order 13. From these
variables, the distortion component waveform was generated. This could be employed
as compensation current, thus eliminating a part of the distortion. Besides, the patterns
and training were based on a fixed 50 Hz fundamental frequency. The use of only few
harmonics, and a fixed electric frequency, does not ensure an efficient operation for the
typical nonlinear distortions. The ANN showed some potential for this kind of objective,
but with limited and poor results. In [33], a comparative analysis was conducted between
the application of the Adaline network and the MLP to obtain the reference signals for a
shunt APF. The conclusion in that work is that the MLP performance is much lower than
that of the Adaline method. However, in our opinion, the problem is with the inappropriate
application strategy and training method.

In this work, the APF control method is based on the sampling of every waveform
cycle of the current or voltage for the ANN input. A nominal 50 Hz electric frequency
was considered. Nevertheless, the method should also work regardless of which electrical
frequency is used. In the case of 50 Hz, after every time interval of 20 ms, the ANN outputs
are the rectangular coefficients of the fundamental harmonic.

3.2.1. Patterns Generation

After a huge number of tests with different points per cycle and number of ANN
inputs, a slow sampling rate of 2.5 kHz could be chosen, i.e., 50 points per waveform cycle,
which means that the neural network must contain 50 inputs. For the strategy of extracting
the fundamental harmonic, there was no need to increase the number of samples. It also
works with faster sampling, but at the cost of increasing the size and complexity of the
ANN, as well as the training times, without achieving higher performance.

Different harmonic spectrums of nonlinear loads were analyzed to choose suitable
magnitudes of the different harmonics. Table 1 shows the intervals of values allowed
for the rectangular coefficients of the odd harmonics, up to the 35th, used in the training
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patterns. The determination of the suitable harmonics and amplitudes was also the result
of a long process, based on the authors experience and the trial-and-error method.

Table 1. Value intervals of the rectangular coefficients used in the generation of training patterns.

Coefficients Training
Intervals Coefficients Training

Intervals

A1, B1 [−1, 1] A11, B11 [−0.1, 0.1]
A3, B3 [−0.6, 0.6] A13, B13 [−0.1, 0.1]
A5, B5 [−0.2, 0.2] ... ...
A7, B7 [−0.2, 0.2] A33, B33 [−0.01, 0.01]
A9, B9 [−0.2, 0.2] A35, B35 [−0.01, 0.01]

An important requirement for the control method is to maintain its performance in
case of electric frequency deviations from the nominal value of 50 Hz. A robust behavior of
the ANN requires the use of different fundamental frequencies in the training patterns. In
some previous tests, we could observe that an ANN trained only with 50 Hz does not work
properly in practical cases due to the possible frequency deviations of the supply voltage.
Therefore, the patterns were generated using five different values of frequency between
49.5 and 50.5 Hz.

A key feature enabling the required MLP learning has been the use of random combina-
tions of harmonics. Initially, we generated high amounts of patterns in determined manners,
without obtaining a low enough mse. Then, using the MATLAB function “unidrnd” it
was possible to randomly generate any number of patterns: A1 = (unidrnd(5,1,1)-3)*0.5;
B1 = (unidrnd(5,1,1)-3)*0.5; A3 = (unidrnd(5,1,1)-3)*0.3; and so on, up to B35. This operation
gives, for A1, random values from the set {−1, −0.5, 0, 0.5, 1}. This approach provided a
very efficient set of patterns. For every different frequency, an amount of 20,000 combi-
nations of harmonics were generated, providing an input matrix P of size 50 × 100,000.
The size of the desired targets matrix T is 2 × 100,000, containing the A1 and B1 values of
every waveform.

3.2.2. Design, Training and Testing

After many tests with different combinations of hidden layers and neurons per layer,
the best configuration found was 50-10-10-2. That is, 50 input units, 2 hidden layers
containing 10 neurons each, and the 2-neuron output layer. The transfer functions are
tan-sigmoid in the hidden layers, and linear in the output one. These decisions were based
on the authors’ experience and on many trials, reducing the number of neurons as much as
possible. This allows us to increase the number of patterns used in the learning process,
without excessively long training times.

Both the LM and the SCG backpropagation algorithms were used for training, but in
general, the LM algorithm allowed us to achieve lower values of the goal mse parameter.
After a training of 100 epochs with LM, a value of mse = 2·10−7 could be reached. The SCG
method carried out thousands of epochs in the same time intervals, yet it did not reach
the same low errors. So, the definitive ANN used was trained with LM. Concerning the
conditions to end the last and definitive training, the key aspect is to observe the evolution
of the mse with the increase in the number of epochs. Once we knew that in different trials,
the mse value stopped decreasing after 80 or 90 epochs, taking values around 2·10−7, we
set a number of 100 epochs as training limit, and run the last training.

After training the ANN, the generalization capabilities and the accuracy of the outputs
were checked. For these performance tests, we generated a high number of waveforms
with random combination of the different harmonics and different fundamental frequency
values. Many of these inputs included coefficients Ai and Bi exceeding the limits shown in
Table 1. In addition, the fundamental frequency was used, exceeding the limits applied by
the pattern generation. In particular, frequencies from 45 to 55 Hz were tested. The results
of the generalization tests were satisfactory, proving that the ANN was accurate enough to
be used in practical cases of three-phase systems.
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4. Results in Practical Cases

In order to quantify the results obtained with the ANN-APF, two essential indices
were used: the total harmonic distortion of the supply current, ITHD, defined in (16), and
the power factor, PF, defined in (17), measured before and after compensation.

ITHD =

√
∑

i > 1
I2
i

I1
· 100% (16)

PF =
P√

V2
a + V2

b + V2
c

√
I2
a + I2

b + I2
c

(17)

Those indices, together with the monitoring of the voltages and currents waveforms,
will allow us to evaluate the system performance. In addition, international standards
were taken into account: IEC 61000-4-30 [41] and EN-50160 [42]. Thus, it is strongly
recommended to achieve a source current ITHD below 5% and a PF close to one. In that
sense, the control system will be required to operate in the environment of 50 Hz ±1%, i.e.,
from 49.5 to 50.5 Hz, as this is the interval in which the frequency must be during 95% of
the time every week. Obviously, it is also desired that no important disturbance would
be observed in case of higher frequency deviations. The standard requires the electrical
network to work 100% of the time in the interval from 50 − 6% to 50 + 4%, i.e., from 47 to
52 Hz [41].

In order to use the neural networks with currents and voltages of practical three-
phase circuits, a scale factor must be applied to the waveforms before accessing the ANN,
because their amplitudes can reach values of several Amperes and hundreds of Volts. The
generalization capability tests showed a wide tolerance for input waveform amplitudes.
However, the ANN performance is higher if the input waveforms do not significantly
exceed the ±1 range.

In the practical cases, the voltage waveforms have amplitudes over 300 V, whereas
the fundamental harmonic amplitude in the waveform patterns was not higher than sqrt
(12 + 12) ≈ 1.414. Therefore, the voltage inputs were divided by a scale factor KV before
reaching the ANN, and consequently, the outputs must be multiplied by the same factor.
Figure 5 shows the required adjustment of the inputs and outputs.
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exceed the ±1 range, allowing ANN performance optimization.

For the same reason, current inputs need the application of a scale factor. Considering
the dependency of the currents on the variable loads, the scale factor was based on the mea-
surement of the load current rms value. The product KI·IRMS has provided an autonomous
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adjustment of the scale factor. In particular, values of KI = 0.4 or 0.5 were appropriate. The
current data are divided by KI·IRMS and the ANN output is multiplied by the same factor.
Figure 5 shows this input and output adjustment.

No special stability analysis was conducted. On one side, the feedforward ANNs have
no feedback connections, and do not use online training algorithms to adjust any parameter.
The ANNs use the load current signals (independent of the SAPF injected currents) to
obtain, after every cycle, the coefficients A and B for generation of the reference signals.
This absence of feedback loop can contribute to a stable behavior. On the other side, the
hysteresis PWM control and the use of inductors in the connection of the APF with the
three-phase system usually do not cause unstable operation. If the ANN control does not
obtain correct coefficients in some of the cycles, the APF could produce some short time
intervals without a perfect compensation. However, the way in which the ANN refreshes
the outputs after each cycle should avoid any rare cumulative effect or stability problem.
Therefore, no concerning SAPF unstable operation should be expected. All practical cases
tested in this work presented stable operation.

4.1. Results by Simulation Practical Cases

Some MATLAB Simulink models have been designed to test the operation of the
neural control of the APF in several cases, including different loads, frequency deviations,
and step changes in the load.

Both compensation objectives described in Section 2 were tested: HC and UpfC. The
common objective of reducing the harmonic distortion was analyzed by measurement of
the ITHD, which is desired to reach values under 5%, whereas the UpfC control method is
expected to achieve a PF close to unit, in addition to the low ITHD. Table 2 shows the most
relevant parameters of the electric system and APF used in the simulation models. The
nonlinear load consists of a set of impedance branches connected to AC regulators based
on thyristors, as shown in Figure 3a.

Table 2. Main electric system parameters of the test models.

Parameters of the System Setup Value

V source 400 V
Nominal frequency 50 Hz

Three-phase load impedance 30 Ω, 40 mH, series
AC regulator thyristors firing angle 90◦

Filter series inductance 18 mH
Inverter control hysteresis band ± 0.03

Sampling frequency 2500 Hz

4.1.1. HC Control Method Simulation Results

The first practical case is based on the HC method according to operation in (6),
shown in Figure 2. The use of three ANNs, working in parallel, allows us to obtain the
fundamental components of the phase currents. The subtraction of these components from
the load currents gives the reference signals for the power converter. This test was carried
out with a 50 Hz frequency and a load consisting of a three-phase thyristor regulator with
firing angle of 90◦, followed by RL series branches with values shown in Table 2.

Figure 6 shows the load and source currents resulting in this case. Whereas the load
ITHD is 43%, the value at the source is reduced to 2.4%.
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ITHD becomes 2.4%.

Another test was carried out to analyze the dynamic response in case of load change.
The connection of an additional load in parallel with the former nonlinear one shown
in Figure 3a was established at time t = 0.08 s. It is a linear load consisting of RL series
branches of values 60 Ω and 80 mH. Figure 7 shows the resulting waveforms, where it can
be seen that two electric cycles after the change, the source currents reach the new steady
state. The load ITHD after the change is 24%, and 1.7% for the source currents. The system
behavior for some other tested changes showed similar performance.
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4.1.2. UpfC Control Method Simulation Results

The next step is the simulation of practical cases based on UpfC control where a more
complete compensation is searched. According to (13) and Figure 3, this objective requires
in general the use of six ANNs for the estimation of the rectangular coefficients AI,i, BI,i,
AV,i and BV,i. In addition, a different computation block is used after the work of the ANNs,
as described in Section 2 and Appendix A, and shown schematically in Figure 3b.

The same system parameters of Table 2 were used. The waveforms in Figure 8 show
the results, before and after the connection of the shunt APF at time t = 0.08 s. The source
currents become sinusoidal and in phase with the voltages. The ITHD is reduced from 43%
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to 3.7%, improving the PF from 0.583 to 0.9993. Figure 9 shows the Simulink model for this
compensation strategy.
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Figure 9. MATLAB-Simulink model in the practical case of UpfC control with a change in connection
of a linear load in parallel with the nonlinear one. It shows details inside the NN Block (for clarity,
only a part of the 6-ANN content), and details inside the “Generation I ref” subsystem with the
computations for generating the waveforms by using the 12 coefficients.

Next, some tests were carried out to observe the dynamic response in case of load
changes. Two different changes were applied. In the first test, whose Simulink model
is shown in Figure 9, a linear load was connected in parallel with the nonlinear one of
Figure 3a or Figure 9, at t = 0.1 s, with the same values of R and L as in the former subsection.
Figure 10 shows the results. It can be seen that after two cycles, the source currents recover
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the steady state sinusoidal waveforms, in phase with the voltages. The ITHD after the
change is 24% for the load currents and 2.2% for the source currents. The current values
after the change are 7.63 A at the load and 5.78 A at the source. The PF is 0.7702 at the load
and 0.9998 at the source.
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In the second load change tested, an increase in the nonlinear load was applied,
connecting a new RL load in parallel with the RL branches of Figure 3a, behind the
thyristors’ regulator. Figure 11 shows the waveforms. Again, after a short transient, the
source currents recover the desired stationary state with sinusoidal waveforms, in phase
with the voltages. The ITHD after the change is 43% for the load currents and 3.3% at the
source. The current values are 6.69 A at the load and 3.90 A at the source. The PF is 0.5828
at the load and 0.9994 at the source.

Some of the Adaline-based control methods show that the time interval to recover
stationary state after a change is around one quarter of a cycle [11,12]. In [12], they have
proven that among the different tested methods, this is the fastest response observed,
while some other control methods require several cycles. For example, one of the recent
control methods with good general results, as is the case of [23], using the NARX neural
network, requires more than five cycles after the load change. Hence, we can affirm that
the two-cycle interval observed in this work is not a high amount of time.

4.1.3. UpfC Tests by Frequency Deviations

One of the relevant objectives of this work was the robust behavior of the control
system under the contingency of frequency deviation. For the ANN training, the distorted
waveform patterns included different fundamental frequency values. The UpfC control
performance was tested in two different ways. In the first test, the performance of the
compensation system was analyzed in a range of frequencies between 45 and 55 Hz, in
terms of ITHD and PF. In the second test, the dynamic response was evaluated in case of
frequency changes during system operation.



Appl. Sci. 2021, 11, 7737 15 of 23
Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 23 
 

 
Figure 11. Dynamic response with UpfC control, applying at t = 0.1 s a load change: nonlinear load 
increase. Up: one phase load current. Middle: source currents, with ITHD = 3.3% after the change. 
Down: one phase source current and voltage, showing the PF compensation. 

Some of the Adaline-based control methods show that the time interval to recover 
stationary state after a change is around one quarter of a cycle [11,12]. In [12], they have 
proven that among the different tested methods, this is the fastest response observed, 
while some other control methods require several cycles. For example, one of the recent 
control methods with good general results, as is the case of [23], using the NARX neural 
network, requires more than five cycles after the load change. Hence, we can affirm that 
the two-cycle interval observed in this work is not a high amount of time. 

4.1.3. UpfC Tests by Frequency Deviations 
One of the relevant objectives of this work was the robust behavior of the control 

system under the contingency of frequency deviation. For the ANN training, the distorted 
waveform patterns included different fundamental frequency values. The UpfC control 
performance was tested in two different ways. In the first test, the performance of the 
compensation system was analyzed in a range of frequencies between 45 and 55 Hz, in 
terms of ITHD and PF. In the second test, the dynamic response was evaluated in case of 
frequency changes during system operation. 

With the same system parameters of Table 2, the measurements for different frequen-
cies were established. In previous subsections, with a 50 Hz frequency, it has been re-
ported that the load ITHD was 43% and the PF was 0.583. Now, it can be observed in 
Figure 12 the graphical results of ITHD and PF versus frequency. The load ITHD is high 
for every frequency, but the source ITHD remains under 5%, with values under 4% inside 
the important interval proposed by the IEC Standard [31], from 47 to 52 Hz. Regarding 
the PF achieved, the values are very close to unity, over 0.997 in the whole frequency in-
terval, and over 0.999 in the interval from 47 to 52 Hz. 
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With the same system parameters of Table 2, the measurements for different frequen-
cies were established. In previous subsections, with a 50 Hz frequency, it has been reported
that the load ITHD was 43% and the PF was 0.583. Now, it can be observed in Figure 12
the graphical results of ITHD and PF versus frequency. The load ITHD is high for every
frequency, but the source ITHD remains under 5%, with values under 4% inside the im-
portant interval proposed by the IEC Standard [31], from 47 to 52 Hz. Regarding the PF
achieved, the values are very close to unity, over 0.997 in the whole frequency interval, and
over 0.999 in the interval from 47 to 52 Hz.

In the second test, step changes of 0.5 Hz were applied during system operation. In
particular, Figure 13 shows the behavior for an increase from 50 to 50.5 Hz at t = 0.09 s, and
a decrease from 50 to 49.5 Hz at t = 0.09 s. The source current reaches steady state after
one cycle.

In conclusion, the UpfC control performance is robust enough under frequency de-
viations. It achieves the required compensation inside a wide frequency range and can
respond quickly to the frequency changes.

4.2. Experimental Results

Harnessing the potential of ANNs requires their implementation in a specific inte-
grated circuit. However, a laboratory setup based on data acquisition cards has allowed
for a first experimental validation in obtaining compensation currents with ANNs. Thus,
a modular system based on dSpace cards was developed. Specifically, the set includes a
DS1005 PPC control card developed from a PowerPC 750GX 1 GHz processor that runs
the control program in real time. This card manages the inputs and outputs from/to the
power system through a DS2004 card with 16 input channels, and a DS5101 DWO card
with 16 TTL pulse outputs. The input signals to the DS2004 card are from a set of Hall
effect LEM sensors: LV-25-P sensors for voltage signals and LA35-NP sensors for current
signals. The APF power circuit consists of a three-phase inverter with IGBTs, the Semikron
SKM50GB123D. It is a three-leg inverter with two capacitors on the DC side at whose



Appl. Sci. 2021, 11, 7737 16 of 23

midpoint the neutral connection can be made. More details on the experimental prototype
can be found in [2].
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Figure 13. Dynamic response with frequency changes, showing the source current and voltage
waveforms. Top graph: change from 50 to 50.5 Hz at t = 0.09 s. Bottom graph: change from 50 to
49.5 Hz at t = 0.09 s.

A three-phase diode rectifier with capacitive filtering on the DC side was connected
to the 400 V, 50 Hz distribution network (230 V phase voltage). This frequently constitutes
the input circuit of a variable speed drive of an asynchronous motor. Figure 14 shows the
phase voltage waveforms of the grid, which present the distortion and unbalance typical of
a low voltage supply. It also shows the voltage and current of the load for the same phase
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(phase a), where it can be observed the high current distortion corresponding to an ITHD
of 144%.
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by one of the phases, where the current waveform is highly distorted.

The UpfC strategy was executed on the control card, which has allowed determining
the compensation currents. Figure 15, upper graph, shows the compensation current
generated by the ANN control circuit. The middle graph shows the resulting sinusoidal
source currents, where the ITHD value is 3.9%. Finally, Figure 15, bottom graph, contains
the supply voltage and current waveforms in the same phase after compensation. As a
result, theses voltages and currents are collinear, reaching a power factor close to unity.

The unbalanced load performance was also tested. According to (8), the UpfC strategy
will produce source currents proportional to the source voltages. Therefore, in most real
cases, where not much voltage unbalance is present, the compensation will give rise to
balanced three-phase source currents. Figure 16 shows a load change from the previous
load features to lower impedance values, and different for each phase. Thus, the current
amplitudes become higher and show some unbalance. The load ITHD is over 140% in
every phase.

In Figure 17, the UpfC compensation results are presented. The top graph shows the
compensation current in one of the phases. The middle graph shows the sinusoidal source
currents, with the correction one cycle after the change, becoming quickly stationary and
almost balanced. The slight unbalance that can be appreciated is due to the small voltage
unbalance. The source ITHD values fall into 4.0%, 4.1%, and 3.8% for the phases a, b, and
c, respectively. Finally, Figure 17, bottom graph, contains the supply voltage and current
waveforms, which highlights the power factor correction.

After all these tests were carried out, it is important to highlight some relations with
the reference works. The source ITHD values achieved in this work, as in the best of the
Adaline or RNN works reviewed, are between 2% and 5%. The PF reached in these cases is
unity. The dynamical performance is as good as in many of the accepted control methods.
Lastly, the UpfC control strategy corrects the problem of unbalanced currents, in the case of
balanced source voltages. Table 3 shows a summary of some important features of different
ANN-based control methods in the literature included as references in this paper.
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a change occurs from balanced to unbalanced load. Each graph shows one of the phases together
with its respective source voltage.
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Table 3. Some features of the reference works, with control methods based on different ANN types.

ANN Type,
Reference

Applied
to APF

Source ITHD
<5%

Power Factor
Compensation

Balanced Source
Currents

Experiment
Results

Dynamical
Tests

Frequency
Deviations

Test

ADA [11] 3 3 7 7 3 3 7

ADA [14] 3 3 7 - - 3 3

ADA [16] 3 3 3 7 3 - -
RBF [19] 3 3 7 7 7 3 7

RBF [20] 3 3 - 3 7 3 7

RNN [21] 3 3 7 7 7 3 -
RNN [22] 3 3 7 7 3 3 -

NARX [23] 3 3 3 3 7 3 3

ESN [25] 3 3 3 3 3 3 7

MLP [32] 7 (1) - - 7 7 7

MLP [33] 3 7 7 7 3 - -
This work 3 3 3 3 (2) 3 3 3

(1) This method estimates a 4.4–6% ITHD value for the waveform resulting of subtracting the harmonic waveform from the distorted load
current, but without real compensation. (2) It works in the case of balanced supply voltages.

In the comparison of some reference works showed in Table 3, it can be seen that most
of the methods achieve an ITHD value below 5%, recommended by the EN Standard [42].
Regarding the other features showed in the table, we can affirm that the method proposed
in this paper reaches a complete set of requirements.

In future works, this MLP-based control method must be further tested in the experi-
mental platform with different loads and adverse conditions for an in-depth analysis of
the performance. Besides, it is important to try to apply new deep learning techniques
and other new ANN topologies, maintaining the control strategies and testing platforms
for comparison.
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5. Conclusions

A new control method for the three-phase shunt active power filters has been proposed
for harmonic and reactive power compensation. Over the years, many control strategies
based on artificial neural networks have been tested. However, the simple and extended
feedforward or multilayer perceptron ANN could not be successfully applied as the core
element of an APF control. In this work, the search for an appropriate MLP application
strategy and an in-depth training with distorted waveforms allowed us to prove that
this ANN topology is a feasible alternative. An MLP containing two hidden neuron
layers (10-10-2 neurons) was used for inputs consisting of the samples of every waveform
cycle and outputs consisting of the fundamental harmonic Fourier coefficients, A1 and
B1. Six identical ANNs estimate the coefficients of fundamental currents and voltages.
The computation method described in the work allows us to obtain the compensation
currents from these coefficients. The 100 thousand waveform patterns for the training
were generated through random harmonic combinations, including high order harmonics
and variable fundamental frequency. The MLP learning, with mse around 2·10−7, was
enough to reach accurate fundamental harmonic waveforms of currents and voltages in
any practical three-phase system, even in the case of frequency deviations in the interval
from 47 to 52 Hz, in compliance with the IEC standards. The compensation strategies were
applied in practical cases implemented in a first stage with MATLAB-Simulink. After that,
the method was also tested in an experimental prototype. Features such as source ITHD
below 5%, unit power factor, good dynamic performance, and balanced source currents
validate the proposal.
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Appendix A

The load conductance parameter G is determined by the ratio of the active power trans-
ferred to it and the squared rms value of the three-phase voltage applied to its terminals,
Equation (9). Both terms must be estimated.

The average (active) power consumed by the load is only due to the current funda-
mental component for the generic conditions of sinusoidal balanced/unbalanced voltage.
That is, the instantaneous power transferred by one of the phase currents i is:

pi(t) = vi(t) · ii(t) =
(

AVi cos ω t + BVi sin ω t
)
· (AIi cos ω t + BIi sin ω t) (A1)

with i = a, b, c. The application of some trigonometric identities in (A1) allows us to
obtain (A2):

pi(t) = AVi AIi +
AViBIi + BVi AIi

2
sin 2ω t + (BViBIi − AVi AIi) sin2 ω t (A2)

The active power for the phase i is the average value of pi(t) over a period. This is:

Pi =
1
T

∫ T

0
pi(t) dt =

AVi AIi + BViBIi
2

(A3)
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In a three-phase system, the calculation of the three active powers of each phase (A3)
determines the total active power:

P =
1
2
(AVa AIa + BVaBIa + AVb AIb + BVbBIb + AVc AIc + BVcBIc) (A4)

An analogous approach allows obtaining the rms value of the three-phase voltage as a
function of the rectangular coefficients, therefore:

V2 = V2
a + V2

b + V2
c (A5)

where for each of the phases it is verified (A6):

√
2 Vi =

√
A2

Vi + B2
Vi (A6)

and therefore:
V2 =

1
2

(
A2

Va + B2
Va + A2

Vb + B2
Vb + A2

Vc + B2
Vc

)
(A7)

From (A4) and (A7), G is obtained:

G =
AVa AIa + BVaBIa + AVb AIb + BVbBIb + AVc AIc + BVcBIc

A2
Va + B2

Va + A2
Vb + B2

Vb + A2
Vc + B2

Vc
(A8)

The computation of (A8) requires the knowledge of twelve rectangular coefficients. If
the voltages are balanced, (A8) is reduced to (12), and only four rectangular coefficients
corresponding to only one of the phases would be necessary.
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