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Abstract: This research aims to study the possible improvement of methylene blue (MB) removal
from aqueous solution by hybrid adsorbent-catalysts (AdsCats) prepared through the incorporation
of activated carbon derived from Luffa cylindrica fibers (LAC) to TiO2 photocatalysts. LAC with a
specific surface area of 1170 m2/g was prepared by chemical activation with phosphoric acid at
500 ◦C. TiO2/LAC composites with 70 and 90 wt.% Degussa P25 titania content were prepared. The
materials were characterized by N2 physical adsorption, XRD, FTIR, and XPS. The AdsCats displayed
a very good dispersion of TiO2 over LAC, a surface area of close to 200 or 400 m2/g, depending on the
composition, and high crystallinity, showing the presence of anatase and rutile phases. MB removal
was studied in two different scenarios: under UV-light after reaching adsorption equilibrium, and
under UV-light once the liquid effluent and the AdsCats were in contact. The MB removal by LAC has
proved to be very efficient, highlighting the predominant role of adsorption over photodegradation.
The prepared AdsCats have also been compared with their components. The results showed that
TiLAC hybrids have superior photocatalytic performance than P25, showing TiLAC-7/3 90% MB
removal with respect to the initial concentration just after 30 min of UV light irradiation for both
studied scenarios.

Keywords: luffa activated carbon; biomass; TiO2; photodegradation; organic pollutants; MB

1. Introduction

Over recent years, industrial development has engendered negative effects on the envi-
ronment throughout the propagation of wastewater containing organic pollutants, especially
from textile industries [1,2]. These released wastewaters are charged with different recalcitrant
dyes, such as malachite green, rhodamine-B, methylene blue, congo red, etc. Due to their
high toxicity, these compounds represent a serious danger both for human health (cancer dis-
eases) and the environment, especially for aquatic life [3,4]. Moreover, they present complex
aromatic structures that are hard to eliminate or degrade to less or non-toxic materials by
conventional methods, such as flocculation and coagulation [5]. In general, the concentration
of these recalcitrant dyes in wastewaters typically ranges from 10 to 200 mg·L−1.
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Various methods can be used for the removal of pollutants from water, being adsorp-
tion and advanced oxidation processes among those of highest effectivity. Adsorption is
one of the preferred methods for the removal of dyes from wastewaters [6,7]. The porous
structure of the adsorbents allows trapping of organic and inorganic pollutant molecules [8],
but once the adsorbent is saturated, a regeneration step is needed for further use. Het-
erogeneous photocatalysis, based on advanced oxidation, has attracted the researchers’
interest for water treatment applications because it is able to degrade organic contaminants
to nontoxic compounds [9,10]. A photocatalyst is activated by light of the appropriate
wavelength [11–13], and electron-hole pairs able to drive red-ox reactions are created. It is
considered a versatile, low-cost and environmentally friendly clean technology [14], able
to degrade organic pollutants in both gaseous and liquid phases.

Many metal oxide semiconductors, such as ZnO, CeO2, ZrO2, and TiO2, have been
used as photocatalysts. Among them, TiO2 is considered to show the best photocatalytic
performance and maximum quantum yields; also, it is biologically and chemically in-
ert, and a non-toxic low-cost material [15]. However, it presents a large bandgap energy
(3.0–3.2 eV), for which UV irradiation is required [16,17]. Powder TiO2 in a liquid phase
photocatalytic process involves the drawbacks of a troublesome separation from the sus-
pension and aggregation, mainly when present at high concentrations. Considering these
issues, the preparation of low-cost composite materials easy to recover by sedimentation,
and with improved photocatalytic activity (in comparison to available commercial TiO2
photocatalysts) is challenging and attracts many researchers’ interest.

Different materials and compounds have been incorporated to TiO2 with the purpose
of improving its photocatalytic activity. Among them, silica [18,19], noble metals [20], di-
atomite [21] and activated carbon [22,23] can be highlighted. The latter is gaining attention due
to several advantages, mostly for being low cost, non-toxic, and its affinity for the adsorption
of most organic molecules [24]. Its porosity is tailored as desired with the suitable combination
of experimental conditions, fitting most coveted applications. Nevertheless, the exploited
raw materials (residues or by-products) are biodegradable and available with high content of
cellulose [25,26]. Using these precursors encourages both valorization and recycling of wastes,
which helps to reduce environmental issues. Thus, preparing and using activated carbon is
beneficial from both an economic and environmental point of view. In recent years the use of
carbon materials, especially activated carbons (ACs), as supports/additives for TiO2 particles
is being widely investigated [27–30]. When studying photocatalytic degradation of pollutants
in liquid media reactions, the AC textural properties are very interesting. The characteristic
porous structure promotes it to be a suitable support for the titania particles, as its developed
surface area permits a good dispersion of titania particles on the surface leading to a better
catalyst/pollutant interaction [31]. To increase the contact between the catalyst and the target
compounds, activated carbon performs as a co-adsorbent able to transfer the pollutants to
the TiO2 surface [15,32]. Moreover, activated carbon can confer higher thermal stability and
hinder crystalline phase transformation upon heat treatment, [11]. In addition, it is worth
noting the ease of recovery of the photocatalysts by simple filtration or sedimentation from
the reaction solution in comparison with the colloidal TiO2 nanoparticles.

In the present study, an activated carbon derived from a scarcely exploited biomass
residue, Luffa cylindrica fibers, has been prepared and used as an additive to commercial
titanium dioxide, P25. The purpose was to investigate its performance on the removal
of a model cationic dye, methylene blue (MB), from the solution and also, to find out if
the incorporation of this activated carbon, named LAC, could lead to adsorbent-catalyst
composite materials with improved MB removal from solution, especially by photocatalytic
degradation. Two TiO2/LAC samples with different compositions have been prepared by
mechanical mixing in a mortar and have been thoroughly characterized.

The composite materials have been evaluated under two different scenarios: MB
photodegradation under UV-light after some adsorption (dark) period or, directly, MB
removal under UV-light once the liquid effluent and the AdsCats are in contact. Attention
is paid to the relative importance of adsorption and photodegradation.
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2. Materials and Methods
2.1. Materials and Reagents

Luffa cylindrica fibers have been collected from the Metidja region in Algeria and used
without further purification. A commercial titania, P25 from Degussa, was used. Phosphoric
acid (85 wt. % solution), and methylene blue (MB) 3,7-bis(dimethylamino) phenazathionium
chloride, C16H18ClN3S xH2O ≥ 97.0%, were purchased from Sigma Aldrich.

2.2. Synthesis of TiO2/LAC Photocatalysts

Luffa activated carbon (LAC) was prepared as follows: first, the collected fibers were
washed several times with hot distilled water to remove dust and organic impurities and
dried in an oven overnight at 90 ◦C. Then, the dried fibers were cut and milled using a
grinder. Afterwards, they were sieved to collect samples of the desired size, 800 µm. These
samples were put in contact with an 85 wt. % H3PO4 solution in wt. ratio 3:1 (H3PO4:luffa
fibers) at 80 ◦C, 3 h under continuous stirring. In this step, H3PO4 is the activating agent
and the main responsible for developing the porous structure of the activated carbon. The
obtained mixture was next treated at 500 ◦C for 1 hour in a tubular furnace with a heating
rate of 5 ◦C/min under 60 ml/min N2 flow [33]. The TiO2/LAC composites were prepared
by a simple mixing method in which Degussa P25 TiO2 was well blended in a mortar
with a certain amount of LAC to obtain mixtures containing 70 and 90 wt.% of P25. The
carbon content must be limited to allow the proper light absorption by the active TiO2. The
samples were referred to as TiLAC-x/y, where x/y refer to Ti/LAC weight proportion.

The composite TiLAC-9/1 has been treated at 250, 300, and 350 ◦C, in air flow, to
evaluate any possible influence of the oxidation state of titania and/or the generation of
oxygen surface groups on the photocatalytic removal of MB.

2.3. Characterization

The evaluation of the textural properties of the materials was conducted by N2
adsorption-desorption at −196 ◦C and CO2 adsorption at 0 ◦C in a Quantachrome Autosorb-
6B apparatus. The samples were degassed at 250 ◦C for 4 h. The specific surface area
(SBET) and total micropore volume (VDRN2) were determined by applying, respectively,
the Brunauer–Emmett–Teller and Dubinin–Radushkevich equations to the N2 adsorption
data [34]. The mesopore volume (VMESO) was estimated as the difference between the
volume of N2 adsorbed at P/P0 = 0.9 and P/P0 = 0.2, expressed as a liquid [34]. The total
pore volume (VTotal) was determined from the volume of nitrogen adsorbed at a P/P0 = 0.99
relative pressure and the narrow micropore volume (VDRCO2) was determined by applying
the Dubinin–Radushkevich equation to the CO2 adsorption data [34]. The morphology of
the LAC sample was characterized using an FEI Quanta 650 FEG-ESEM scanning electron
microscopy with SE detector, while the composites were characterized using the Helios
NanoLab 650 Dual Microscope model from FEI with an Elstar XHR immersion lens FESEM
column and carbon discs as support for the powders.

Powder X-ray diffraction analyses were conducted to identify the crystallinity and
phase structure of the TiLACx/y photocatalysts (SEIFERT 2002, Cu Kα (1.5406 Å) radiation,
2θ range from 2◦ to 80◦, scanning velocity 2◦/min).

FT-IR spectra of solid samples were registered in the mid-infrared and the close range
(Bruker Vertex70, with a Golden Gate Single Reflection Diamond ATR System accessory).
The spectral range was 4000–500 cm−1 with 4 cm−1 resolution and 64 accumulations for
spectrum acquisition.

Diffuse reflectance UV-vis (DRUV-vis) spectra were collected with an Agilent Cary
7000 UV-Vis-NIR spectrophotometer equipped with an integrating sphere accessory, in the
wavelength range from 200 to 800 nm. The absorption coefficient (α) was calculated as:
α = ln(1/T)/d, where T is the measured transmittance and d is the optical path length. Band
gap energy, Eg, was determined through the α value (m−1) from a plot of (αhν )1/2 versus
photon energy (hν), where h is Planck’s constant and ν is the frequency (s−1). The intercept
of the tangent to the absorption curves was used to estimate the band gap (Eg) value.
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The samples were also characterized by X-ray photoelectron spectroscopy (XPS), using
the Physical Electronics PHI 5700 spectrometer with non-monochromatic Mg Kα radiation
(300 W, 15 kV, 12536 eV) and with a multichannel detector. Binding energy (BE) values were
referenced to the C 1s peak (284.8 eV) from the adventitious contamination layer. The PHI
ACCESS ESCA-V6.0 F software package and Multipack v8.2b were used for acquisition
and data analysis, respectively. A Shirley-type background was subtracted from the signals.
Recorded spectra were fitted using Gauss–Lorentz curves in order to determine the binding
energy of the different element core levels more accurately. The error in BE was estimated
to be ca. 0.1 eV.

2.4. Methylene Blue Removal by Adsorption and Photocatalytic Degradation

Methylene blue is the model dye compound used to evaluate the photocatalytic activity
of the synthesized composite materials under UV irradiation following ISO procedure for
photocatalytic characterization [35]. According to previous experiments [19,36], the initial MB
concentration was 6.0 × 10−5 M, the photocatalyst dosage was 1.25 g·L−1, and the temperature
was fixed at 20 ◦C using a thermostatic bath. The following two types of experiments were
carried out: (a) the mixture MB solution and photocatalyst was maintained under stirring
in the dark for 30 min to achieve the adsorption equilibrium before starting the irradiation,
and (b) irradiation was started just after preparing the mixture that was kept under magnetic
stirring. In both cases, a 100 mL Pyrex photochemical reactor with a 125 W high-pressure
mercury lamp, operating between 180 and 420 nm with a peak at 366 nm, was used. The
photon flux was measured by using a Delta OHM radiometer HD2302.0 leaned against the
external wall of the photoreactor containing only pure water. After switching on the lamp,
2 mL aliquots of the aqueous suspension were collected from the reactor and filtered through
a 0.45 µm PTFE Millipore disc to remove the catalyst powder.

A Shimadzu UV-2450 UV/V spectrometer was used to determine the dye concen-
tration after calibration, by measuring the absorbance at 660 nm. Since the degradation
pathway for the selected dye is known with high reliability [37], the eventual formation
of byproducts was checked, monitoring the overall UV–vis spectrum of the solutions
recovered at different times during the degradation experiments.

The rate constant k was calculated according to the following Equation (1):

ln
C
C0

= −kt (1)

where C is concentration after time t, C0 represents the initial concentration and k is the
pseudo first-order rate constant (min−1), calculated from the slope (−k/2.303) of the MB
concentration and time curve (log–linear scale) as follows (2):

k = 2.303 × slope (2)

3. Results
3.1. Characterization of the Materials
3.1.1. Textural Properties

Figure 1a represents adsorption–desorption isotherms of N2 at −196 ◦C of the LAC
and TiLACx/y samples. According to the IUPAC classification, all the isotherms are type
IV with H1 hysteresis loops, indicative of a mesoporous structure [38].

The pore size distribution of the samples depicted in Figure 1b was determined
by applying the two-dimensional non-local density functional theory (2D)-NLDFT for
a heterogeneous surface to the nitrogen adsorption data. It points out that all samples
present a mesoporous structure, with an average pore width of 2–5 nm. This is in good
agreement with chemical activation by phosphoric acid, which develops microporous to
mesoporous structures [31].
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Figure 1. (a) Adsorption–desorption isotherms of N2 at −196 ◦C and; (b) pore size distribution of the prepared luffa
activated carbon and TiLAC composites.

Table 1 compiles the calculated apparent BET surface area, the total micropore vol-
ume (VDRN2), an estimation of the mesopore volumes from the N2 adsorption isotherms
(VMESO), the narrow micropore volume (VDRCO2) and the total pore volume (VTotal). Ac-
cording to Table 1, the composite materials present textural properties in agreement with
their components proportion. Although their surface area and porosity are lower than
those of LAC, they are noticeably higher than those of the commercial benchmark, P25.
In addition to the developed volume of mesopores, the samples also have a perceptible
micropore structure [16].

Table 1. Textural parameters for P25 TiO2, the prepared luffa activated carbon (LAC) and TiLAC
composites, obtained by N2 adsorption–desorption at −196 ◦C and CO2 adsorption at 0 ◦C.

Sample SBET
(m2 g−1)

VDR N2
(cm3 g−1)

VMESO
(cm3 g−1)

VDR CO2
(cm3 g−1)

VTotal
(cm3 g−1)

Ti (P25) 60 0.02 0.08 0.02 0.10
LAC 1172 0.54 0.64 0.21 1.18

TiLAC-7/3 378 0.16 0.28 0.07 0.43
TiLAC-9/1 161 0.07 0.20 0.03 0.27

3.1.2. SEM Analysis

Figure 2 shows SEM images obtained for raw luffa, LAC sample and TiLAC-x/y
composites. Figure 2a shows that raw luffa presents a homogeneous appearance, with
a rich layer of external lignin around the fibers, as already demonstrated in previous
work [39]. In addition, the sponge is slightly fibrous with irregular structure and certain
cracks and holes. Figure 2b shows the typical morphology of an activated carbon [40], with
the pores created due to the carbonization and activation with phosphoric acid treatments.
Figure 2c,d display SEM micrographs for the two prepared composites, from which it can
be noticed that both phases are in close contact and TiO2 is highly dispersed, covering
most of the activated carbon surface homogenously. Note that the white areas are assigned
to Ti particles, while the black and gray parts correspond to carbon. Furthermore, no
agglomeration of Ti particles on the LAC surface was observed.
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vacuum mode (pressure range 10−2–10−4 Pa), imaging resolution of 1.0 nm for ‘a’ and ‘b’ and 0.8 for ‘c’ and ‘d’ at 10 kV,
mode secondary electron image SE, integrated monochromator (UC) and beam deceleration mode. ETD detectors).

3.1.3. XRD Patterns

Figure 3 displays XRD diffractograms for pure and composite samples. The XRD
pattern of the LAC sample is characteristic of an amorphous activated carbon [16]. Consid-
ering the activation temperature (500 ◦C), graphite formation is not expected. Regarding
P25, as expected, the characteristic peaks associated to anatase and rutile are observed
((anatase (*) at 2θ = 25.4◦ (110), 38.1◦ (004), 48.2◦ (200), 54.3◦ (105), 55.3◦ (211) and 63.1◦ (204)
and rutile (•) at 2θ = 27.2◦ (110), 35.8◦ (101) and 40.9◦ (111)). For the composite materials,
the XRD patterns are similar to that of P25 TiO2, indicating that the incorporation of LAC
did not affect the crystallinity of titania.

3.1.4. X-ray Photoelectron Spectroscopy

XPS measurements were carried out to study the superficial chemical composition of
the samples. Figure 4a shows C 1s spectra for LAC and composite samples.

Considering C 1s signal, Ti and LAC samples show three contributions at ca. 284.8,
286.5, and 288.5 eV. The main contribution is located at 284.8 eV and assigned to C-C bonds
in graphitic carbon and also from the adventitious carbon contamination layer. The other
two contributions are due to alcoholic (C-O-H) and carbonyl C=O groups, respectively [41].
Moreover, the LAC sample shows another small contribution at 289.1 eV associated to ester
(O-C=O) and CO3

2− groups.
In the case of samples containing both titania and LAC, a new contribution at ca.

283.7 eV appeared. This new contribution is due to the presence of two phases with
different conductivity, that is LAC and titania, and is also due to adventitious carbon.
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Ti 2p core-level spectra for all samples presented two contributions associated with the
doublet Ti 2p1/2 y Ti 2p3/2, being the latter the most noticeable one at ca. 458.8 eV, which
corroborates the presence of Ti4+ octahedrally coordinated (see Figure 4b) [42].

Concerning the O 1s core-level spectra (Figure 4c), differences between pure samples
and composites become more evident. Table 2 includes the corresponding binding energy
values. LAC signal presents a major contribution at 533.6 eV, which can be associated with
organic C-O bonds in phenolic groups. In addition, a second contribution at lower binding
energy, ca. 531.5 eV is present, attributable to carboxylate species. On the other hand, in
the pure P25 sample, two signals are observed, one associated with oxygen in the lattice
of TiO2 (529.3 eV) and a second one at 532.1 eV, assigned to surface Ti-O-H groups. In the
case of composites, signals associated to lattice oxygen in TiO2 and LAC are present.

Table 2. BE values corresponding to C 1s and O 1s signals (the relative contribution, in percentage,
for the oxygen deconvoluted peaks appears in brackets).

BE (eV) C 1s Signal BE (eV) O 1s Signal

LAC 284.8 286.2 288.2 290.0 531.6
(33.2)

533.4
(66.8)

TiLAC-7/3 283.6 284.8 286.7 288.9 529.7
(82.3)

531.2
(14.0)

532.9
(3.7)

TiLAC-9/1 283.6 284.8 286.5 288.5 529.7
(85.0)

531.2
(12.3)

532.8
(2.7)

Ti 284.9 286.6 288.7 529.7
(57.1)

532.0
(42.9)

Due to the low presence of phosphorus on the surface, P 2p spectra are quite noisy
(Figure 4d). Nonetheless, a contribution located at 133.6 eV associated to pentavalent
tetra-coordinated phosphorus (PO4), as in phosphate and/or polyphosphate compounds
as C-O-PO3, is noticeable, which suggests that P atom is bonded to four oxygen atoms
by one double bond and three single bonds, indicating that the P atom in Luffa activated
carbon (LAC) is mainly present on the carbon surface by bonding to O atoms resulting
from the phosphoric acid (polyphosphate) remaining after the washing step [43–45].

The atomic surface composition obtained from XPS spectra is displayed in Table 3.
It can be seen that the atomic composition depends on the content of each material in
the sample. A small content of phosphorus has been detected for TiLAC, which can be
associated to some traces left behind during the preparation of the LAC activated carbon.

Table 3. Atomic surface composition in (%) from XPS spectra.

C (%) O (%) P (%) Ti (%)

LAC 93.25 6.13 0.62 -
TiLAC-7/3 38.80 43.02 0.93 17.26
TiLAC-9/1 26.92 51.34 0.37 21.36

3.1.5. FTIR Spectra Analysis

FTIR spectra obtained for P25 and the two TiLAC composites are presented in Figure 5. A
medium sharp peak at around 3700 cm−1 can be ascribed to the stretching vibration of the O-H
bond. The absorption band of water molecules adsorbed from the environment appeared at
1680 cm−1 [46]. Two bands at the range 2200–2300 are associated to the carbon dioxide vibration
band and medium C=C=C stretching band. A strong absorption peak is observed around
850–1200 cm−1 and is attributed to the Ti-O-Ti bond [47]. The wavelength is slightly shifted
to a lower wavenumber after the addition of LAC, indicating that the mass of this molecule
is reduced, being the frequency of vibration inversely proportional to the mass of a vibrating
molecule [48].
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Figure 5. FTIR spectra for Ti, TiLAC-7/3, and TiLAC-9/1 samples.

3.1.6. UV-Vis Diffuse Reflectance Spectroscopy

The photoresponse of the samples was evaluated by UV-vis diffuse reflectance spec-
troscopy. The DRUV-Vis spectra and Kubelka–Munk function plots of samples Ti, TiLAC-
7/3, and TiLAC-9/1 are displayed in Figure 6. Sample Ti had the lowest absorption in
the UV region (<400 nm), while the absorption curves of TiLAC samples presented higher
absorption in this region, associated to the intrinsic absorption of TiO2. The presence of
activated carbon in the composites strongly affects light absorption, explaining the high
intensity of the absorption behavior of these samples in the same region. It is worth men-
tioning that the DRUV-Vis spectra of the activated carbon is constant and shows a strong
absorption in the whole studied wavelength range. This is attributed to the effect of its
black color, as reported in many previous studies [49,50]. The band gap energy, Eg, was
determined through the α value (m−1) from a plot of (αhν)1/n versus photon energy (hν),
where h is Planck’s constant, ν is the frequency (s−1) and the exponent n is the power factor
of the optical transition mode. Note that n depends on the nature of the electronic tran-
sitions responsible for the absorption and is equal to two for allowed indirect transitions.
The intercept of the tangent to the absorption curves was used to estimate the band gap (Eg)
values of the samples, that were found to decrease according to the increasing amount of
activated carbon content: 3.10, 2.85, and 2.66 eV for samples Ti, TiLAC-9/1 and TiLAC-7/3
respectively, indicating an enhancement of TiO2 response in visible light region [51].
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3.2. Methylene Blue Removal by Adsorption and Photocatalytic Degradation

The prepared TiLAC composites have been tested in the methylene blue dye (MB) pho-
todegradation under UV light irradiation in an aqueous solution. The MB removal from the
solution is likely due to a combined adsorption and photodegradation process. Figure 7a shows
the variation of C/C0 versus time in the experiment that includes a previous step of 30 minutes
in darkness. During this dark step, LAC sample showed a high adsorption capacity of MB,
which was expected according to its developed porosity, while the pure titania sample, Ti,
showed moderate adsorption, of ca. 10% of the MB initial concentration. However, the TiLAC
composites showed much higher MB adsorption than pure Ti, 45% and 74% for TiLAC-9/1
and TiLAC-7/3, respectively, which are in agreement with the higher adsorption capacity of
the activated carbon (see Table 1). Under UV-irradiation, the MB removal by the Ti sample
reached 94% after 2 h. In contrast, using the TiLAC samples, the MB removal is faster and the
total disappearance of the dye from solution occurs within a maximum of 40 min or 60 min,
depending on the TiLAC sample (Figure 7a). It must be considered that, in this case, the dye
removal is the result of a combination of adsorption and photodegradation processes. A high
concentration of MB is assumed to occur in the interphase Ti-LAC for the composite materials
through adsorption, in contrast to what happens on Ti’s surface, the adsorbed MB can then be
photo-oxidized, leading simultaneously to LAC regeneration. This enhancement of the dye re-
moval is in accordance with the LAC content in each sample, as the removal is faster for sample
TiLAC-7/3 compared to TiLAC-9/1 and pure titania Ti, respectively. These results are in good
agreement with those reported in the literature for methylene blue photocatalytic degradation
where similar results using a carbonaceous TiO2 composite material were obtained [16,46,52].
The UV-vis diffuse reflectance analysis shows that the bandgap of the prepared composites is
lower than that of titania, which is attributed to the narrowing effect of the addition of LAC,
which means an extension of the absorption of TiO2 to the visible light range [53]. Thus, the
prepared AdsCats could be photoactive in the visible light region.

According to the results obtained when the UV lamp is switched on without the
previous 30 minutes in darkness (Figure 7b), it is assumed that MB removal takes place
by simultaneous adsorption and photocatalytic processes. The cationic dye is adsorbed
from solution on the LAC porosity and then it reacts with the photoactive sites generated
through the excitation of the irradiated titania’s nanoparticles, resulting in the total dye
elimination after 40 to 60 min UV-irradiation. There are no significant differences between
the performance of the catalysts in the two tested scenarios. Thus, the second one, skipping
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the adsorption equilibrium step, is more efficient for direct MB removal from the point
of view of saving time and energy. Figure 8 shows the experimental MB removal curves
obtained for each composite and for its individual components (in the amount in which they
are present in the composite) and the calculated MB removal by the composite considering
the sum of the contribution of each component. These data suggest a synergetic effect
between TiO2 particles and LAC and, in this sense, the “excess” MB experimental removal
with respect to the theoretical one would be related to photodegradation enhanced by the
presence of LAC.
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Figure 7. Methylene blue removal on Titania P25 (Ti) and TiLAC based catalysts; (a) under dark and UV-irradiation; (b) under
UV-irradiation without the first phase of adsorption equilibrium; with C (MB) = 6.0 × 10−5 M, catalyst dosage = 1.25 g·L−1
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Figure 8. Comparison of the experimental MB removal for (a) TiLAC-7/3 and; (b) TiLAC-9/1 with that predicted according
to their individual components and contents.

These results are consistent with the constant rates obtained from the kinetics modeling
(Table 4), showing that the photodegradation of methylene blue by all the studied composites
follows the first-order kinetics. The rate constant k was higher for TiLAC-7/3 and TiLAC-9/1
samples, 0.377 and 0.276 min-1 respectively, while the Ti sample yielded the lowest value
of 0.182 min−1. It can be noticed that the removal efficiencies, previously shown, are in
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agreement with the constant rate value and strongly influenced by the content of LAC in each
sample, since it seems to ensure a large interfacial surface available between titania particles
and the dye molecules, as the BET specific surface areas confirm (see Table 1), providing
abundant photoreactive sites and a developed porosity that facilitates the transfer of reactants
and degraded products. Therefore, it seems that the higher the contact surface between
AdsCats particles and MB, the greater the degradation rate.

Table 4. The rate constant k values for P25 and the TiLAC composites.

Sample k (min−1)

TiLAC-7/3 0.377
TiLAC-9/1 0.276

Ti (P25) 0.182

Additionally, sample TiLAC-9/1 was treated at 250, 300, and 350 ◦C in a muffle furnace
under air in order to investigate the influence of the oxidation state of Tim+ functional
species present on the external surface of the composite. The results of the photocatalytic
activity experiments are presented in Figure 9. It can be observed that, even though no
phase transformations were discerned in the three XRD patterns after thermal treatment
(not shown), some significant changes occurred from a catalytic point of view.
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Figure 9. Methylene blue removal on TiLAC catalysts, TiLAC-9/1, TiLAC-9/1–250 ◦C, TiLAC-9/1–
300 ◦C, TiLAC-9/1–350 ◦C heat treated at different temperatures under dark and with UV-irradiation.

In particular, the thermal treatment at 250 ◦C did not have any noticeable effect on the
photocatalytic activity, while the activities of the samples treated at 300 and 350 ◦C are higher
as the time required for the extensive MB degradation decreases. This improvement can be
related to the enhancement in the crystallinity and the formation of larger crystals of titania
particles as a result of the thermal effect in the air on the composite materials at temperatures
above 300 ◦C, rather than the oxidation state [54]. Furthermore, heat treatment allowed
the adsorption of more oxygen molecules on the surface of the composite by correlating
with Ti+4 ions. Thus, the presence of these oxygen molecules helps to trap photoexcited
electrons and inhibit their recombination with holes. Hence, as the temperature increases,
more superoxide anion radicals O2

- are formed and more hydroxyl radicals are stabilized
by preventing combination [55], which is in agreement with Figure 9.
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4. Conclusions

Composite materials have been prepared by a simple mechanical mixing of TiO2 and
an activated carbon derived from Luffa cylindrica fibers. The samples, with generic name
TiLAC, are identified as AdsCat for showing adsorbent and catalytic properties. The effect
of carbon content and the thermal treatment temperature in their ability for methylene
blue removal from water have been studied. The composites show high BET surface
areas related with their LAC content. TiO2 particles are well dispersed on LAC surface,
homogenously covering most of the activated carbon surface. The presence of oxygen and
phosphorus complexes on the LAC carbon confer high oxidation resistance and active sites
that lead to improved adsorption and photocatalytic properties.

The AdsCat samples showed a good performance, leading to the total dye removal
after 30 min of exposure to the irradiation source. Calculation of theoretical MB removal by
the composites based on the addition of each component effect revealed a synergic effect
between TiO2 and LAC. The photo-response confirmed that a suitable Eg is obtained for
the sample containing 10% LAC (the band gap decreases from 3.10 eV, for pure titania, to
2.66 eV) which is ascribed to the formation of TiO2 LAC heterojunction. This extension
of the catalyst absorption to visible light can enhance the catalytic activity. TiLAC photo-
catalysts showed, in fact, a higher MB degradation rate than the corresponding bare TiO2.
The heat treatment at 300–350 ◦C for TiLAC-9/1 has a slight influence on its activity by
decreasing the time of total degradation up to 15 min.
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