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Abstract: We propose a unified theory for the metrological treatment of helical machine elements such
as cylindrical and conical gears, worms, and screw threads. The main idea is to introduce a universal
3D geometry model for threaded components that provides for distinct parameterization using a
unique set of geometry parameters and that offers and a functional description of the transverse
profile. Using modern 3D coordinate measuring technology, a holistic evaluation algorithm yields
the actual geometry as the result of a high dimensional best-fit procedure and form deviations as
corresponding residuals. All determinants and evaluation parameters can then be calculated from
the set of actual geometry parameters. By applying certain constraints to the model to be fitted,
the novel method can be reduced to the established 2D methods and hence meets demands for the
comparison of the two procedures. The results of the novel approach have proven to be very stable
and they enable the evaluation of areal measurements with no loss of information.

Keywords: coordinate metrology; gear metrology; thread metrology; helical machine elements;
holistic evaluation; areal measurements

1. Introduction

Gears and threads of all kinds are important elements in a broad variety of technical
machinery. Their applications range from simple mechanical fasteners to key components
found in all types of vehicles as well as in heavy-duty machinery and offshore energy
systems. Whatever the scale, high-precision engineering is required to satisfy the narrow
tolerances demanded in gear and thread production, tolerances that define the aims of
manufacturing metrology. Current metrological challenges stemming from current trends
in production technology can be summarized in five keywords: fast, accurate, reliable,
flexible, and holistic [1].

Modern coordinate metrology systems are capable of gathering holistic information
about the dimensions and surfaces of complex-shaped workpieces and can do so quickly,
with high point density and with a good level of accuracy. However, standard evaluation
procedures still reference single lines to represent the gear and thread geometry in the
most relevant 2D sections. This is described for gears in the standards ISO 1328-1 [2]
and AGMA 1012 [3], or in the corresponding VDI/VDE standards for profile and helix
measurements [4] and pitch measurement [5]. The relevant definitions for threads can be
found in ISO 5408 [6], ASME B1.1 [7], or DIN 2244 [8], while more specific measurement
instructions for plugs and rings are described in VDI/VDA standards [9,10].

This has been the state of the art for many decades, and it may be sufficient for quality
control as long as the production method complies with the workpiece’s kinematics and
the manufacturing tolerances are not too tight. Beyond this, however, holistic evaluation
procedures that assess the complete surface using one common model offer several ad-
vantages. Besides the obvious benefits of being able to determine deviations along the
entire flank and of having sounder and more stable geometrical fitting parameters, holistic
treatment allows us to find correlations between different measurands and to properly
understand possible manufacturing errors. Moreover, modern production methods that do
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not follow the kinematic principles (such as five-axis milling) need holistic inspection for
reliable quality assurance since line-based deviation analysis does not provide sufficient
information on how to adjust machine tool parameter settings.

For involute gears, an elementary approach to 3D descriptions was presented in [11].
In 1996, Lotze [12] was the first to introduce a holistic 3D model of involute gears to be
treated as regular and freeform geometries in modern coordinate measuring technology.
Detailed mathematical formulas can be found in [13]. Independently, Goch proposed
an alternative approach that also considered flank modifications [14,15]. An extension
of this work, in which the residuals of the fitted flanks are approximated by Chebyshev
polynomials, can be found in [16].

As concerns screw threads, Schädel [17] developed an areal measurement strategy
and holistic evaluation procedure based on an algorithm for non-linear least-squares
approximation by Sourlier [18]. This technique has recently been verified by comparison to
the established three-wire method [19].

Based on previous work that introduced a dedicated involute gear coordinate sys-
tem [20], which was used to describe measurements in double flank contact [21] as well
as profile and helix measurements [22], this article presents a universal model for helical
machine elements. Defining a general class of helical machine elements allows metrological
methods to be standardized for both gears and screw threads, as well as for any other
geometry having an arbitrary transverse profile helically wound about the workpiece
axis. This approach is advantageous as it permits general measurement strategies and
evaluation algorithms to be easily adapted to special cases via a functional description of
the transverse profile. The novelty of our work is the merging of the above approaches, so
that based on the developed generalized mathematical model for helical machine elements,
an areal measurement strategy, and a holistic evaluation can be applied.

In Section 2 we review the current state of the art in gear metrology and thread
metrology and urge a common approach for both. Section 3 provides the mathematical
description of the helical machine element model by derivation from the theory of ruled
generalized helicoids. The relations of the holistic 3D model to the traditional 2D line-based
results are explained in Section 4. In particular, we show that 2D evaluation is merely a
special case of the 3D method and provide explicit formulas for the calculation of the most
prominent standardized parameters from the best-fit result. In Section 5 we illustrate the
benefits of the holistic procedure by looking at examples of measurement results. Section 6
concludes the paper and offers a perspective view on future research topics.

2. State of the Art in Gear and Thread Metrology

Traditional gear and thread metrology refers to single-point and line measurements
in selected cross-sections. While some modern applications also apply 3D inspection
methods, e.g., for rapid prototyping [23], calibration laboratories still stick to the traditional
approach. Involute cylindrical gears are best described in a transverse section, i.e., in a
plane perpendicular to the gear axis. This is due to the kinematic principle of two gears
with parallel axes where the line of contact lies in a common transverse plane. By contrast,
screw threads of all types are invariably characterized in an axial section, i.e., in a plane
that contains the thread axis. This has proven convenient since most geometric thread
parameters can easily be described in axial sections.

Gears and threads can both be treated as special types of a more general class of helical
machine elements. The geometrical similarities of the two types of parts are depicted in
Table 1 in terms of their determinants.
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Table 1. Equivalents of the most relevant gear and thread determinants. The names and symbols are
in accordance with ISO 21771:2007 and ISO 5408:2009, respectively [6,24].

Gear Thread

Number of teeth z Number of starts n
Reference diameter d Pitch diameter d2 (D2)
Pressure angle αt Flank angles β1, β2
Helix angle β Lead angle ϕ

Despite the obvious similarities, gears and threads are currently treated in two different
worlds encompassing aspects of standardization, design, manufacturing, metrology, and
more. The work of the International Organization for Standardization (ISO) is spread
across more than 250 technical committees (TCs). Among them, at the very top of the list,
is ISO/TC1 Screw threads, which is responsible for thread standardization, while ISO/TC60
Gears develops standards for all the different types of gears. All TCs list their official
liaisons to other TCs within ISO. Apparently, there is no cross-talk between TC1 and TC60,
even though these committees list liaisons to 23 and 8 other ISO/TCs, respectively [25]. A
similar separation of activities can be observed in the national standardization bodies in
Germany, the U.S., and other countries.

Gears are typically measured on 3D coordinate measuring machines (CMMs) either
with or without a rotary table or on dedicated gear measuring instruments which can be
viewed as special CMMs that correspond to a cylindrical coordinate system rather than
a Cartesian. By contrast, screw thread measurements are for the most part performed on
1D length comparators or 2D contour measuring devices. The main reason for employing
these different techniques lies in the fundamental contrast in the concepts of the reference
diameter of a gear on the one hand and the pitch diameter of a thread on the other.
The reference diameter in gear metrology is merely a theoretical quantity that is used to
determine nominal measurement points and to compute certain evaluation results. In
thread metrology, the pitch diameter is agreed to be the most important measurand, the
actual value of which implicitly contains information on the other determinants, including
the lead and the thread angle.

As the differences described here may be the result of historical developments rather
than the inevitable consequence of technical barriers, the following subsections will briefly
review the origins of the gear/thread divide.

2.1. Classical Involute Gear Metrology

Classical gear metrology is based on the mechanical measuring devices established
prior to the advent of coordinate measuring technology (CMT) in the 1970s, a technol-
ogy that kinematically imitated the gear’s rolling process. Although CMMs have been
established in gear metrology for several decades now, the principles behind the specific
measurement and evaluation strategies do not follow the fundamental ideas pursued in
other CMT applications. The major issue in state-of-the-art gear metrology is that each
single measurement line is evaluated in an individual reference coordinate system. As a
consequence, correlations between the different measurands cannot be detected and errors
in the manufacturing process may not be identified properly.

There is a strict separation of the three main gear inspection categories: profile de-
viations, helix deviations, and pitch deviations (Figure 1). This categorization can be
considered a remnant from a past era when fully equipped gear inspection labs needed
at least three separate mechanical machines: an involute (profile) checker, a lead (helix)
checker, and a pitch checker.
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(a) Profile (b) Helix (c) Pitch

Figure 1. Trinity in gear metrology. The classical line- and point-based gear measurements are
divided into the three main categories profile, helix, and pitch.

The earliest mechanical generative involute measuring devices were designed to
reproduce the base circle principle as the essential law in gear kinematics. They embodied
a simple disc of the exact base circle diameter corresponding to the gear under test, and
this disc was mounted to the spindle of the instrument. While the disc rotated around the
spindle, a tangent ruler was pressed against it and slid along the gear profile. A measuring
probe attached to this ruler would then directly record the deviations from the perfect
involute, responding to either manufacturing errors or to misalignment of the gear against
the disc. These deviations were written in real-time to a strip of paper moving in sync with
the spindle’s rotation.

The mechanical lead checker followed the same approach. It used simple rotational
and translational motions to rotate the gear and move the measuring probe in a way that
emulated the exact lead of the part. Again, the probe directly measured the deviations
from the nominal helix and wrote them onto a piece of moving chart paper.

For pitch measurements, a dedicated indexing machine was needed.
The resulting charts, which resembled seismographs or electrocardiograms, then

needed to be read and interpreted. Since both the measurement and the output were
completely analog, no numerical values were generated that could be used for calculations.
Instead, the diagrams had to be evaluated by skilled technicians using rulers and triangles
to determine slope and form deviations [26].

When gear metrology made the move to CNC machines like universal CMMs and
specialized gear measuring instruments in the late 1970s, computations and the evaluation
of standardized parameters were significantly facilitated. Despite this, the separation of
measurement routines and determinants into a line-based profile and helix inspection on
the one hand and pointwise pitch evaluation on the other has been preserved until today.
Although only one machine is now needed for all three inspection tasks, the analysis of the
results still does not allow the holistic description of manufacturing errors in one common
coordinate system.

2.2. Classical Screw Thread Metrology

One of the most important pioneers in screw thread metrology was Prof. Georg Berndt
(1880–1972) of the Technical University of Dresden in Germany. He was the first to describe
the mathematics needed to determine the pitch diameter from tactile measurements in
double-flank contact referred to as the three-wire method for plugs and the two-ball method
for rings [27,28]. His algorithms for rake correction and compensation of probing element
deformation were summarized and compared to other methods by Kochsiek and Lerch in
1974 [29], and this work formed the foundation for international calibration guide cg-10
published by EURAMET [30]. Though this guideline is still the most relevant international
standard on the calibration of screw threads, it is limited to pitch diameter measurements
of parallel threads. In other words, it does not cover other screw thread determinants like
lead and flank angles nor can it be used for tapered threads.

State-of-the-art screw thread metrology relies on inspection in two axial sections that
are perpendicular to each other. Reference [30] defines five categories of calibration that
differ in the amount of cost and effort required and, as a consequence, in the quality
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and accuracy of the pitch diameter measurements. The idea is to measure only some of
the quantities and assume the others to be nominal or at least within tolerance. When a
thread gauge is calibrated for the first time, it is recommended to apply the most elaborate
category with all determinants to be measured. However, even measurements from this
category may prove to be prone to error, as seen in the results of a national intercomparison
conducted in 2016/2017 with 20 participants [31]. This report lists 711 individual results,
110 of which indicated “unsatisfactory performance and generated an action signal” as
described in ISO/IEC 17043:2010 [32].

Two weaknesses of the cg-10 measurement strategy are primarily responsible for the
poor performance in comparison measurements. One relates to the sophisticated method
of self-centering probing in double-flank contact. Although special artifacts have been
designed for this type of probe characterization, the reproducibility is still much lower
when compared to single-flank probing [33]. The second drawback obviously arises from
the fact that the screw threads are only inspected in two axial sections. This means that
errors in the roundness of the part may not be identified properly if the sections under
assessment do not correspond to the angular sectors with maximum/minimum deviations.
An example of this effect is given in Section 5 (Figures 6–8).

The two most relevant measurement strategies in established screw thread metrology
are depicted in Figure 2.

(a) Profile (b) Pitch & diameter

Figure 2. Two of the most established strategies in screw thread metrology. The conventional
line- and point-based measurements are divided into the categories of profile and combined pitch
and diameter.

3. 3D Model of Helical Machine Elements

The basic idea in developing a common 3D model for a general class of helical machine
elements is to describe the geometry in a transverse section (= xy-plane) and then helically
wind this geometry upwards about the z-axis. Each point of the transverse profile generates
a helix and the complete profile curve gives a generalized helicoid. Actually, both the gears
and the thread flanks are ruled generalized helicoids, i.e., surfaces that are generated by the
screw motion of a straight line [11,34]. Additionally, some kinds of worm gear drives can
be described in this way [35]. In the following, we briefly show the construction of the gear
or thread flanks by this method.

Consider the line L in the yz-plane given by

L(t) =

rb
0
0

+ t

 0
1
m

 with t ∈ R. (1)

This line is tangent to a cylinder around the z-axis with radius rb ≥ 0. By screw motion
of L along the z-axis the surface

S(t, ψ) =

rb cos ψ− t sin ψ
rb sin ψ + t cos ψ

tm + hand · 1
c ψ

 with t, ψ ∈ R (2)
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is generated (Figure 3).

x

(rb, 0, 0)

y

z

rb

L

(a) The line L touches the base cylinder at
(rb, 0, 0)...

x

rb

y

z

S

(b) ...and is then wrapped around it.

Figure 3. The surface S is generated by helically wrapping the line L around the base cylinder with
the lead hand · 1

c .

The parameter c > 0 is called the helix coefficient. The direction of the rotation is
given by the sign factor

hand =

{
−1 : left
+1 : right.

Additionally, we introduce the starting polar angle ϕb of the generating line L at z = 0
to allow a rotation around z of the complete surface. The parameters defining the surface
are combined in the variable P∗ = (hand, rb, m, c, ϕb) and Equation (2) reads as

SP∗(t, ψ) =

rb cos(ϕb + ψ)− t sin(ϕb + ψ)
rb sin(ϕb + ψ) + t cos(ϕb + ψ)

tm + hand · 1
c ψ

 . (3)

The coordinates t and ψ can mathematically take any value in R. For technically
feasible surfaces, however, restrictions on the coordinates will be necessary.

For practical applications in gear and thread metrology, it is more convenient to use
the radius r instead of t as a coordinate. Since r2 = r2

b + t2, this splits the surface into two
flanks, depending on the sign of t. More precisely, let

t = −flank ·
√

r2 − r2
b for r ≥ rb (4)

with flank ∈ {−1, 1}, where the additional minus sign is necessary to meet the conventions
in gear metrology [20], as will become clear later.

This complements the set of geometry parameters uniquely defining the surface to

P = (hand, flank, rb, m, c, ϕb). (5)
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A single flank SP ⊂ SP∗ is hence given by

SP (r, ψ) =


rb cos(ϕb + ψ) + flank ·

√
r2 − r2

b · sin(ϕb + ψ)

rb sin(ϕb + ψ)− flank ·
√

r2 − r2
b · cos(ϕb + ψ)

−flank ·m
√

r2 − r2
b + hand · 1

c ψ

 (6)

or

SP (r, ψ) =

r cos
(

ϕb + ψ− flank · arccos
( rb

r
))

r sin
(

ϕb + ψ− flank · arccos
( rb

r
))

−flank ·m
√

r2 − r2
b + hand · 1

c ψ

. (7)

with r ≥ rb. (For rb = 0, rb
r is considered to be zero also for r = 0.)

Especially in gear metrology, where the transverse section of the flanks is often consid-
ered, the coordinate z is used rather than ψ. Since

ψ = hand · c
(

z + flank ·m
√

r2 − r2
b

)
(8)

the flanks are then given by

SP (r, z) =

r · cos(ϕb + hand · cz + flank · ϑP (r))
r · sin(ϕb + hand · cz + flank · ϑP (r))

z

 , (9)

where we introduced the transverse profile function

ϑP (r) = hand · cm
√

r2 − r2
b − arccos

( rb
r

)
. (10)

Equation (9) describes the surface of a flank as the screw motion of a curve on the
xy-plane. While for generalized ruled helicoids the function ϑP is of the form given
in Equation (10), one might of course consider more general functions ϑ leading to
other surfaces.

Objects like gears or threads are constructed of left and right flanks for several teeth
(or starts). In the case of gears, the definition

flank =

{
−1 : left flank
+1 : right flank

leads to results for the flanks which are consistent with the definitions in [20]. The same
convention will be used in this paper in the case of screw threads. The construction of a
thread from the two flanks is depicted in Figure 4. Note, however, that for other objects
this definition of flank might not be suitable.
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γle
3

γri
2

γri
1

γle
2

(b) Left-handed thread and... (c) Right-handed thread in axial section
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ϕle
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(a) Transverse section

r0

1

2

3

2

2
2

1

1

1

1

3

3

3

3

Gap number

Tooth number

Left flank

Right flank

y

x

γle
1

γle
2

γri
1

γri
2

Figure 4. Screw thread definitions.

If N is the number of teeth, we denote by

P ri
i = (handri

i , 1, rri
b,i, mri

i , cri
i , ϕri

b,i) (i = 1, . . . , N) (11)

the parameters of the right flanks, and by

P le
i = (handle

i ,−1, rle
b,i, mle

i , cle
i , ϕle

b,i) (i = 1, . . . , N) (12)

those of the left flanks. The corresponding flanks are denoted by Sri
i and Sle

i , respectively.
For the nominal object, the values of hand and rb are typically the same for the left and
right flanks and for all teeth. While there might be different values of mri, cri and mle, cle

for the left and right flanks, these values are still the same for all teeth. The nominal values
for ϕb satisfy

ϕri
b,i = ϕri

b,1 −
2π

N
(i− 1) mod 2π (i = 1, . . . , N), (13)

and accordingly for the left flanks. The values ϕle
b,i − ϕri

b,i are specified by the desired
position of the right and left flanks relative to each other. This can be defined via a reference
circle in the xy-plane with a suitable radius r0 > rb with the condition that the arc length of
the intersection of the reference circle with a tooth is π

N r0. From Equation (10) it follows
that this implies

ϕle
b,i − ϕri

b,i =
π

N
+ hand · (clemle + crimri)

√
r2

0 − r2
b − 2 · arccos

(
rb
r0

)
mod 2π. (14)
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The coordinate system is chosen such that the center point of the arc given by the
intersection of the reference circle with the first tooth is equal to the point (r0, 0, 0), hence

ϕle
b,1 =

π

2N
+ hand · clemle

√
r2

0 − r2
b − arccos

(
rb
r0

)
mod 2π (15)

and

ϕri
b,1 = − π

2N
− hand · crimri

√
r2

0 − r2
b + arccos

(
rb
r0

)
mod 2π. (16)

If rb > 0, then S(rb, 0) = (rb cos(ϕb), rb sin(ϕb), 0)t, so ϕb is the angle of the point on
the flank with radius rb in the plane z = 0. If rb = 0, such an interpretation is not possible.
In this case the direction of the intersection line of the flank with the plane z = 0 at the
point r = 0 is given by

∂SP
∂r

(0, 0) =

cos(ϕb − flank · π
2 )

sin(ϕb − flank · π
2 )

0

 = flank ·

 sin(ϕb)
− cos(ϕb)

0

, (17)

which is illustrated in Figure 4.
If the nominal values for c are the same for all flanks, the resulting objects are cylindri-

cal. The case where the values for c differ for the left and right flanks is also of practical
importance. Here, the radius r0(z) where the tooth thickness takes the value r0(z) π

N is
linearly dependent on z and the generated objects are conical. In this manner, (helical)
beveloid gears [36] or tapered threads [6] can be constructed.

3.1. Involute Gears

Flanks of an involute gear are generated by a line tangent to the helix

H(ψ) =

rb cos(ϕb + ψ)
rb sin(ϕb + ψ)

hand · 1
c ψ

 (18)

with
c =

tan βb
rb

(19)

through the point (rb cos(ϕb), rb sin(ϕb), 0) [37,38]. Here, βb denotes the base helix angle
and rb the base circle radius of the gear [24]. This implies that

m = hand · 1
crb

= hand · 1
tan βb

, (20)

and hence from Equation (10) it follows that

ϑP (r) =
1
rb

√
r2 − r2

b − arccos
( rb

r

)
(21)

= inv
(

arccos
( rb

r

))
(22)

= inv(αt(r)), (23)

where inv(α) = tan(α)− α is the involute function and αt(r) = arccos( rb
r ) the transverse

pressure angle [24]. The flank surface is thus

SP (r, z) =

r cos(ϕb + hand · cz + flank · inv(αt(r)))
r sin(ϕb + hand · cz + flank · inv(αt(r)))

z

. (24)
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Note that in the case of gears the limit c→ 0 results in spur gears. However, the flanks
are then of course no longer ruled generalized helicoids.

3.2. Screw Threads

In the case of a screw thread, the generating line (or its prolongation) has to inter-
sect the z-axis, hence rb = 0. Moreover, the slope m of the generating line is given by
m = −flank · tan(γ) with the flank angle γ [6,8]. The definitions of left and right flanks
are given in the transverse section (Figure 4a). Note that the relation to the corresponding
flank angles depends on hand as illustrated in Figure 4b,c.

The function ϑP is then given by

ϑP (r) = hand · cmr− π

2
, (25)

i.e., the transverse section of the generated surface is an Archimedean spiral for m 6= 0 or a
straight line if m = 0. The equation for the flank surface finally reads

SP (r, z) =

r cos(ϕb + hand · cz + flank · (hand · cmr− π
2 ))

r sin(ϕb + hand · cz + flank · (hand · cmr− π
2 ))

z

. (26)

4. Relations to Standardized Measurands

The universal model established in Section 3 is used as a parametric representation
of the form element to be fitted into a measured 3D point cloud by means of a sophis-
ticated least squares algorithm [18]. This algorithm uses as fitting parameters not only
the geometry parameters of the geometric element but also the orthogonal projections of
the measurement points onto the surface of the geometric element. Moreover, the algo-
rithm allows a separation of dimension, form, and position/orientation parameters, which
makes it possible to determine the actual dimension and form deviations. The parame-
ter vector for the fitting algorithm is an element of the high dimensional space R2n+g+l ,
where n is the numbers of measurement points, g the number of geometry parameters,
and l the position and orientation parameters. This allows a least-squares fit without
an explicit representation of the residuals as a function of the geometry and position/
orientation parameters.

In order to fulfill the requirements of holistic metrology, all geometry parameters P
defined in Section 3 have to be implemented into the best-fit procedure as free parameters.
However, if certain geometry parameters are fixed to their nominal values, a comparison
to the classical methods can be achieved. In the following subsections, we show how the
geometry parameters P from the 3D model relate to the measurands in established gear
and thread metrology.

4.1. Gear Measurement

The most relevant measurands in gear metrology are described in ISO 1328:2013 [2].
For a single flank, the classical evaluation parameters fHα and fHβ can be calculated by
comparing the fitted parameters rb,act and βb,act to the nominal parameters rb,nom and
βb,nom for a flank by

fHα

LAE
=

rb,act − rb,nom

rb,nom
(27)

and

fHβ

b
= rb,actcact − rb,nomcnom

= tan βb,act − tan βb,nom. (28)
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Here, LAE is the reference length for the profile evaluation and b is the reference length
for the helix evaluation. Moreover, the cumulative pitch deviations are given by

Fp,i = r0(ϕb,i,nom − ϕb,i,act), (29)

where ϕb,i,act and ϕb,i,nom are the measured and nominal values, respectively, for ϕb,i,
and r0 denotes the reference circle radius of the gear. Illustrations and the derivation of
Equations (27)–(29) can be found in [22].

The parameter m does not lead to another measurand since, in the case of gears, it is
fixed by hand, rb and c.

In order to ensure the best comparability between the holistic evaluation and the
classical method, certain parameters should be set to nominal values as specified in Table 2.

Table 2. As classical gear metrology treats the three measurement categories (Figure 1) in different
reference systems, the number of free geometry parameters should be reduced when the emphasis is
on comparability.

Measurement Category Free Parameters Parameters Set to Nominal Values

Profile evaluation rb, ϕb hand, flank, c
Helix evaluation hand, c, ϕb flank, rb,
Pitch evaluation ϕb hand, flank, rb, c

4.2. Thread Measurements

For threads, the parameter rb is fixed by rb = 0, so this parameter is not related to a
measurand. The flank angles γri

i and γle
i for tooth i can be obtained from mri

i and mle
i by

γri
i = − arctan(mri

i ) and γle
i = arctan(mle

i ). (30)

The flank angles β1,i and β2,i for gap i as defined in ISO 5408:2009 [6] are then obtained
according to the following table:

hand 1 −1

β1,i |γle
i | |γri

i−1|
β2,i |γri

i−1| |γle
i |

Here and in the following formulas in this section, a flank index value of 0 is under-
stood as N. The thread angle for gap i is calculated with

αi = hand · (γle
i − γri

i−1). (31)

The lead of a single right or left flank is further given by

Phri/le
i =

2π

cri/le
i

. (32)

The pitch diameter for gap i in the transverse section at position z is the diameter
where the transverse gap width of gap i takes the value d0,i(z) π

2N . It is given by

d2,i(z) = d0,i(z) = 2 ·
ϕle

b,i − ϕri
b,i−1 + 2πki + hand · (cle

i − cri
i−1)z + π + π

N

hand · (cle
i mle

i + cri
i−1mri

i−1)
, (33)
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where ki ∈ Z must be chosen such that d2,i(0) is in a reasonable range with respect to the
nominal value. These z-dependent diameters form a cone with taper angle

ωi = arctan

(
cri

i−1 − cle
i

cle
i mle

i + cri
i−1mri

i−1

)
. (34)

Furthermore, the two-flank lead of gap i is given by

Ph2,i = 2π
cle

i mle
i + cri

i−1mri
i−1

cle
i cri

i−1(m
le
i + mri

i−1)
. (35)

For cylindrical screw threads, the pitch Pi between the flanks i− 1 and i (right or left)
measured at the nominal pitch radius r0,nom is obtained with

Pi(z) = 2 · ζi + hand · flank(ci−1mi−1 − cimi)r0,nom + hand(ci−1 − ci)z
ci + ci−1

(36)

with ζi = ϕb,i−1− ϕb,i + 2πki, where ki ∈ Z must be chosen such that Pi(0) is in a reasonable
range with respect to the nominal value. The position z is the z-coordinate of the center of
the two radially shifted points on the cylinder with radius r0,nom between which the pitch
is measured.

The general model derived in Section 3 constructs the screw thread geometry in the
transverse section rather than in the axial section as is done in classical thread metrology.
This motivates the definition of a transverse pitch for the left and right flanks by

Pt,i = r0,nom(ϕb,i−1 − ϕb,i). (37)

From a production metrology point of view, the transverse pitch in Equation (37)
is far more useful than the established axial pitch in Equation (36). Since the transverse
pitch obviously relates to only one geometry parameter from the model, it is very clear
how the machine settings have to be readjusted to compensate for a pitch error. In the
case of the axial pitch, a deviation can account either for an incorrect helix coefficient
c, a false flank angle represented by m, or a deviation in the rotational position of the
flank in the transverse section denoted by ϕb. This separation of error sources is vital for
reliable quality assurance and stems from the strict application of the coordinate metrology
principle demanding the separation of dimension, form, and pose.

5. Some Examples

In this section, two examples are introduced to underpin the advantages of holistic
and three-dimensional inspections. Two artifacts representing common helical machine
elements were selected for this purpose: a single-start right-handed screw thread ring gauge
and a right-handed involute cylindrical gear artifact with twelve teeth and certain flank
modifications. The examples presented are intended to give a qualitative impression of the
advantages of the areal measurement and evaluation approach rather than a quantitative
comparison with the classical measurement strategy. For screw threads, such a comparison
can be found in [19]. For involute gears, this is part of ongoing research and will be
presented in a later publication.

In order to capture the surface of the parts, measurements were taken under laboratory
conditions with temperature control T = 20 ◦C± 0.2 K on high-precision coordinate mea-
suring machines equipped with integrated rotary tables with ball styli for tactile probing.
To meet the definition of a holistic evaluation, the reference axis remained fixed during the
measurements. For screw thread calibration, the surface was measured by scanning the
flanks along the helix successively on varying radii. For gear calibration, additional profile
scans were taken.
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5.1. Screw Thread Ring Gauge

A screw thread ring gauge M60× 5.5 (Figure 5) was calibrated applying the holistic ap-
proach presented in [39]. The part had previously been used in a national intercomparison
among 20 calibration laboratories where it was measured in the conventional manner [31].
It was only through the application of the holistic calibration procedure that the dimension
of a roundness deviation could be revealed for the first time.

Figure 5. Screw thread ring gauge M60× 5.5 [39].

The applied measuring parameters for the calibration of the screw thread ring gauge
with the holistic procedure are summarized in Table 3.

Table 3. Measuring parameters of the screw thread ring gauge.

Measuring Parameter Value

Number of scanned helix lines per flank 10
Number of measurement points 248,120
Grid size 0.2 mm× 0.007 rad
Stylus ball diameter 0.8 mm
Probing force 50 mN
Scanning speed 4 mm s−1

Figure 6 shows two screw thread flanks by means of determined residuals in a three-
dimensional surface representation. The residuals were obtained by fitting form elements
into a measured point cloud. Their values are represented by colors, with red denoting
plus material and blue minus material. The gauge shows an ellipticity of up to 2.75µm.
The reason for this deformation is unknown, but it might be a manufacturing error or a
result of improper clamping in the past.
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Figure 6. Surface representation of residuals resulting from a screw thread fit [39].

Geometry deviations are easier to analyze if the flanks are unwound along the helix
as presented in Figure 7. On the ordinate, residuals of the left-hand flank are shown in
the same color scale as in Figure 6. The angle of unwinding and the radius are shown on
the abscissae. The fluctuations over the angle correspond to a roundness deviation. The
amplitudes indicate the maximum amount of deviation.
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Figure 7. Unwound residuals of a single screw thread flank [39].

As reported in Section 2.2, screw threads are conventionally inspected in two specific
axial sections (A–B and C–D) in a pointwise or linewise manner. The pitch diameter
d0(z) (Equation (33)) determined with the holistic evaluation method (3D) is compared to
conventional calibration results (2D) in Figure 8. Pitch diameters are shown with respect
to the z-coordinate. Symbols represent the conventional 2D result. The sampling rate is
not sufficient to capture the ellipticity. In contrast, the dimension of the ellipticity is clearly
determined by the 3D method.
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Figure 8. Pitch diameter (curve) compared to conventional calibration results (symbols).

5.2. Involute Gear Artifact

Measurements were evaluated using the holistic method, for which areal measure-
ments were performed on a gear artifact with twelve teeth and certain flank modifications
(Figure 9). The nominal geometry parameters are summarized in Table 4 and the measuring
parameters are listed in Table 5.

Figure 9. Cylindrical involute gear artifact.

Table 4. Nominal geometry parameters of the gear artifact.

Geometry Parameter Value

Number of teeth z 12
Normal module mn 12 mm
Normal pressure angle αn 20 deg
Helix angle β 30 deg
Face width b 100 mm
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Table 5. Measuring parameters of the gear artifact.

Measuring Parameter Value

Number of scanned helix lines per flank 10
Number of scanned profile lines per flank 10
Total number of measurement points 91,035
Stylus ball diameter 5 mm
Probing force 200 mN
Scanning speed helix 5 mm s−1

Scanning speed profile 3 mm s−1

The residuals are depicted on a color scale in Figure 10 at the locations of the fitted
form elements, with red indicating plus material and blue minus material. Half of the teeth
show significant form deviations resulting from flank modifications. In detail, they show
either helix crowning, profile crowning, tip, root and end reliefs, or a combination of these.
Figure 11 shows the unwound residuals of one specific gear flank with the z-coordinate
and the roll angle on the abscissae.

Figure 10. Surface representation of residuals resulting from the holistic gear evaluation method.

The residuals indicate that this flank exhibits profile crowning. The parabolic shape is
clearly visible following the application of the holistic evaluation method.

When it comes to pitch evaluation, the conventional strategy takes a single point at
half face width at the reference diameter, see Figure 1c. The result would obviously be
strongly affected by the maximum form deviation on this flank and therefore lead to a false
assessment of the gear’s pitch.
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Figure 11. Unwound residuals of a single gear flank (tooth 7, left flank).

In contrast, the holistic method determines the pitch based on all measuring points
and calculates the mean position angle ϕb, which then leads to the cumulative pitch devia-
tion according to Equation (29). This corresponds to a plane in Figure 11 at residual = 0.
As a consequence, the pitch assessment is far more stable, resulting in both smaller mea-
surement uncertainties and in better linkage to machine parameter settings to allow proper
failure analysis.

6. Conclusions and Outlook

A unified metrological approach has been presented which allows for a consistent
treatment of involute spur, helical, and beveloid gears as well as of different kinds of worms
and screw threads. It was possible to overcome the discrepancies between the classical
gear and thread metrology methods by introducing a general model that describes helical
machine elements of all sorts in their transverse profile. Given that the established thread
determinants are defined in the axial and not in the transverse section, this approach led to
a number of novel definitions, which are presented in Section 3.2. In Section 4, however, a
small set of equations was introduced that are capable of describing the relation between
the new unified model and the classical single approaches, thereby demonstrating that
the new holistic theory is an extension of the traditional methods and showing how they
correspond to one another.

The results from the examples presented in Section 5 show that the new 3D con-
cept is superior to the established line-based measurements, as systematic errors from
the manufacturing process can only be detected using the holistic method. Again, the
correspondence of the results to those gathered with the conventional strategy can be seen
as a verification of the novel approach (Figure 8).

The presented holistic method is based on the fundamental coordinate metrology
principle of separation of features. This means that there is a clear distinction between
parameters describing the measurement object in its dimension, form, and pose (i.e.,
position plus orientation). This is particularly beneficial when the workpiece coordinate
system is to be defined by dedicated reference elements on the part, as is typical for running
gears. In such cases, the six pose parameters can be removed from the best-fit procedure
and set to the values determined by separate measurements.

In future work, the best-fit algorithms will be extended by minimum circumscribed
and maximum inscribed elements that are needed for the exact characterization of screw
threads and splines. For instance, the virtual pitch diameter of a screw thread is defined by
a mechanical gauging process that can not be covered by Gaussian elements.
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The evaluation algorithms will form the basis for a software test service to be included
in the PTB’s online validation system, TraCIM [40] (https://tracim.ptb.de, accessed on 18
August 2021), in the near future.
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