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Abstract: Collecting data allows researchers to store and analyze important information about
activities, events, and situations. Gathering this information can also help us make decisions, control
processes, and analyze what happens and when it happens. In fact, a scientific investigation is the
way scientists use the scientific method to collect the data and evidence that they plan to analyze.
Neuroscience and other related activities are set to collect their own big datasets, but to exploit their
full potential, we need ways to standardize, integrate, and synthesize diverse types of data. Although
the use of low-cost ElectroEncephaloGraphy (EEG) devices has increased, such as those whose
price is below 300 USD, their role in neuroscience research activities has not been well supported;
there are weaknesses in collecting the data and information. The primary objective of this paper
was to describe a tool for data management and visualization, called MuseStudio, for low-cost
devices; specifically, our tool is related to the Muse brain-sensing headband, a personal meditation
assistant with additional possibilities. MuseStudio was developed in Python following the best
practices in data analysis and is fully compatible with the Brain Imaging Data Structure (BIDS), which
specifies how brain data must be managed. Our open-source tool can import and export data from
Muse devices and allows viewing real-time brain data, and the BIDS exporting capabilities can be
successfully validated following the available guidelines. Moreover, these and other functional and
nonfunctional features were validated by involving five experts as validators through the DESMET
method, and a latency analysis was also performed and discussed. The results of these validation
activities were successful at collecting and managing electroencephalogram data.

Keywords: brain data; low-cost devices; EEG; BIDS; neuroscience; library

1. Introduction

Data are crucial elements of all systems that surround us today. Data collection is the
process of gathering and measuring information on variables of interest, in an established
systematic fashion that enables one to answer stated research questions, test hypotheses,
and evaluate outcomes. The data collection component of research is common to all fields of
study including physical and social sciences, humanities, business, etc. While methods vary
by discipline, the emphasis on ensuring accurate and honest collection remains the same.

Indeed, storing valuable data is beneficial as this enables comparisons between dif-
ferent situations of the same subject, the same situation between different subjects, and a
combination of both. As a result, proper treatment provides evidence in the scope of
several environments, such as: patient monitoring with automatic health checks; sleep
tracking with state detection; student performance analysis and prediction; obtaining a
birds-eye view of how people travel, given the difficulties imposed by COVID-19; many
other possibilities ruled by the quality of the data acquired.

In particular, the demand for ElectroEncephaloGraphy (EEG) and the devices that
allow gathering brain activity has been increasing in the last few years. That interest is
expected to keep growing in the future [1]. Medicine, marketing, interaction, and signal
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processing are some disciplines that require these kinds of products, especially those that
feature dry sensors, knowing that some of them are relatively inexpensive.

Regardless of the field of study or preference for defining data (quantitative, qual-
itative), accurate data collection is essential to maintain the integrity of research. Both
the selection of appropriate data collection instruments (existing, modified, or newly de-
veloped) and clearly delineated instructions for their correct use reduce the likelihood of
errors occurring.

One of the main contributions is the compatibility with the Brain Imaging Data
Structure (BIDS) [2] standard, which facilitates research activities related to the use of EEG
devices. This standard allows researchers to organize and share the data associated with
studies carried out in their laboratories. However, some EEG devices available on the
market are not compatible with the BIDS. This issue makes managing recordings, sessions,
and users a very difficult and inconvenient task. The majority of low-cost EEG devices
have this limitation, and even though they are compatible with proprietary software for
brain activity, the features included are limited and not very flexible [3].

In this context, we used a low-cost EEG device, known as Interaxon Muse 2 [4] (Muse
and Muse S devices are also compatible). The manufacturer offered an SDK with computer
support in the past (which was never compatible with Muse 2 and Muse S). However, it
was deprecated, and currently, there is no viable alternative to use the devices in a research
or professional environment. This only enables their connection to the original smartphone
app, which is limited to guided meditation, and not intended for experiments.

To overcome the imposed limitations, we developed a Python library, called MuseStu-
dio [5], that allows managing brain activity data from users with several sessions, including
other helpful characteristics. The main research question that guided the development of
this paper is the following: What (internal and external) features should a low-cost EEG
library have to manage users’ information while performing different activities? Among
the solutions that MuseStudio provides, importing and exporting data stand as key dif-
ferentiators using Muse. To ensure compatibility with current and future research, we
focused on compliance with the best practices in data analysis and sharing [2]. Additionally,
the recommendations from the OHBM COBIDAS MEEG committee [6] entirely apply to
the introduced library in this paper.

There are multiple scenarios in which MuseStudio is helpful: sharing brain activity
data recordings with colleagues thanks to the BIDS standard support; bulk importing other
recordings in BIDS format, including raw recordings; converting to MNE format for further
noise reduction, signal transformation, and analysis; viewing the experiments taking place
in real time with several devices connected at the same time. For instance, a experiment
can be performed with multiple Muse 2 devices, connected to a single computer running
MuseStudio. Once the recording is finished, it can be converted for feature extraction and
exported to share it with peers or attached to a research article for its publication, as it
can be imported by anyone interested. Moreover, there is a big community around Muse
devices due to its convenience and precision.

The article provides the related work, first. Then, the set of features included in the
software with their specific purpose is presented. Afterwards, different examples of use
are shown, outlining the results and the aspects of the visualization screen. Lastly, some
insights about the necessity of this proposal are given, together with the discussion and the
conclusion sections.

2. Background

An electroencephalogram is a data-intensive test that allows detecting abnormalities
in brain waves, or the electrical activity of the brain [7]. During the procedure, electrodes
consisting of small metal discs with thin wires are pasted onto the scalp. This technology
has a wide variety of uses, especially in the emotion recognition domain, as the results of
these articles showed [8,9].
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Due to the previously annotated increasing demand of EEG devices, the number
of available devices is on the rise, and they have many different characteristics [3,10,11].
Moreover, these devices are not only present in the research environment [12–17], but also
in the entertainment one [18–20]. A recent article [21] analyzed the number of electrodes
included in devices depending on their design. The authors concluded that the availability
of more or less electrodes depends on the final application in which the device will be
used. However, in these scenarios, the number of sensors is not the only key factor: data
collection and software for supporting them are other relevant factors for success.

In our case, we focused on low-cost EEG devices [10,22,23]. The price requirement
results in the number of electrodes being reduced, and then, the device has less capabilities
depending on the field in which it is deployed [21]. Considering that there are still plenty of
applications that can be explored and relate to meditation, relaxation, concentration, stress,
and anxiety, many therapeutic and entertainment activities can be approached. In this
research, Muse 2 was chosen among other viable alternatives. It features a sampling rate of
256 Hz for EEG concurrent signals, four dry capturing electrodes, plus frontal reference
channels, an accelerometer, a gyroscope, a PhotoPlethysmoGraphy (PPG) sensor, a built-in
battery, and Bluetooth. Following the 10-20 standard system, the device locates its sensors
at AF7, AF8, TP9, and TP10.

Muse has been validated as a device for conducting Event-Related Potential (ERP)
research [24]. This device has been compared with other wearable sensors resulting in
high performance in the fields of ease of integration and applied usability [25]. In addition,
many other studies have used Muse for several purposes, including brain wave activity
detection during training [26], enjoyment evaluation [27], accelerometer measurement of
head movement during surgery [28], and concentration and stress measurement during
surgery [29].

In addition to the inherent hardware limitations of the devices, the software restric-
tions in terms of applications, software development kits, and application programming
interfaces should be considered as well [3]. The great majority of software provided by
manufacturers cannot manage activities, record sessions, and provide remote real-time
visualization while participants are being evaluated. These issues are important limitations
in supporting scientific activities. The community of users and researchers of, for instance,
Muse products cannot perform data management for several sessions and different users
and, later, analyze these data. The traditional manner of making evaluations with Muse is
shown in Figure 1. To overcome some of these issues, MuseStudio allows storing data in a
structured manner and sharing them.

Figure 1. Traditional usage of Muse in experiments.
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Specifically, Muse does not include brain data management software, nor real-time
visualization, nor recording, so one cannot make use of its potential features. Our solution
provides a Python library that allows working with those functionalities, even with several
devices and places at the same time.

2.1. Connection with Muse Devices

In order to connect Muse with a computer using Bluetooth, there exist two applications
that use Lab Streaming Layer (LSL) to transmit data. While MUSE-LSL [30] connects to
one Muse, BlueMuse (https://github.com/kowalej/BlueMuse, accessed on 17 November
2020) can stream data from multiple Muse devices at the same time. However, note that the
multidevice capabilities rely on the capacity of the receiving Bluetooth adapter. The data
can be further recorded in files with LabRecorder (https://github.com/labstreaminglayer/
App-LabRecorder, accessed on 30 November 2020), which can store data from several
Muse devices in a single eXtensible Data Format (XDF) file.

As an alternative, there is a hardware-based framework [31] that measures EEG data
obtained from 10 or more people using the Muse headband and allows acquiring EEG
data at up to a 1 kHz frequency from up to 20 people simultaneously. However, in this
hardware proposal, EEG data management cannot be provided, and it is only a graphical
visualization tool.

The developed library requires some specific Python packages to work with the data,
which are outlined in the repository. Additionally, it is compatible with other software
applications that extend its functionality. The library has two main starting points: record-
ings already stored and live visualization of EEG data. The former requires files in XDF
(https://github.com/sccn/xdf, accessed on 5 November 2020), which is a container specif-
ically designed to include multichannel time series data with associated meta information.
It can handle multiple types of data, including EEG. The latter adds compatibility with
LSL (https://github.com/sccn/labstreaminglayer, accessed on 5 November 2020), which
allows sending and receiving data in research experiments through the network. In ad-
dition, it features time synchronization and real-time data access in a structured manner.
LSL can send several channels at the same time through the same stream, which ensures
synchronization even at the channel level. As described previously, Muse has different
kinds of data, including EEG, PPG, accelerometer, and gyroscope data. Those sensors
do not function at the same sampling frequency, so they must be separated into different
streams because of this incompatibility. The sampling frequencies are: 256 Hz for EEG,
64 Hz for PPG, 50 Hz for the accelerometer, and 50 Hz for the gyroscope. For this reason,
the channels of the same type are sent in the form of a container with the captured data
for a particular sample, but different types are sent over distinct containers. Four streams
or containers are expected for a standard experiment with three channels in each of them,
except for EEG, which contains four due to the four channels available. In general, equally
sampled data are always sent in the same package.

2.2. Raw Data Import

MuseStudio facilitates the data import process from raw XDF files. Those can contain
EEG, PPG, accelerometer, and gyroscope recordings from multiple Muses at the same time.
That adds processing complexity because the captured data are not properly organized at
recording time. The separation of recordings into different containers causes the reception
of disordered data at the stream-type level. For instance, EEG and PPG may not be received
in such an order, but it is ensured that channels inside those streams are correctly ordered
and ready to use afterwards. For this reason, the library seeks the metadata of every
channel to rearrange them into different sets of recordings, which can be further used
accordingly. Figure 2 shows an example of a file containing the recording of two Muses
(Step 1), which were used in a experiment simultaneously. The library then converts the
file into four independent lists with the same length as the number of devices used (Step 2).
Those lists already contain the information of the device used in each recording.

https://github.com/kowalej/BlueMuse
https://github.com/labstreaminglayer/App-LabRecorder
https://github.com/labstreaminglayer/App-LabRecorder
https://github.com/sccn/xdf
https://github.com/sccn/labstreaminglayer
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Figure 2. Example of XDF file conversion into separate lists.

Additionally, there is compatibility for importing all the XDF files located inside a
particular folder. In such a case, the output remains the same, being four lists with a
length that is equivalent to the sum of all the recordings inside all the files. Moreover,
the library provides flexibility to researchers using Muse and Python because the data
import approach only returns the lists without any other manipulation, so they can start
working with native data.

2.3. Convert Data

Apart from being able to work with lists, there are two packages that are relevant
exponents in their respective fields:

• MNE-Python [32] (or simply MNE) is an open-source package that allows the prepro-
cessing, visualization, and analysis of human neurophysiological data;

• Pandas [33] provides high-level real-world data analysis and is becoming the most
powerful and flexible open-source manipulation tool.

For researchers, being able to work with those packages is critical. This is especially
relevant with MNE, because it is the most viable alternative when operating with EEG
data. However, the package does not provide any kind of support for Muse, nor its native
file formats. As a result, we provided a native implementation in MuseStudio that brings
full interoperability for both packages.

Converting data into MNE format requires some considerations. In general, the con-
version includes information about the sensor coordinates, the physiological coordinates
of the study participants, the powerline frequency (which depends on the region, 50 Hz
or 60 Hz), the data in volts, the channels’ names, the associated annotations, and the type
of data. In this case, only EEG data were considered because MNE does not work with
PPG, accelerometer, and gyroscope data. The result of the transformation is an array of
RawArray objects with the same order as the list obtained in the previous stage. Those
objects can be iterated to perform the analysis in any research study.

The outcome of the conversion to Pandas is a list with several data frames that can
be used for analysis using data science techniques. A single data frame has the following
columns: timestamp, AF7, AF8, TP9, TP10, X_acc, Y_acc, Z_acc, X_gyr, Y_gyr, Z_gyr, 1_ppg,
2_ppg, 3_ppg. These correspond to all the streams provided by Muse. The differences
between the sampling frequencies of the streams result in blank fields in rows.

2.4. BIDS Format Import and Export

MuseStudio, in order to support the data management of brain activity with Muse
products, must consider data structural mechanisms. These mechanisms are inspired by
the standard Brain Imaging Data Structure (BIDS) [2]. The addition of the BIDS support
allows sharing Muse recordings with other researchers, even if they do not have the set of
tools required to work with the device. The library, with the support of MNE-BIDS [34],
manages all the necessary information to save the configuration data that the BIDS requires
according to its specification. With that aim, two structures were defined, setup and
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participants, which are available in Appendix A. These are lists of dictionaries, so that
every recording has a corresponding dictionary with its particular details.

The setup structure includes this information: the name of the subject; the session
and run numbers; the acquisition parameters; the task performed; the processing label;
the name of the recording; the coordinate space; the split of the continuous recording; the
file name suffix and extension; the root path of the files. In the following examples, all the
fields were simplified to None, but they should be modified accordingly.

The BIDS also requires a participants’ file with the details of every member of the
research study. The structure presented contains the information about the name of the sub-
ject (which must coincide with those in the setup), the age, the sex, the dominant hand, and
root directory path. This file is an explicit recommendation of the BIDS specification [35],
which suggests its addition in the root path of the main recordings directory.

The purpose of this configuration is to simplify how recordings are exported and
imported. In addition, it allows knowing the characteristics of the experiments and the
participants rapidly. When sharing one or more recordings, a researcher would only
share the BIDS-formatted directory and the two updated lists described above. Using the
designed method, no ambiguity is possible. Lastly, the creation of two structures, which are
related thanks to the “subject” field (that is unique), avoids the repetition of information.
A participant can have several recordings, but it is still the same participant. Therefore,
his/her details must be added to the participants’ structure only once, while the setup
structure can hold several recordings.

2.5. Real-Time Remote View

Performing neural experiments usually requires real-time visualization of the brain
signals captured. With time-based graphs, it is possible to detect how good the data
received from the electrodes are, due to the fact that they may not have full contact with
the skin and produce extra noise. Muse, with four electrodes, is especially vulnerable to
this issue because one bad sensor can invalidate a full recording. The current available
solution [30] only shows real-time visualization for one device at a time. Moreover, it only
works on the same computer to which Muse is connected. This problem narrows down
the flexibility when researchers want to perform experiments with multiple devices at
once. The MuseStudio library provides access to real-time graphs no matter the number of
devices attached. Additionally, it shows when the contact of the sensors with the skin is
good for each of them independently.

Globalization has broken many barriers, and healthcare is one of them. Telemedicine [36]
is increasingly being adopted for receiving medical treatment at a distance. In fact, patients
who receive palliative care by telemedicine are very satisfied with the results. For this
reason, we want everyone to be able to access neuroevaluations anywhere in the world
without need to travel long distances to reach experts.

Instead of creating a local instance of a program, we created a web server with an IP
address and a port that users can access through a web browser. This allows many users to
be connected to the same endpoint, even if they are located outside the local area network.
However, as a prerequisite, the server port must be connected to the Internet for external
access. The implementation can be used straight away without authentication, and it is
modular, so it can be integrated with other Python environments without adaptation, such
as a website with a log-in required. The web browser must have JavaScript enabled to
show the graphs. Finally, the complete set of options added is: sensor selection, update
interval (from 200 ms to 5 s), play/pause, zoom in/out, and expand graphs.

3. Method

This section identifies and describes the internal characteristics of the MuseStudio
library [5] available at https://github.com/miguelascifo/MuseStudio, accessed on 26
February 2021, which can be installed through the Python pip package manager (https:
//pypi.org/project/musestudio/, accessed on 3 March 2021) as well. The main internal

https://github.com/miguelascifo/MuseStudio
https://pypi.org/project/musestudio/
https://pypi.org/project/musestudio/
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requirements derived from the functionality of MuseStudio are presented in this section,
including raw data importation and real-time data visualization. Raw data importation
involves two activities: data conversion and data organization with the BIDS. All these
activities are described below.

3.1. Data Conversion

MuseStudio can import from XDF files to work with Python arrays. There are two
methods created for importing recordings, and both return the same data. The method
read_raw_xdf handles one file, and read_raw_xdf_dir handles a directory with several XDF
files. The following code shows an example of the latter:

stream_eeg, stream_acc, stream_ppg, stream_gyr, filenames = read_raw_xdf_dir("/path/to/directory")

where stream_eeg, stream_acc, stream_ppg, stream_gyr, and filenames are lists containing the
data for EEG, the accelerometer, PPG, the gyroscope, and the file names of all
recordings, respectively.

Once the data are imported using the methods exposed by the library, they can be
converted into the MNE RawArray and Pandas data frame. One key difference between
them is that MNE provides a powerful set of tools for EEG streams, but does not support
the rest. For that reason, all data can be manipulated through data frames. Again, one
method is necessary for the conversion:

raw = to_mne_eeg(eegstream = stream_eeg, line_freq = 50, filenames = filenames, nasion = [0,0,0],
lpa = [0,0,0], rpa = [0,0,0])

where eegstream is the list of EEG data previously imported, line_freq the powerline fre-
quency of the region (50 for Europe), and filenames the list of file names imported. The three
following lists correspond to the nasion fiducial point (nasion), the left periauricular fidu-
cial point (lpa), and the right periauricular fiducial point (rpa). Those indicate a precise
reference for the EEG sensors’ position on the head [37].

The conversion to the Pandas data frame gives the flexibility to import only the streams
in which the researcher is interested. This example of usage includes all the streams at once:

df = to_df(mne_eeg = raw, eegstream = stream_eeg, accstream = stream_acc, ppgstream = stream_ppg,
gyrstream = stream_gyr)

the parameters being those variables that were already described. The resulting data frame
contains blank spaces (Pandas NotaNumber data types) between rows in the last three
columns. That happens because the sampling rates are different, as explained previously.

3.2. Working with the BIDS Specification

The BIDS specification establishes the directory structure to standardize how re-
searchers store and share EEG recordings. The huge advantages make using it useful for
working in a collaborative environment. To simplify the process, we created the setup
structure. In order to export recordings, the BIDS file name paths are necessary, which
is the information of the type BIDSPath object. Afterwards, the paths of the recordings
included in setup are returned. Then, the first step is to execute the appropriate method
provided for such a task:

bids_paths = create_bids_path(setup = setup)

After that, there is another method that uses those paths together with other parame-
ters to finally export the recordings in the BIDS format. This example uses the participants
structure to specify the characteristics of the subjects and the list of BIDSPath objects:

export_bids(raweeg = raw, bids_paths = bids, participants = participants, overwrite = False,
verbose = False)
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With that process, the recordings are exported to the directory indicated in the “root”
field inside setup. In contrast, importing from the BIDS requires executing one method with
a single parameter, which is setup. It returns the list of RawArray objects and the list of
BIDSPath objects for the recordings in setup:

raw, bids_paths = import_bids(setup = setup)

With the solution proposed, anyone can import directly into MNE to start working
with Muse as if it were any other more advanced device, provided that other researchers
have exported the recordings previously.

3.3. Signal Visualization

Performing experiments with EEG can be very complex due to the difficulty of creating
high-quality recordings. One of the main issues, apart from the design of the experiment
itself, is measuring how well the data were captured. Electrodes inside devices are very
sensitive to electromagnetic noise, so ensuring good skin contact is critical to avoid incon-
sistent results across recordings. For this reason, the library includes the necessary features
to enable researchers to watch the signals of several devices in real time.

Sometimes, experiments are not run by medical experts, which is especially the case
for low-cost devices. Therefore, we ensured that anyone can have access to the data while
participants are being evaluated. The web server is started from the machine to which the
devices are connected and returns to the console the internal IP address, together with the
associated port. The process was simplified as two methods:

start_streaming(search_streams(), debug=True)

There are two different ways of visualizing the signals, compressed and expanded.
In Figure 3, the overall compressed view of the website is shown with two devices at the
same time. The latter is shown in Figure 4. Additionally, there are controls for the update
interval (from 200 ms to 5 s), the channels to watch, the zoom level, and the possibility
to play and pause the live view. For anyone without deep knowledge about performing
experiments, we included a marker to know if a particular electrode had good skin contact.
This helps to keep noise sufficiently low to retain a high probability of success. Lastly,
the library automatically detects how many Muses are connected to the computer and
adapts the interface to show those.

In Figure 5, we show our solution for experiments with multiple devices connected at
the same time, while watching the streams. Additionally, the data file structure exported
using the BIDS format is presented.
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Figure 3. Overview of the interface.

Figure 4. Expanded view of the signals.
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Figure 5. Solution designed for experiments.

4. Validation

The main validation activities of MuseStudio are described in this section. The relevant
external features of MuseStudio were evaluated by using qualitative and quantitative
methods. For the evaluation of the functional and nonfunctional features of a library for
supporting brain data management, such as MuseStudio, a well-known evaluation method
from the software engineering field was use. Performance and latency are other important
elements when brain data are collected and visualized.

First, over the years, many software engineering methodology evaluation frameworks
have been published. DESMET [38] is a methodology for evaluating software engineering
methods/tools by Barbara Kitchenham. DESMET can be used to compare a generic method
or a method that is a specific approach within a generic method or tool. This methodology
has been used in other articles for evaluation purposes [39]. According to DESMET, there
are two types of evaluations:

1. The evaluation of the measureable effects of using a method or tool;
2. The evaluation of the appropriateness of the method or tool, i.e., how usable or useful

the method is.

DESMET refers to the measureable effects of using a method as quantitative or ob-
jective, while method appropriateness is referred to as qualitative, feature analysis, or
subjective. Method appropriateness is accessed usually in terms of features provided by
the method/tool or the training requirements. Another important consideration is how to
organize the evaluation process. According to DESMET, for a qualitative evaluation, it can
be organized as a survey, a case study, or a formal experiment. In qualitative screening,
it can be organized as a feature screening mode, a survey, a formal experiment, or a case
study. DESMET qualitative feature screening mode can be performed by a single person for
a number of methods where the evaluator not only determines the features to be accessed
and their rating scale, but also performs the assessment. In qualitative screening mode, the
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evaluations are usually based on the literature describing the software method, rather than
actually using the method.

Secondly, a latency study in MuseStudio was also conducted, and the data gathered
are shown.

4.1. Analyzing the Main Features of MuseStudio

Using as the input a demonstration of MuseStudio, the evaluation of this library was
carried out using DESMET [38]. This is a set of techniques applicable to evaluating both
software engineering methods and tools. We used the method based on a qualitative case
study, which describes a feature-based evaluation. Following the guidelines specified for
this technique, an initial list of features that a library or tool for EEG data management
should provide was defined (see Table 1). These features were established by two experts
(full professors) in cognitive neuropsychology from the University of Castilla-La Mancha
(UCLM). As can be observed, some of the features are directly related to the availability
of the BIDS.

DESMET was deployed by involving five experts. First, two experts were asked
about the main requirements a library for low-cost EEG devices should provide. Second,
another three experts were involved to validate MuseStudio by considering the previously
proposed requirements. All the experts were professionals with knowledge and skills
related to EEG devices, neuroscience, and psychology.

Once Table 1 has been filled in by the experts, DESMET determines the importance
degree that should be assigned to each identified feature. Specifically, the importance de-
grees are Mandatory (M), Highly Desirable (HD), Desirable (D), and Nice to have (N). This
importance was also established by the consulted experts.

By using these importance degrees, Table 2 was filled in. As can be noticed, the most
important functional and nonfunctional requirements to be supported are signal visualiza-
tion, import and export data management, and scalability.
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Table 1. List of features for MuseStudio’s evaluation.

Feature Description

Signal visualization The tool should be able to provide graphic visualization of the associated signals to
each sensor of the headband and differentiate among them.

Session management (import) The tool has to store or import the associated data of each session and use and dif-
ferentiate among them.

Session management (export) The tool has to allow sharing stored data, that is the tool should be able to export
the stored data of each session and user.

User control The tool has to provide user control during a session. For instance, the graphical
visualization of EEG signals should be stopped and restarted.

Scenario identification The tool should be able to identify rare scenarios, for instance a poorly worn head-
band.

Easy of data reviewing The stored data of each session should be easy to review and manage.

Consistency The stored data of each session and user should be jointly managed.

Real time (same time) The tool must allow following a session in real time, including minimal latency to
improve the performance.

At a distance (different place) The tool must allow following a session at a distance, so that the user/headband can
be in different places and the data visualization can be performed in different places.

Scalability The tool must allow using several headbands simultaneously with different users.
Guided user interface The tool must provide a user-friendly interface to operate easily with its features.

Table 2. Relevance of features (Mandatory (M), Highly Desirable (HD), Desirable (D), and Nice to
have (N)).

Feature Importance

Signal visualization M
Session management (import) M
Session management (export) M
User control HD
Scenario identification HD
Easy for data reviewing D
Consistency D
Real time (same time) HD
At a distance (different place) HD
Scalability M
Guided user interface HD

Afterwards, according to DESMET, a scale to evaluate each of the described features
should be provided. The scale proposed by DESMET (see Table 3) was applied to evaluate
each feature according to the following factors: Conformance Acceptability Threshold
(CAT) and Conformance score obtained (CSO) for MuseStudio. In particular, three experts
(associate professors) from the University of Castilla-La Mancha with experience in the
fields emotion recognition, health psychology, and signal processing/computer science
agreed about the values of CSOi.
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Table 3. Judgment scale to assess tool support for a feature.

Generic Scale Point Definition of Scale Point Scale Point
Mapping

Makes things worse Causes confusion. The way the feature is represented makes its modeling
difficult and/or encourages its incorrect use.

−1

No support Fails to recognize it. The approach is not able to model a certain feature. 0

Little support The feature is supported indirectly, for example using another
model/approach in a nonstandard combination.

1

Some support The feature is explicitly in the feature list of the model. However, it does not
cater to some aspects of the feature use.

2

Strong support The feature is explicitly in the feature list of the model. All aspects of the
feature are covered, but its use depends on the expertise of the user.

3

Very strong support The feature is explicitly in the feature list of the model. All aspects of the
feature are covered, and the approach provides a guide to assist the user.

4

Full support The feature appears explicitly in the feature list of the model. All its aspects
are covered, and the approach provides a methodology to assist the user.

5

Once each feature was evaluated, the difference between the CAT and CSO factors
was computed as shown in the column Difference (Dif) in Table 4.

Therefore, in order to interpret the values shown in Table 4, the following equations
should be considered:

Impi = Level of relevance of each feature (i)

CATi = Level of support of each feature (i)

CSOi = Quantitative evaluation of each feature (i) by specialists in several fields

Di fi = CSOi − CATi (1)

Scorei = Impi ∗ Di fi (2)

Total =
f eatures

∑
i=1

Scorei (3)

We should highlight that a variation of the DESMET method was created. The Im-
portance (Imp) of each feature was weighed using a scale from 1 to 4 (Nice to have—1,
Desirable—2, Highly Desirable—3, Mandatory—4). The importance was used to com-
pute the final score of each feature or requirement by multiplying the importance by the
difference. This computation is shown in the column Score (Sco) in Table 4. This score
is useful for comparing different alternatives, but in our case, the score was only for the
MuseStudio’s valorization. Lastly, the final score of each technique (Total) was obtained by
adding the scores of all the features.

The MuseStudio library achieved a positive total score (15 points). Moreover, it
was especially evaluated positively for the “at a distance” feature, since MuseStudio
provides full support for exporting the brain activity data. It was also highlighted that
the MuseStudio tool has consistency and easily represents the requirements’ importance,
giving no support to determining which requirements are more important than the others.
In any case, MuseStudio provides facilities for data gathering and collection in conformance
with the BIDS proposal. Brain data from Muse devices are organized and structured with
MuseStudio, and these data can be visualized, imported, exported, and analyzed.
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Table 4. Results of MuseStudio’s evaluation.

Feature Imp CAT CSO Dif Score

Signal visualization 4 5 5 0 0
Session management (import) 4 5 5 0 0
Session management (export) 4 4 5 1 4
User control 3 3 4 1 3
Scenario identification 3 3 3 0 0
Easy for data reviewing 2 2 4 2 4
Consistency 2 2 4 2 4
Real time (same time) 3 3 4 1 3
At a distance (different place) 3 3 5 2 6
Scalability 4 4 4 0 0
Guided user interface 3 3 0 −3 −9

Total 15

In addition, as DESMET suggests, we performed a comparison of the percentage
of each feature satisfied by MuseStudio. Figure 6 illustrates the results relative to the
considered features. The outcomes of the validation are graphically shown in Figure 6. All
previously established requirements were fully achieved. However, additional effort could
be made on the user interface feature. At this moment, the information of the sessions and
participants must be established directly by modifying this information in different files.
Forms may be designed to ease these tasks.

Understanding the score requires knowing how DESMET works. First, the level of
importance of a feature was determined by experts without trying the library (between −1
and 5). Thereafter, other experts determined how well implemented a particular feature
was (between −1 and 5 again).

The current implementation of MuseStudio satisfies the requirements or features
related to visualization, import data, scenario identification, and scalability. Other features
of MuseStudio, such as data reviewing and data consistency, are more than satisfied, and
the rest are also oversatisfied. At this time, the identified weakness of MuseStudio is that
its users need to have certain knowledge about Python, because it does not have a guided
user interface yet.

0 20 40 60 80 100
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User control
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Easy for data reviewing
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Real Time (same time)

At distance (different place)
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Figure 6. Results depending on each feature.
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4.2. Latency Test

Some experiments with MuseStudio may require real-time data visualization, which is
an included feature in the library. However, researchers may have special requirements in
terms of the latency between the time an event occurs in the brain of a participant and the
moment it is visible on screen. For this reason, we performed a latency test with all the
different update intervals selectable. Those intervals were: 200 ms, 500 ms, 750 ms, 1 s,
1.5 s, 2 s, 3 s, and 5 s.

The design of the experiment measured the latency with real events, having a subject
wearing Muse and a computer with the device connected. In particular, the device is able
to capture eye blinks clearly, so this was the event that was going to be recorded repeatedly
with the slow-motion camera of a Samsung Galaxy S20+ (Sony IMX555 main camera sensor)
at a resolution of 1920 × 1080 and 240 frames per second. Then, the procedure consisted of
a slow-motion camera pointing at the screen showing the real-time graphs and the subject
performing the experiment, simultaneously. Afterwards, the subject was instructed to blink
his/her eyes exactly when the graph updated. We are aware that there might be a slight
variability regarding the time at which the subject blinks, so the experiment was repeated
ten times with all the intervals, and then, we calculated the arithmetic mean between
the values. Figure 7 shows a summary of the recording stage of the experiment. When
that phase was finished, we loaded the video into an editor to count the frames between
the blinks and the instant of those shown on screen. Once the frames were collected, we
converted them into seconds knowing that 240 frames is equivalent to 1 s.

For the sake of reproducibility, Muse was connected to a computer with these speci-
fications: Intel Core i7-9750H (base frequency 2.60 GHz and turbo frequency 4.50 GHz),
16 GB of RAM, and SSD (although no brain data were stored). The screen had an input
lag of 5ms, which was discounted to each measurement. The connection with another
computer to the server was not contemplated because that would add the latency of the
network. Time synchronization was ensured by the LSL protocol [40], which achieves sub-
millisecond accuracy on a local network without further action on practically all consumer
PC hardware. The results are presented in Figure 8 through a bar plot that includes the
variability of the measurements for each interval. It is observable that update intervals
equal to or greater than one second showed the events with the correct timing and the
expected latency. However, less than one-second values did not show a latency equivalent
to the interval. This happened due to a combination of two different sources of delay: the
time it takes for the device to send data and the time needed for the computer to attach
the new values, create a visual representation, and update the interface. The difference in
latency between those values was around 1ms, which did not correspond to the interval
chosen. Nevertheless, we maintained those options because higher-performing CPUs are
able to reduce the latency tested.

View
Capture
240 fps

Blink

Muse

Receive
data

Update
interval

Computer

Figure 7. Design of the setup for the latency test.
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Figure 8. Results of the latency test.

5. Discussion

The objective of the study covered the creation of an open-source software product
that allows working with brain activity data and facilitates the management of activities
designed for performing experiments. In particular, Muse was chosen as the low-cost
device to allow researchers to focus on their research.

The library MuseStudio provides a set of tools for management activities, including
the import, conversion, export, and visualization of brain data. Thus, the solution adapts
to real-time usage and recorded experiments. Moreover, those steps can be performed far
from the place where the trial is being conducted, due to the tools provided.

The internal features of MuseStudio are the following: open-source cross-platform
library; developed for Python 3 [41]; complies with the best practices in data analysis [2] and
the recommendations from the OHBM COBIDAS MEEG committee [6]; allows visualizing
real-time data from multiple devices concurrently without being in the same place; imports
data from unlimited raw recordings and multiple devices in a structured manner; exports
using the standard for EEG data; converts to MNE- and Pandas-compatible data formats.
These internal features drove the MuseStudio development activities. Moreover, other
external features were identified by two external experts in neuroscience.

Making the library open-source allows its usage and modification without worries,
so other researchers and people interested in this field can use low-cost and minimally
invasive devices in their experiments. In addition, the community can help by introducing
new features and adapt the library to their particular necessities. It has been developed for
all three major operating systems (Windows, Linux, and macOS) to ensure compatibility.
As a prerequisite to use the library, having prior knowledge of Python is required. Python
has converted into the preferred programming language for data science [41].

MuseStudio complies and follows the recommendations provided by the BIDS stan-
dard for neuroscience [42] to manage data recordings adequately. Therefore, it can import
and export the data associated with multiple subjects and sessions using multiple devices.
These data are not limited to the tasks that Muse natively supports, such as meditation.
Instead, it supports any other validated activity. Following the BIDS [43] standard allows
sharing data between partners and replicating experiments easily through the import and
export functionalities.

The external features of MuseStudio were validated by three external experts in
neuroscience. They validated the presence of these features and their relevance. All these
features, initially established by using the DESMET method, were identified and properly
evaluated in the current version of MuseStudio.

In MuseStudio, there are no limitations softwarewise, except for the lack of a guided
user interface. This software shortcoming was previously identified and discussed. It
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can be overcome by designing and integrating user interface forms to provide session
and participant descriptors and identifiers. Hardwarewise, the number of Muse devices
simultaneously connected to a single computer is limited by the bandwidth and throughput
of the Bluetooth module, which is different across machines. The library supports pausing
the visualization at some point to explore a certain moment in time, and if the connection
is lost, it automatically continues after reconnection. Additionally, the latency was tested
with real-world usage in a controlled environment to maximize the delay between an event
and its visualization on screen. The results showed exact timing from a 1 s update interval
and times that varied depending on the interval if it was lower than 1 s. Nonetheless, those
can be further reduced using a computer with better specifications.

In summary, MuseStudio shows that low-cost devices related to neuroscience, such as
Muse, can have a complete set of tools to manage brain data. It offers features that increase
flexibility, reliability, and the ease of data management.

6. Conclusions and Further Work

An electroencephalogram is an electrophysiological monitoring method that records
the electrical activity of the brain. It is a noninvasive technique through electrodes placed
on the scalp, and therefore, it is suitable for use in a wide variety of situations, not just
the laboratory ones. Moreover, this method is data intensive, and in order to successfully
manage these data, effective data visualization and collection are important. Software
applications are needed for brain data management.

The article had special interest in affordable and low-cost EEG devices. A particular
one is Muse from Interaxon, which although limited by the number of electrodes, is widely
used for meditation and relaxation activities [14,15,17], being useful in the contexts of
stress and anxiety. In this paper, we wanted to identify internal and external features for
EEG data management and low-cost EEG devices; this collection of features should be
the answer to our research question. These requirements were proposed and identified
in the Method and Validation sections of this paper. In the internal dimension, several
requirements were proposed, data import and conversion, the BIDS management of data,
and real-time data visualization, and all these features were considered in the MuseStudio
implementation. Later, using DESMET, external requirements were proposed and used
in a validation activity. These external features were related to session data management
(data importation and exportation), data visualization (signal visualization, consistency,
scenario identification, easy for data reviewing), and ease of operation (scalability, same
time, and different place).

Nevertheless, the software associated (manufacturer developed) with this device has
many limitations, due to the lack of support for data collection and management. In this
article, we overcame this deficiency with the creation of a library to manage brain activity
data using Muse (different versions of Muse, Muse 2 and Muse S). MuseStudio provides
a set of tools that facilitate storing, importing, exporting, visualizing, and sharing data.
This article described the main features and strengths of the library, as well as a validation
of those features, including to what extent they were achieved. In terms of hardware
limitations, they were set by the particular low-cost device, Muse in this case. Depending
on the specifications, some domains may be out of scope, not providing valuable insights.

Initially, several experts from the Psychology Department of the University of Castilla-
La Mancha helped to determine which were the functional and nonfunctional features that
a library related to brain data should include. Thanks to this collaboration, a set of features
was identified by these experts to determine what tasks a software brain data management
software tool should be able to perform. These features were used in order to validate
MuseStudio by other experts, but additionally, these features can be used to compare
MuseStudio with other alternatives in the future. In our functional and nonfunctional
validation, other experts identified the presence or absence of those features using surveys,
heuristic evaluation techniques, and analyzing MuseStudio in particular.
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The library implemented is already a relevant contribution because it covers the initial
necessities established. This library has been shared with the community through an open-
source license [5]. Since its inception, MuseStudio has not been intended for the general
public, but rather for researchers who are already familiar with the use and interpretation
of brain signals. However, we can address other evaluations in the future as the library
grows and improves. For instance, it could be useful as soon as a graphical interface is
included, which is the main nonfunctional limitation. This feature would encourage the
use of the library.

The library can be further improved by adding authentication and additional security
capabilities. At this moment, for instance, the authentication of users and sessions must be
performed by analysts, and these identification activities are not supported by the current
version of MuseStudio. In this sense, users that need remote access should be able to
establish secure connections between peers.
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Appendix A. Structures Defined for BIDS

setup = [
{
"subject": None,
"session": None,
"task": None,
"acquisition": None,
"run": None,
"processing": None,
"recording": None,
"space": None,
"split": None,
"root": None,
"suffix": None,
"extension": None
}
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]

participants = [
{
"subject": None,
"age": None,
"sex": None,
"hand": None,
"root": None
}

]
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