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Abstract: Address is a structured description used to identify a specific place or point of interest, and
it provides an effective way to locate people or objects. The standardization of Chinese place name
and address occupies an important position in the construction of a smart city. Traditional address
specification technology often adopts methods based on text similarity or rule bases, which cannot
handle complex, missing, and redundant address information well. This paper transforms the task
of address standardization into calculating the similarity of address pairs, and proposes a contrast
learning address matching model based on the attention-Bi-LSTM-CNN network (ABLC). First of all,
ABLC use the Trie syntax tree algorithm to extract Chinese address elements. Next, based on the basic
idea of contrast learning, a hybrid neural network is applied to learn the semantic information in the
address. Finally, Manhattan distance is calculated as the similarity of the two addresses. Experiments
on the self-constructed dataset with data augmentation demonstrate that the proposed model has
better stability and performance compared with other baselines.

Keywords: address matching; smart city; contrast learning; neural networks; data augmentation

1. Introduction

Geographical addresses are the most important basic data resources in the construction
of a smart city. How to dig out potential associations between address texts and use the
result to serve for standardization construction is a key issue that directly affects the level
of smart city construction.

The early research methods on address mainly focused on text similarity. The literal
similarity between the two geographical addresses was calculated from a certain measure-
ment dimension and the threshold was manually set [1]. Specifically, the edit distance [2–4]
is a traditional way which defines the similarity as the minimum number of character
editing operations required to convert one string to another string, which is very easy to
be applied in real work. Subsequently, Jaccard [5] brought up a new way which obtains a
more accurate effect on short address by calculating the local similarity of two addresses,
but it does not work well for long addresses. Afterwards, the N-gram approach based
on vector space was proposed [6], which converts addresses to vector representations in
the same vector space, and then calculates the similarity using mathematical methods for
example cosine similarity [7]. Compared with previous methods, the N-gram approach im-
proves the effect and obtains a better performance. Nowadays, all the traditional methods
mentioned above are still inadequate.

More recently, with the diversification of addresses and the higher requirement to
process a large number of addresses than before, traditional address matching methods
obviously cannot meet the requirements. A new method based on address structure and
address element extraction is proposed, which uses the hierarchical syntax tree to identify
address and then do further address matching work [8]. Basically, the way of acquiring
address element is mainly by dividing into word segmentation with dictionaries, proba-
bility distributions, such as conditional random fields, hidden Markov models [9,10], or
natural language word segmentation tools (Jieba, THULAC, etc.). Some scholars have put
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forward corresponding solutions to the extraction of address elements: some rule-based
and fuzzy Chinese address coding methods are raised to establish a standard address
database and generate matching rules [11–13]. However, this method relies on the com-
pleteness of address database, and it is difficult to formulate all the rules as the growth
of database. Tian proposed an optimized Chinese address matching model and provided
a coding service with this model [14]. Zhang used Bert as pretrained embedding model
and applied CRF algorithm to extract address element and semantic features [15]. Comber
embed word2vec into CRF to convert address elements into a fixed dimension semantic
representation vector [16].

Nevertheless, semantic information cannot be obtained effectively when dealing
with longer address records and the distribution of information density is uneven. To
address this kind of problem, follow-up research begins to apply a neural network to
do this task, such as using CNN or RNN [17]. Santos proposed a multi-model fusion
approach which apply RNN and GRU as address semantic information modeling [18].
This model has achieved a good performance improvement compared to single similarity
measurement-based models and some supervised learning methods. Next, Lai combined
the advantages of RNN and CNN models, proposed the RCNN model, which uses a
bidirectional structure and embeds BiRNN structure into convolutional layer [19]. This
kind of structure effectively reduces the network noise and maximizes the ability to extract
the context information of addresses. In the field of smart cities, there are also many
researchers trying to introduce deep learning to cope with city development issues, such as
the cities expansion and personalized POI recommendation [20,21]. Karimzadeh proposed
a geographic analysis system for NER recognition, which can efficiently sort out geographic
analysis problems [22]. After that, the deep learning methods are verified to solve the
spatial data and the urban geographic problems, and prove that deep learning ways are the
most effective way and have broad application prospects [23]. Grekousis have analyzed
more than 140 articles about using artificial neural networks to settle the urban geographic
problems. In summary, artificial neural networks have obvious advantages over traditional
methods [24].

The semantic representation of addresses based on deep learning is essentially an NLP
problem [25,26]. In the field of NLP, contrastive learning algorithms have recently been
widely proposed [27,28]. Contrastive learning algorithm is a subset of deep learning. Its
goal is to bring the enhanced new samples as close as possible in the embedding space and
make different samples as far away as possible. How to construct examples is an important
issue in contrastive learning. For the translation task, Yang changed the number of omitted
words, word frequency, and part of speech according to the actual translation, designed
different types of negative examples to realize data augmentation [29]. Wu and Meng
proposed to use word deletion, reordering, and substitution to achieve it [30,31]. However,
due to the inherent discrete characteristics of Chinese addresses, it is extremely difficult to
implement data augmentation simply through text processing.

In summary, the approaches are difficult to cope with addresses that contain complex
structures or contain redundant information. The reason is that these methods are lacking
in terms of understanding the semantics of the address, and they also cannot extract the
semantic features of the address well. At the same time, these models often focus on
dataset built with specific conditions that do not provide effectively help on enhancing
generalization ability, which cannot fundamentally improve the model performance.

To address these problems, this paper proposes a contrast learning address matching
algorithm. First, ABLC use the Trie syntax tree structure to construct a standard address tree
to extract address elements, then uses Bi-LSTM and CNN models to embed the address into
vectors with semantic information. Following that, we introduce the attention mechanism
to get position-aware information from the context, so as to further improve the accuracy
of semantic representation. In the end, the corresponding Manhattan distance is calculated
between two semantic vectors of address pair, which can be considered as the similarity
of two addresses. Furthermore, we introduced a data augmentation method to extend
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the existing address dataset, and then the model has been significantly improved in the
stability and the ability to perceive similar addresses is competitive.

The contributions of this paper are as follows: (1) Propose a contrast learning address
matching algorithm that captures similarities and differences between the input address
pairs so as to achieve the judgment of similarity and dissimilarity of address pairs. (2) Pro-
pose a semantic-based address representation model with a hybrid neural network that
incorporates an attention mechanism. The model extracts local and global features of the
input data in addition to giving higher weights to important information in the address,
so as to more effectively capture key information from addresses. (3) Propose an address
data augmentation method to improve the performance of the model. By constructing an
address enhancement dataset based on the uniqueness of addresses and combining the
dropout strategy to achieve data enhancement, the overall performance of the model is
improved with better generalization capability.

2. Materials and Methods

In this section, we propose a semantic-based address matching framework according
to the characteristics of the address. We first use the Trie syntax tree to build a standard
address model and apply it to extract address elements. Additionally, then we create a
contrast learning model which is based on a hybrid neural network, to perform semantic
representation of the address. Finally, the similarity between address pair is obtained
by calculating the Manhattan distance. Furthermore, the data augmentation method is
introduced to construct address datasets, which improves the accuracy of address matching
and the performance of the model. The address matching framework is referred to as the
ABLC model and the algorithm description is as below Algorithm 1 shown.

Algorithm 1 The ABLC algorithm

Input: address set {A}, address text pair (ai ∈ A, aj ∈ A)
Output : similarity of two address text sim(ai, aj)

Initialize sepResult with null
divisionTree← BuildTree(A)
for ele in [ai, aj] do

for node in divisionTree do
if headof(ele, len(node)) == node:

sepList← node
ele.delete(node)

if node == LastNode(A):
sepList← ele

sepResult← set_List
similarity← ABLC(sepResult [0], sepResult [1])
sim(ai, aj)← similarity

2.1. Problem Definition

We define address matching in this paper according to the below description: as-
sume Dsa containing N address datasets Dsa = {sa1, sa2, . . . san}, for a certain element
sai from Dsa, the task goal of this paper is to find an address pair

{
sai, saj

}
and satisfy:

similarity(sai, saj) ≥ η,where sai ∈ Dsa, saj ∈ Dsa and sai 6= saj, η is the set threshold.

2.2. Address Model

The particularity of the Chinese language leads to the particularity of Chinese ad-
dresses, which is mainly reflected in the following aspects: (1) Multiple: An address
contains multiple place names; (2) Hierarchical: Address description is usually in sequence
from large area to small area; (3) Detailed: The standard address contains the place name
of each level. The Chinese address is composed of multiple address elements and a valid
address element should include one of different level address names, such as the admin-
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istrative division, the street, the neighborhood, the door, the landmark, and the point of
interest. Several address description patterns commonly used now are: administrative
division + street (road or lane) + house number; administrative division + community
(natural village) + house number; administrative division + (street, road and lane) + point
of interest (marker). Administrative divisions can be divided into provinces, cities, districts
(counties), streets (towns), and communities (administrative villages).

The Trie syntax tree is a kind of hash-tree structure. Generally, it is used to store and
sort a large number of strings. Unlike a binary tree, the key point of Trie syntax tree is
that the string is not directly stored in the node, but is determined by the position of the
node in the tree. Its advantage is to minimize unnecessary string comparisons and improve
the query efficiency. All descendants of node have the same prefix, which is the string
corresponding to this node. Additionally, the root node corresponds to an empty string.
Basically, not all nodes have corresponding values, only the leaf nodes and some internal
nodes have relevant values. This paper constructs the Trie syntax address tree, as shown in
Figure 1, which is used to extract address elements.
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2.3. Address Semantic Contrast Learning Model

This section introduces a semantic-based address contrast learning model which is
fused with attention mechanism, Bi-LSTM and CNN network. The model is established
based on the characteristics of the Chinese address and advantages of each sub-network in
the hybrid neural network model. It accepts the input of the address pair, and, respectively,
generates the semantic vector representation of the address, and finally determines whether
the address pair is similar by calculating the Manhattan distance. The overall structure of
the model is shown in Figure 2. The contrast learning model contains embedding stage,
Bi-LSTM stage, CNN stage, attention stage, and semantic distance calculation stage. The
specific details of each stage are explained as below.

2.3.1. Embedding

The embedding stage mainly focuses on converting the Chinese address into vectors,
that is, maps the input address into a fixed m × n matrix. Chinese address is actually a spe-
cial language description which the words have no formal delimiters, such as blank space.
Therefore, the address needs to be segmented before word embedding and we should
pay more attention to dividing the place name address into various address elements.
Each address element is equivalent to a word in Chinese. This paper adopts Jieba’s word
segmentation algorithm and loads a custom word segmentation database to split address.
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The construction of the custom database is based on the particularity of city place names
and addresses to supplement the correct segmentation of unidentified names by Jieba.
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Suppose the address A is composed of N words, namely A = {a1, a2, . . . , aN}. For
each word in address A, you can use the word vector dictionary Dw ∈ Rdw |V|. Where V is
the number of the vocabulary and dw is the dimension of the vocabulary. The word vector
dictionary Dw is obtained through learning, and the dimension of the word vector dw is set
according to requirements. Therefore, the vector of words ai in address A is:

ei = DwVi (1)

where Vi is a vector of length |V|, and its value is 1 at ei and 0 at the rest position. In this
way, the vector of address A can be expressed as e = {e1, e2, . . . , eT}.

This paper limits the maximum length N = 20 after word segmentation for each
address A. The size of the vocabulary is 10 W, and the dimension of the word vector is 300,
that is, each address is mapped into a 20 × 300 vector after the embedding layer, which is
used as the input of the subsequent stage.

2.3.2. Bi-LSTM

LSTM is a kind of RNN, mainly to solve the problem of gradient disappearance
and gradient explosion in the training process. LSTM has better performance in long
sequences [32]. The LSTM neural network uses three gate structures: input gate, forget gate
and output gate to maintain and update the increase and decrease in information in the
cell. However, a one-way LSTM can only process information in one direction, and cannot
process information in another direction. The bidirectional LSTM is a further extension to
solve the defects of LSTM. This paper uses bidirectional LSTM to extract feature information
to learn address features fully. Specifically, two different LSTM neural network layers are
used to traverse from the front and the back of the Chinese address, respectively, so that the
address information of the two directions can be saved. Compared with the one-way LSTM,
Bi-LSTM cannot only save the previous context address information, but also consider the
future context address information. Therefore, the semantic representation is extracted
more completely.
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First, the forget gate generates a value ft between 0 and 1 based on the output ht−1
from the previous memory unit and input data xt, to determine how much information is
lost in the last long-term state. ht−1 and xt through the input gate to determine the update
information to it, and in addition, through a tan h layer to get the new candidate memory
unit information Ct

′. Additionally, the last long-term status Ct−1 is updated to Ct through
the operation of the forget gate and the input gate. Finally, the judgment is obtained from
the output gate, to multiply the value ot between −1 and 1. The multiply result ht is used
to determine which state characteristics of the current memory cell are output. As shown
in the following formula:

ft = σ(W f ·[ht−1, xt] + b f ) (2)

it = σ(Wi·[ht−1, xt] + bi) (3)

Ct
′ = tanh(WC·[ht−1, xt] + bC) (4)

Ct = ft ∗ Ct−1 + it ∗ Ct
′ (5)

ot = σ(Wo·[ht−1, xt] + bo) (6)

ht = ot ∗ tanh(Ct) (7)

This model uses LSTM to solve long-term dependence, and combines the comple-
mentary information of the positive and negative directions of Bi-LSTM to fully learn the
address text characteristics as shown in Figure 3. In this experiment, the number of hidden
neurons is 100, and the dropout parameter is set to 0.5.
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2.3.3. CNN

Convolutional neural network CNN has achieved good results in the field of computer
vision [33], and the convolution kernel pooling is actually a process of feature extraction.
The idea of CNN is to localize the overall data, use the convolution kernel function to
extract the features in each local data, and then reconstruct all the fragmented features.
Finally, the extraction of the overall information is realized under the guidance of the
objective function.

Address text has multi-name and hierarchical property, that is, it is a text composed
of a series of geographical entities, such as “Wuhu Shugu A Block 6 (POI), Guotai Road
No. 2 (jieluxiang), Jiujiang District (District/County), Wuhu City (City), Anhui Province
(Province)”. The changes in the different levels of the Chinese address are consistent with
the application scenarios of the CNN window. Based on this, the core convolution form
based on CNN is used to extract the features of the address-level data. This paper uses
1-dimensional Convolution1D for convolution. The specific convolution structure is shown
in the Figure 4: First, ZeroPadding1D is used to fill the edges of the input word vector
matrix with zero values, and then 100 filters with a length of 5 convolution kernels are used
for convolution. It is equivalent to using a 100 × 5 × 300 convolution kernel to perform a
convolution operation on the output matrix of the embedding layer. After the convolution
operation, the extractable size is 20 × 5 × 300. Then, select MaxPooling1D with pool_size
of 2 to sample the convolved features, that is, take the maximum value of the convolved
local area, and finally the output dimension is 20 × 100, as the input of the next stage.
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2.3.4. Attention

The human visual perception to the external world is not the full range, but focuses
on a specific part according to the purpose [34]. In the field of NLP, self-attention simulates
this learning process of humans. For a specific character, a certain weight is assigned to
the character based on the whole text, and then integrates all the weights to determine the
semantic representation of the character. According to the habit of describing addresses in
Chinese, it is customary to put meaningful words or words of specific addresses in front of
the expression, so different weights should be assigned to each word. For example: “1st
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village,1st village group”, “No. 6, 1st floor, 1st community”, “No. 1, building 11, district 4,
1st community”, “No. 5–6, Zone E, 1st mall”, “1 Building No. 11 Facade, 1st road, 1st
community “. In this part, we propose to use the attention mechanism to represent the
semantic information of the address, so that the semantic vector can express richer semantic
information by assigning different weights.

The definition: H is the input vector containing [h1, h2, . . . , hT ], where T is the length
of the sentence. The input vector at this stage is derived from the weighted output of the
CNN and Bi-LSTM. The related formulas are described as follows:

A′= tan h(H
)

(8)

α= softmax(W T A′) (9)

A′′ = HαT (10)

where H ∈ Rdw×T , dW is the dimension of the word vector, W is obtained through training,
and WT is transposition, A′′ is the vector representation after the attention stage.

Then, the final representation of each address vector is:

A =
dw

∑
axis=1,i=1

A′′ (11)

Among them, each row vector of the matrix is added to obtain the final vector.

2.3.5. Manhattan Distance

This paper applies Manhattan distance to calculate the similarity between a pair
of addresses. The definition Ale f t = (Al

1, Al
2, . . . , Al

n) and Aright = (Ar
1, Ar

2, . . . , Ar
n)

vectors are, respectively, semantic representation of the address pair after attention stage,
then the Manhattan distance of Ale f t and Aright can be expressed as:

Md =
n

∑
i=1

∣∣∣Ale f t
i − Aright

i

∣∣∣ (12)

Use the sigmoid function to predict the final similarity y value:

y = sigmoid(Md) (13)

3. Results
3.1. Dataset

In order to evaluate the stability of the model proposed in this paper, we leverage
a standard address library to construct an address data sets containing 195,405 pairs of
address, and then employs manual marking to mark whether the two addresses are similar
or not. An example of address pair is shown in Table 1. From the address pair dataset, we
select 10% of the address pairs as the test sets, which contains 13,027 pairs of similar and
6513 pairs of non-similar. The ratio of positive and negative samples is around 2:1. For
the remaining address dataset, we use a ten-fold cross-validation strategy for training and
verification. In the data preprocessing stage, we use the third-party tool Jieba to segment
the addresses. Considering that the address, as a short text with a special structure, may
contain a large number of unique vocabularies of place names, we used a custom stop
vocabulary list when segmenting words:
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Table 1. Address pairs on custom dataset.

Address 1 Address 2 Similarity

Dormitory of Xinhua Bookstore, Chaowu Road,
Jinhe Community, Wuwei City

Interior of Xinhua Bookstore, Chaowulu, Jinhe
Community, Wucheng Town, Wuwei County,

Anhui Province
1

No. 1, Wuteng Village, Xinwu Economic
Development Zone, Wuhu County, Wuhu

Xiaocun Nature Village, Zhongyao Village
Villagers Committee, Liulang Town, Wuhu County,

Anhui Province
0

3.2. Data Augmentation

Data augmentation is an effective way to expand the sample sets by way of changing
the training data. The larger the data size and the better the quality, the trained model
is able to get better predictive and generalization capabilities. Address pairs on data
augmentation are constructed as Table 2. It is different from the image field through the
introduction of noise or cropping to achieve data enhancement [35–37]. In the field of
NLP, small changes in string may lead to huge deviations in meaning, so it is hard to
perform simple transformations on data. In text classification tasks, scholars have proposed
several text enhancements based on noise which is synonym substitution, random insertion,
random exchange, and random deletion [38]. Aiming at the particularity of the address,
this paper adopts a data enhancement method based on the dropout strategy. Essentially,
data enhancement is implemented by two ways. One way is to concatenate address
with itself as a positive sample, or with a random sample from the rest addresses as a
negative sample. The other way is to send same sample to dropout structure twice [39].
Specifically, assuming that the address A is input with the dropout semantic representation
model, the vector obtained is h(0), and then the same address A is input into the semantic
representation model (in this case, another random dropout) to obtain the vector h(1). We
treat h(0), h(1) as a pair positive example.

Table 2. Address pairs on data augmentation.

Address 1 Address 2 Similarity

Xinhua Bookstore Dormitory of Xinhua Bookstore,
Chaowu Road, Jinhe Community, Wuwei City,

Interior of Xinhua Bookstore, Xinhua Bookstore,
Chaowu Road, Jinhe Community, Wucheng Town,

Wuwei County, Anhui Province

The interior of Xinhua Bookstore, Chaowulu
Xinhua Bookstore, Jinhe Community, Wucheng

Town, Wuwei County, Anhui Province, Dormitory
of Xinhua Bookstore, Chaowu Road, Jinhe

Community, Wuwei City

1

No. 1, Wuhu Wuteng Village, Xinwu Economic
Development Zone, Wuhu County, Wuhu,
Xiaocun Nature Village, Zhongyao Village

Villagers Committee, Liulang Town, Wuhu County,
Anhui Province

Xiaocun Nature Village, Zhongyao Village
Villagers Committee, Liulang Town, Wuhu County,

Anhui Province, No. 1, Wuhu Wuteng Village,
Xinwu Economic Development Zone, Wuhu

County, Wuhu

1

Dormitory of Xinhua Bookstore, Chaowu Road,
Jinhe Community, Wuwei City, Interior of Xinhua

Bookstore, Chaowu Road, Jinhe Community,
Wucheng Town, Wuwei County, Anhui Province

No. 1, Wuhu Wuteng Village, Xinwu Economic
Development Zone, Wuhu County, Wuhu,
Xiaocun Nature Village, Zhongyao Village

Villagers Committee, Liulang Town, Wuhu County,
Anhui Province

0

3.3. Experiment

In this study, the word2vec model is used as the semantic representation model.
After the address pairs are indexed as a predefined vocabulary list, the sentences are
embedded as a list of word indexes. Lists that less than 20-dimensional are padded with
0 to 20-dimensional coding. As for the setting of hyperparameters, considering the possible
length of the address, the output dimension of each word in the semantic embedding layer
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is set to 768 dimensions, and the overall semantic representation dimensions of each
address in address pair are both set to 100. After the semantic representation, two semantic
vectors are obtained separately and taken as the input of the next network layer.

Considering the size of the dataset, during the network training process, the batch size
of training set is adjusted to 1024. The model also used a two-layer Bi-LSTM network and
CNN layer to obtain global context information and local context information. To enhance
the difference of two address, ABLC used a dropout structure and probability is set to
0.5. The output is fused into a X ∈ R25×100 feature matrix and sent to the self-attention
network to get more position-aware information in address descriptions. Finally, two
100-dimensional representation vectors are used as output of the semantic representation
to calculate the Manhattan distance. After four layers of full connection compression, the
output of last layer is seen as the similarity of the two addresses.

In order to judge the prediction result of the model, we select accuracy, precision,
recall, and F1 score as evaluation indicators. The accuracy reflects the model accurate to
judge of “similar/dissimilar” and the F1 score reflects the overall performance of the model.

3.3.1. Parameter Experiment Analysis

The relevant parameters in this work are shown in Table 3. In order to verify the
stability of the model parameters used in this paper, we have constructed a number of
comparative experiments to prove it. The experiment contains multiple models with
different batch sizes and learning rates. The model design is shown in the Table 4:

Table 3. Parameter name and corresponding value.

Parameter Name Parameter Value

epoch 25
batch_size 1024
optimizer Adam

learning_rate 0.01
dropout 0.5

Table 4. Parameter comparative experiment.

Model No. Model Setting

1 learning_rate = 0.1
2 learning_rate = 0.001
3 learning_rate = 0.0001
4 batch_size = 512, learning_rate = 0.001
5 batch_size = 1500, learning_rate = 0.1

The experiment is carried out under the same training set, and the comparison results
of the training indicators are shown in the Table 5:

Table 5. Parameter experiment comparison results.

Model F1 Score Accuracy Recall Precision

ABLC 0.9504 0.9563 0.9460 0.9552
1 0.9362 0.9439 0.9315 0.9413
2 0.9234 0.9343 0.911 0.9402
3 0.8926 0.8435 0.9798 0.8197
4 0.9263 0.9362 0.9137 0.9436
5 0.9381 0.9458 0.9356 0.9407

The specific analysis of the influence of each parameter element on the model predic-
tion results is as follows:
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As shown in Figure 5, when the learning rate is set to 0.01, the model converges and
achieves a good convergence effect at the same time after 25 epochs. After the learning
rate is set to a lower number like 0.0001, the overall average F1 score drops about 15%.
The explanation of this experimental result can be expressed as that high learning rate will
make the parameter update amplitude large in each iteration of the model. So that the
model fails to converge and misses the extreme value during the iteration process. If the
learning rate is too small, the convergence rate will be low. Moreover, the minimum point
may not be reached and the convergence quality also will be poor.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 17 
 

Table 3. Parameter name and corresponding value. 

Parameter Name Parameter Value 
epoch 25 

batch_size 1024 
optimizer Adam 

learning_rate 0.01 
dropout 0.5 

Table 4. Parameter comparative experiment. 

Model No. Model Setting 
1 learning_rate = 0.1 
2 learning_rate = 0.001 
3 learning_rate = 0.0001 
4 batch_size = 512, learning_rate = 0.001 
5 batch_size = 1500, learning_rate = 0.1 

The experiment is carried out under the same training set, and the comparison results 
of the training indicators are shown in the Table 5: 

Table 5. Parameter experiment comparison results. 

Model F1 Score Accuracy Recall Precision 
ABLC 0.9504 0.9563 0.9460 0.9552 

1 0.9362 0.9439 0.9315 0.9413 
2 0.9234 0.9343 0.911 0.9402 
3 0.8926 0.8435 0.9798 0.8197 
4 0.9263 0.9362 0.9137 0.9436 
5 0.9381 0.9458 0.9356 0.9407 

The specific analysis of the influence of each parameter element on the model predic-
tion results is as follows: 

As shown in Figure 5, when the learning rate is set to 0.01, the model converges and 
achieves a good convergence effect at the same time after 25 epochs. After the learning 
rate is set to a lower number like 0.0001, the overall average F1 score drops about 15%. 
The explanation of this experimental result can be expressed as that high learning rate will 
make the parameter update amplitude large in each iteration of the model. So that the 
model fails to converge and misses the extreme value during the iteration process. If the 
learning rate is too small, the convergence rate will be low. Moreover, the minimum point 
may not be reached and the convergence quality also will be poor. 

 
(a) (b) 

Figure 5. (a) F1 score at different learning rates on the training set. (b) Recall at different learning rates on the training set.

The experimental results from Figure 6 show that large batches could enable the
model to obtain potential information in the datasets more quickly, but the overall gradient
update times will be reduced accordingly. Because of that, the model often fails to reach
the minimum value, and a small batch will give the model more opportunities to update
parameters. Additionally, the result also shows that the adjustment of learning rate can
profoundly affect the results of model prediction, and the gap can hardly be closed by
changing the batch size.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 17 
 

Figure 5. (a) F1 score at different learning rates on the training set. (b) Recall at different learning rates on the training set. 

The experimental results from Figure 6 show that large batches could enable the 
model to obtain potential information in the datasets more quickly, but the overall gradi-
ent update times will be reduced accordingly. Because of that, the model often fails to 
reach the minimum value, and a small batch will give the model more opportunities to 
update parameters. Additionally, the result also shows that the adjustment of learning 
rate can profoundly affect the results of model prediction, and the gap can hardly be 
closed by changing the batch size. 

 
(a) (b) 

Figure 6. (a) F1 score at different learning rate and batch size on the training set. (b) Recall at different learning rate and 
batch size on the training set. 

A too large or too small epoch number cannot lead this model to optimal results. 
When the training rounds are insufficient, the model cannot obtain enough information, 
and the performance of the trained model is poor. However, at the same time, too high 
training rounds will cause two problems. First, the model tends to overfit and the results 
between the training set and the test set are quite different. Secondly, the model may learn 
a large number of non-representative features and lead the prediction results to a worse 
direction. According to these conclusions, we select 25 as the best epoch number. 

3.3.2. Analysis of Ablation Experiments 
In order to verify the stability of the proposed module that integrates context and 

location information in this study, we designed a number of models with removing partial 
model structure for comparison experiments. The specific model design and the experi-
mental results of the three models are shown in Table 6. Taking every 50 training samples 
as a round of iteration, the recall rate and F1 score are recorded. The changes of these two 
metrics with the training process are shown in Figure 7. 

Table 6. Experiment results on ablation analysis. 

Model Name F1 Accuracy Recall Precision 
ABLC 0.9504 0.9563 0.9460 0.9552 

ABLC (BiLSTM + attention) 0.9448 0.9512 0.9428 0.9468 
ABLC (CNN + attention) 0.9178 0.9297 0.9020 0.9413 

Figure 6. (a) F1 score at different learning rate and batch size on the training set. (b) Recall at different learning rate and
batch size on the training set.

A too large or too small epoch number cannot lead this model to optimal results.
When the training rounds are insufficient, the model cannot obtain enough information,
and the performance of the trained model is poor. However, at the same time, too high
training rounds will cause two problems. First, the model tends to overfit and the results
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between the training set and the test set are quite different. Secondly, the model may learn
a large number of non-representative features and lead the prediction results to a worse
direction. According to these conclusions, we select 25 as the best epoch number.

3.3.2. Analysis of Ablation Experiments

In order to verify the stability of the proposed module that integrates context and
location information in this study, we designed a number of models with removing partial
model structure for comparison experiments. The specific model design and the experi-
mental results of the three models are shown in Table 6. Taking every 50 training samples
as a round of iteration, the recall rate and F1 score are recorded. The changes of these two
metrics with the training process are shown in Figure 7.

Table 6. Experiment results on ablation analysis.

Model Name F1 Accuracy Recall Precision

ABLC 0.9504 0.9563 0.9460 0.9552
ABLC (BiLSTM + attention) 0.9448 0.9512 0.9428 0.9468

ABLC (CNN + attention) 0.9178 0.9297 0.9020 0.9413
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As shown in Figure 7, in terms of and F1 score and accuracy, the model proposed in
this paper has the best overall performance and stable performance. Compared with the
model performance after ablation, the F1 score is improved by about 3–10%. This result
proves the overall performance of the model decline when only considering the global
context information obtained by Bi-LSTM or the local information obtained by CNN. The
decline indicates that the model cannot effectively capture part of the key information
in the address. At the same time, the prediction effect of the model has been effectively
improved after combining the contextual global information and the local information
related to the location. In addition, the F1 score proves that the accuracy of the model is
not affected by the ratio of positive and negative examples in the dataset, but the learning
ability of the model is indeed enhanced.

3.3.3. Comparative Experiment Analysis

In order to prove that the model proposed in this paper can achieve better results, we
select some baseline models as the reference for performance comparison. Considering that
the address similarity calculation problem is simplified into a judging problem of “similar”
and “non-similar”, it can be regarded as a disguised binary classification problem. We
compare the approach proposed in this paper with multiple mainstream text classification
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approaches, including deep learning methods and machine learning methods. We utilized
a random forest and SVM as comparison baseline models (2011) [40]. Additionally, we
compared ESIM proposed by Kang (2020) for address semantic matching based on deep
learning [41]. In addition, we introduce FastText (2016) and TextRCNN (2015) algorithms
as comparison approaches [42,43]. The prediction result is shown in the following table,
and the comparison of the change trend of some indicators during the training process is
shown in the figure.

From the score shows in the Table 7, it can be concluded that the ABLC model has
better improvement from several dimensions compared to other baseline models. From
the semantic information point of view, the accuracy improvement of the ABLC model
is round 4–10% than other models. The improvement proves that our model does have
certain advantages in the classification results.

Table 7. Experiment results on comparison experiment.

Model Name F1 Score Accuracy Recall Precision

ABLC 0.9504 0.9563 0.9460 0.9552
ESIM 0.8992 0.9146 0.9051 0.9020
SVM 0.7267 0.7782 0.7125 0.7662

FastText 0.6763 0.812 0.6132 0.7569
TextRCNN 0.8062 0.8774 0.7733 0.8424

ABLC-1(Xlnet) 0.8142 0.7515 0.8348 0.7947

4. Discussion

Further detailed analysis, in terms of the convergence speed during the training
process, FastText has a relatively simple and clear structure, so the convergence is more
effective and faster than other models. Due to the fact that TextRCNN uses bidirectional
RNN structure to obtain context information, it has certain advantages over FastText on the
overall information acquisition, so the result shows TextRCNN has obvious performance
strengths compare to FastText. This result presents two conclusions. First of all, the
semantic extraction approach that using single sentence has certain advantages over using
whole sentence pair to obtain context information as input of the network. Although
bidirectional RNN can make up for the deficiencies on calculating distribution of the
important words, it will ignore the comparative information from the sentence pair, so
it is inferior to the ABLC model in performance. Secondly, the effect difference between
the TextRCNN and FastText is not very large, indicating that the additional position-wise
information introduced by attention mechanism has a certain improvement, but the effect
is relatively limited. This conclusion can be explained as that the address is a special
text information based on certain rules. Additionally, then the distribution of semantic
information related to its position is often more fixed. Therefore, even though the position
information is referred, the semantic gap between addresses is small, and the overall
performance improvement of model is not very obvious.

Compared with ABLC model, ABLC-XLNet does not give an effective promotion, and
has a certain amount of decline, as shown in Figure 8. As a possible explanation to this,
address is a special branch of Chinese string, which contains proper nouns that refer to
different places. XLNet has the ability to improve the performance on many downstream
tasks, but for Chinese address descriptions, the model may lack of responsiveness to
proper nouns of place. Because of this, the embedding performance cannot get a significant
enhancement, and the prediction performance metrics of the model have a certain range of
oscillations [44,45].
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Except the ABLC model proposed in this paper, the ESIM model has the best overall
performance because ESIM uses local inference and inference synthesis techniques to
achieve information extraction and can capture both local and global features of information.
However, compared with the ABLC model proposed in this paper, its performance is
slightly weaker, probably because the ABLC contrast learning model gives higher weight
to the key information in addition to acquiring local and global features of information,
and is good at capturing the similarities and differences between inputs via using contrast
learning algorithm, thus having better classification capabilities.

A special case shown in the Table 8, even though this paper uses the semantic similarity
to do the task of matching address, the ABLC model determines that the relationship
between address 1 and address 2 is “not similar”, whereas, the subject in address 1 and the
subject in address 2 refer to the same building. One possible explanation is the training set
does not contain such related information, or the lack of relevant external knowledge to
supplement, so that the model cannot find out some subjects with related relationships.

Table 8. A special case of failure determination.

Address 1 Address 2 Similarity

No. 51, Changjiang Middle Road,
Fanluoshan Street, Jinghu District,

Wuhu City

Human Resources Security
Bureau, Jinghu District, Wuhu

City, Anhui Province
0

5. Conclusions

Aiming at the current problem of unrecognizable redundant information in Chinese
addresses, this paper proposes a contrast learning address matching model based on
attention-Bi-LSTM-CNN network. The model first extracts the address elements using
Trie syntax tree according to the characteristics of Chinese addresses, followed by using
Bi-LSTM to obtain the sentence-level information of addresses, as well as using CNN to ob-
tain the word-level information in addresses, and combining with the attention mechanism
to focus on the key information in addresses and assign higher weights. After the complete
extraction of semantic information of the addresses, the final comparison of address similar-
ity is achieved using the Manhattan distance. In addition, data augmentation is applied to
construct the address augmentation dataset, which is combined with the dropout strategy
to achieve data augmentation. The comparison with various benchmark models shows
that our proposed model has better performance. For the next step we will consider that for
one thing to study the association between addresses and geographic entities, for another
thing to try to introduce information such as geographic information maps to enhance the
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accuracy of recognition. In addition, the generalization ability to unknown address needs
to do further research.
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