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Abstract: Blockage of culverts by transported debris materials is reported as the salient contributor
in originating urban flash floods. Conventional hydraulic modeling approaches had no success
in addressing the problem primarily because of the unavailability of peak floods hydraulic data
and the highly non-linear behavior of debris at the culvert. This article explores a new dimension
to investigate the issue by proposing the use of intelligent video analytics (IVA) algorithms for
extracting blockage related information. The presented research aims to automate the process
of manual visual blockage classification of culverts from a maintenance perspective by remotely
applying deep learning models. The potential of using existing convolutional neural network (CNN)
algorithms (i.e., DarkNet53, DenseNet121, InceptionResNetV2, InceptionV3, MobileNet, ResNet50,
VGG16, EfficientNetB3, NASNet) is investigated over a dataset from three different sources (i.e.,
images of culvert openings and blockage (ICOB), visual hydrology-lab dataset (VHD), synthetic
images of culverts (SIC)) to predict the blockage in a given image. Models were evaluated based on
their performance on the test dataset (i.e., accuracy, loss, precision, recall, F1 score, Jaccard Index,
region of convergence (ROC) curve), floating point operations per second (FLOPs) and response
times to process a single test instance. Furthermore, the performance of deep learning models
was benchmarked against conventional machine learning algorithms (i.e., SVM, RF, xgboost). In
addition, the idea of classifying deep visual features extracted by CNN models (i.e., ResNet50,
MobileNet) using conventional machine learning approaches was also implemented in this article.
From the results, NASNet was reported most efficient in classifying the blockage images with the
5-fold accuracy of 85%; however, MobileNet was recommended for the hardware implementation
because of its improved response time with 5-fold accuracy comparable to NASNet (i.e., 78%).
Comparable performance to standard CNN models was achieved for the case where deep visual
features were classified using conventional machine learning approaches. False negative (FN)
instances, false positive (FP) instances and CNN layers activation suggested that background noise
and oversimplified labelling criteria were two contributing factors in the degraded performance of
existing CNN algorithms. A framework for partial automation of the visual blockage classification
process was proposed, given that none of the existing models was able to achieve high enough
accuracy to completely automate the manual process. In addition, a detection-classification pipeline
with higher blockage classification accuracy (i.e., 94%) has been proposed as a potential future
direction for practical implementation.

Keywords: convolutional neural networks; visual blockage of culverts; intelligent video analytic;
image classification

1. Introduction

Cross-drainage structures (e.g., culverts, bridges) are prone to blockage by debris
and are reported as one of the leading causes of flash floods in urban areas [1–7]. The

Appl. Sci. 2021, 11, 7561. https://doi.org/10.3390/app11167561 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0894-0489
https://orcid.org/0000-0002-7800-5309
https://orcid.org/0000-0001-6151-6228
https://doi.org/10.3390/app11167561
https://doi.org/10.3390/app11167561
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11167561
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11167561?type=check_update&version=1


Appl. Sci. 2021, 11, 7561 2 of 18

1998 and 2011 floods in Wollongong, Australia [1,8–11] and the 2007 floods in Newcastle,
Australia [1,12] are typical examples where blockage of cross drainage hydraulic structures
contributed to triggering the flash flooding. Project 11: blockage of hydraulic structures [4]
was initiated under the Australian rainfall and run-off (ARR) [13] framework to study
the blockage behaviour and design considerations of hydraulic structures. Under this
project, Wollongong City Council (WCC) proposed the guidelines to consider the hydraulic
blockage in the hydraulic structures design process [2,4,14–17]. However, because of the
unavailability of relevant supporting data from peak flooding events, proposed guidelines
were not adaptive and were based on the post flood visual assessments, which many
researchers believe is not the correct representation of blockage during the peak flooding
events [1,2,14]. The guidelines suggested that any culvert with an opening diagonal of 6 m
or more is not prone to blockage. However, this claim was only supported by post flood
visual assessments and was not considered economically efficient to implement.

Initially, the blockage was defined as the percentage occlusion of hydraulic structure
opening; however, many argued that hydraulic blockage and visual blockage are two sepa-
rate concepts. The hydraulic blockage is more complex and has no established relationship
with visual blockage. The hydraulic blockage is associated with the interaction of debris
with the culvert and its corresponding effect on fluid dynamics around the culvert; however,
due to the highly non-linear and uncertain behavior of debris, it is difficult to model and
predict the hydraulic blockage using conventional means. Culvert blockage management
is categorized under the broader “The Smart Stormwater Management” project [18] which
aims to make use of data analytic and Internet of Things (IoT) for efficient stormwater man-
agement. Detection of blockage (i.e., StopBlock) to avoid flash floods is one of the critical
components of this project. From a management and maintenance perspective, making
use of multi-dimensional information (i.e., visual blockage status, type of debris material,
percentage of blocked openings) extracted using computer vision algorithms may prove
helpful in making timely decisions, as suggested in literature [7,19]. As of now, to assess
the visual blockage at culverts, manual visual inspections by flood management teams are
performed to decide if a culvert needs maintenance towards avoiding the overtopping of
flow and flash flooding. However, this process is inefficient in terms of required human
resources and unsafe during peak flood events. This paper attempts to address the problem
from a different perspective and proposes the use of visual information extracted using au-
tomated analysis in better management of blockage at cross drainage hydraulic structures
and automating the process of manual culvert visual blockage status classification.

This paper investigated the potential of convolutional neural network (CNN) al-
gorithms towards classifying culvert images as “clear” or “blocked” as an automated
solution for visual blockage inspections of culverts. Existing CNN models (i.e., Dark-
Net53 [20], DenseNet121 [21], InceptionResNetV2 [22], InceptionV3 [23], MobileNet [24],
ResNet50 [25], VGG16 [26], EfficientNetB3 [27], NASNet [28]) pre-trained over ImageNet,
and conventional machine learning approaches (i.e., SVM, RF, xgboost) were implemented
for the culvert blockage classification task using data from three different sources (i.e.,
Images of culvert openings and blockage (ICOB), visual hydrology-lab dataset (VHD),
synthetic images of culverts (SIC)), and performance was compared based on the stan-
dard evaluation measures. As a summary, the followings are the main contributions of
this research:

1. Developed a culvert blockage visual dataset using multiple sources, including real
culvert images from WCC records, simulated lab-scale hydrology experiments and
computer-generated synthetic images;

2. Explored the potential of existing deep learning CNN and conventional machine
learning models for classifying blocked culvert images as a potential solution towards
automating the manual visual classification process of culverts for making blockage
maintenance-related decisions;

3. Highlighted the challenges of culvert blockage visual dataset and inferred important
insights to help improving the classification performance in future;
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4. Proposed a detection-classification pipeline to achieve higher blockage classification
accuracy for practical implementation. Furthermore, a partial automation framework
based on the class prediction probability is introduced using a single deep learning
model to assist the visual inspection process.

The rest of the paper is organized as follows: Section 2 presents the theoretical back-
ground of the implemented CNN models in this investigation. Section 3 provides infor-
mation about the dataset used in this study for culvert blockage classification. Section 4
outlines the experimental protocols adopted to perform the experiments. Furthermore,
this section provides information about the evaluation measures used to assess the clas-
sification performance of the implemented models. Section 5 presents the results of the
experiments and also reports the critical insights from the investigation. Section 6 presents
a brief introduction to the detection-classification pipeline towards improving the blockage
classification performance. Section 7 concludes the study and reports the highlighted
outcomes from the experiments. Furthermore, the section lists potential future applications
of the presented research.

2. Deep Learning Models

This section presents the theoretical background of the implemented deep learning
models for culvert visual blockage classification. For the presented investigation, one
model from each common and state of the art category of deep learning models was
selected to demonstrate the diversity of applied approaches. A brief introduction, model
concept, model architecture, and the fundamental mathematics is outlined for each model.

2.1. DarkNet53

Redmon and Farhadi [20] proposed you only look once (YOLOV3) in the year 2018,
where they used DarkNet53 CNN architecture as the feature extractor. DarkNet53 is
the variant of DarkNet19 (i.e., feature extractor CNN in YOLOV2) but with an increased
number of convolutional layers and residual connections in between. The structure of the
DarkNet53 model consists of successive (3× 3) and (1× 1) convolutional layers. Dark-
Net53 is much deeper than DarkNet19 and achieved better performance than DarkNet19,
ResNet50, and ResNet102 for the ImageNet challenge. Model structure best utilizes the
graphical processing unit (GPU), which makes it faster.

2.2. ResNet

He et al. [25] proposed a novel residual learning framework to facilitate the training of
extremely deep networks. Rather than learning unreferenced functions, authors proposed
the reformulation of layers as residual learning functions with reference to inputs of the
layer. The residual learning concept helped in optimizing the deep networks and made
it possible to achieve higher accuracy from deep models. Mathematically, let us say H(x)
denotes the desired mapping function, in residual learning, stacked non-linear layers fit
another mapping function F(x) := H(x)− x. x denotes the inputs to the layer.

2.3. MobileNet

Howard et al. [24] proposed a category of CNN called MobileNets for cutting edge
hardware applications with the idea of using depthwise separable convolutions towards
building the deep networks. Two global hyperparameters were introduced to develop
problem-specific models with accuracy and latency adjustments. Depthwise separable con-
volution is the type of factorized convolution that splits the standard convolution process
of convolving and combining into two layers. At the first layer, depthwise convolution
is performed, while at the second layer, a 1× 1 pointwise convolution is performed to
combine the outputs from the depthwise convolution layer. All layers in the network are
followed by a BatchNormalization and ReLu non-linearity. A depthwise convolution for a
single filter per input channel can be expressed mathematically as in Equation (1).



Appl. Sci. 2021, 11, 7561 4 of 18

Ĝk,l,m = ∑
i,j

K̂i,j,m · Fk+i−1,l+j−1,m (1)

where K̂ denotes the depthwise convolutional kernel, F denotes the feature map and Ĝ
denotes the filtered output feature map.

2.4. InceptionV3 and InceptionResNet

Szegedy et al. [22,23] introduced the idea of inception module towards reducing
the computational cost of the network without significantly affecting the generalized
performance. InceptionV3 [23] and InceptionResNet [22] are improved versions of the
proposed inception module. In InceptionV3, the idea of replacing large filters with small
asymmetric filters was introduced and a 1× 1 convolution was used as a bottleneck before
the large filters. Concurrent placement of 1× 1 filter resulted in cross-channel correlation.
On the other hand, in the InceptionResNet model, Szegedy et al. [22] integrated both
inception and residual concepts where concatenated filters were replaced by the residual
connections. InceptionResNet was able to more quickly converge and achieved accelerated
training performance.

2.5. VGG16

Simonyan and Zisserman [26] investigated the performance of deep convolutional
networks by making architectural changes. The main idea was to replace the higher
dimension filters with 3× 3 filters and increase the depth of the network. This resulted in
improving the computational cost with a significantly smaller trade-off in accuracy. From
experimental investigations, authors reported that smaller filters were able to induce similar
features as larger dimension filters. Padding was used to maintain the spatial resolution.
The idea of increasing the depth of the network with smaller resolution filters demonstrated
significant success for large scale classification and localization tasks. However, an increase
in depth to a large scale resulted in an increased number of trainable parameters.

2.6. DensNet121

Huang et al. [21] proposed densely connected convolutional networks called DenseNet
by extending the concept of residual connections in the traditional networks. The authors
proposed the idea of connecting each layer in the network to every other layer in the
feedforward direction. This way, each layer will have the feature maps of all preceding
layers at its input. In terms of the number of layer connections, a traditional network
with L layers have L connections, while a densely connected convolutional network will
have L(L + 1)/2 connections. Densely connected networks have advantages including
better feature propagation, feature reuse, a significant reduction in the number of network
parameters, and improving the vanishing-gradient problem. A key difference between
residual networks and densely connected networks is that in a densely connected network,
feature maps from preceding layers are combined by concatenation rather than summation
before feeding it to the next layer.

Mathematically, if a network consists of L number of layers each with a non-linear
transformation through a composite function Fl , the output xl for the densely connected
layer can be represented as in Equation (2).

xl = Fl([x0, x1, . . . , xl−1]) (2)

where [x0, x1, . . . , xl−1] denotes the concatenation of the feature maps from the previous layers.

2.7. NASNet

Zoph et al. [28] proposed a new category of convolutional networks called NASNet
based on the idea of directly training the architecture over the desired dataset. In order to
overcome the issue of computational cost for relatively larger datasets, authors proposed to
search for an architectural building for a smaller dataset, often called proxy dataset and then
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transferring it to a larger dataset. The search space which enables the transfer from a smaller
dataset to a larger dataset is referred to as NASNet search space inspired from neural
architecture search (NAS) [29]. Furthermore, to improve the generalization of the NASNet
model, the authors proposed a novel normalization approach called ScheduledDropPath.
In NAS, a recurrent neural network (RNN) controller samples the child architectures, which
are trained over proxy datasets and based on the training accuracy, the controller improves
the architecture. The main contribution of this approach is the decoupling of architecture
complexity from depth.

2.8. EfficientNet

Tan and Le [27] proposed a novel compound coefficient based scaling of deep neural
networks. Based on this idea, a new category of networks called EfficientNet is introduced,
which is built on NAS. The idea of uniformly scaling the model in all dimensions, including
width, depth, and resolution, is implemented. Balanced scaling up of models resulted
in higher accuracy. Mathematically, if the intention is to extend the computation power
to 2n times, a model can be scaled up in depth, width, and resolution as αn, βn, and γn,
respectively.

3. Dataset

The dataset used in this research consisted of images of culverts (i.e., blocked, clear)
from three different sources (i.e., ICOB, VHD, SIC). Overall, the dataset consisted of
3848 images. Details about each subset of the dataset are presented as follows.

3.1. Images of Culvert Openings and Blockage (ICOB)

This dataset consisted of real images of culverts and referred to as “Images of Culvert
Openings and Blockage (ICOB)”. Primary sources of images included WCC historical
records, online records, and custom captured local culvert images. WCC records were
scrutinized using a Microsoft ACCESS based application for filtering the culvert images
with visible openings. The dataset contained images with a high level of variation from
each other (intra-class variation) in terms of culvert types, blockage accumulation, presence
of debris materials, illumination conditions, culvert viewpoint variations, scale variations,
resolution, and backgrounds. This high level of diversity within a relatively small dataset
makes it a challenging dataset for visual analysis, even for a binary classification problem.
In total, there were 929 images in ICOB with 487 images in the “clear” class and 442 images
in the “blocked” class. Figure 1 shows the sample instances from each class of ICOB.

    
Clear Instances 

    
Blocked Instances 

 Figure 1. Sample instances of clear (First row) and blocked (Second row) culverts from ICOB.
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3.2. Visual Hydrology-Lab Dataset (VHD)

This dataset consisted of simulated images of culverts captured from a controlled
hydrology lab experiment. A comprehensive in-lab investigation of blockage of carried
out by performing series of experiments using scaled physical models of culverts under
multiple flooding conditions. Experiments were recorded using two high definition (HD)
cameras with a different view of the culvert and images of culverts in blockage and clear
condition were extracted, referred to as “Visual Hydrology-Lab Dataset (VHD)”. VHD
consisted of a diversity of images including four different culvert configurations (i.e., single
circular, double circular, single box, double box), different blockage types (i.e., urban,
vegetative, mixed), different simulated lighting conditions, different camera viewpoints,
and different flood levels controlled by inlet water discharge. Limitations of the dataset
included reflections from the water surface and flume walls, identical background and
scaling, and clear water. For this investigation, in total, 1630 images were used with
1526 images from the “blocked” class while 104 images from the “clear” class. Figure 2
shows the sample images of each class from VHD.

    
Clear Instances 

    
Blocked Instances 

 
Figure 2. Sample instances of clear (First row) and blocked (Second row) culverts from VHD.

3.3. Synthetic Images of Culverts (SIC)

This dataset consisted of synthetic images of culverts generated using a three-dimensional
(3D) computer application based on a gaming engine (i.e., Unity3D) specifically designed to
simulate multiple culvert blockage scenarios. Application has the capability to generate virtually
countless blockage scenarios by dragging different debris materials into the scene and placing
them in desired orientation/location. Images of different simulated blockage scenarios were
captured using batch capture functionality and are referred to as “Synthetic Images of Culvert
(SIC)”. Dataset offered the diversity in terms of debris type (i.e., urban, vegetative, mixed),
culvert types (i.e., pipe, single circular, double circular, single box, double box, triple box),
camera viewpoints, time of day, and water levels. Limitations of the dataset include single
natural background and non-realistic effects/animations. For this investigation, 1289 images
were used with 1140 images from the “blocked” class while 149 images from the “clear” class.
Figure 3 shows the sample images of each class from SIC.

3.4. Labeling Criteria

Dataset was manually labeled for binary classification of a given image with culvert
as “clear” or “blocked”. A culvert being visually blocked or clear is not as simple and may
require defining detailed criteria in collaboration with flood management officers; however,
for this article, simple occlusion based criteria was used. Following subjective annotation
criteria was used for labeling.
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• If all of the culvert openings are visible, classify it as “clear”;
• If any of the culvert openings is visually occluded by debris material or foreground

object (e.g., debris control structure, vegetation, tree), classify it as “blocked”.

    
Clear Instances 

    
Blocked Instances 

 

  
Figure 3. Sample instances of clear (First row) and blocked (Second row) culverts from SIC.

4. Experimental Setup and Evaluation Measures

Experiments were planned to investigate the performance of existing CNN models for
binary classification of culvert images as blocked or clear. Pre-trained CNN models with
ImageNet weights were used for this investigation and implemented using Keras with
Tensorflow at the backend. Images of dimension 224× 224× 3 were used as input to model
except for NASNet where 331 × 331 × 3 and InceptionResNetV2 where 229 × 229 × 3
was used. Data augmentations techniques including samplewise standard deviation
normalization, horizontal flip, vertical flip, rotation, width shift, and height shift were used
in the simulations for improved performance. All the models were tuned with a dropout of
0.2, ReLU activation, and batch normalization. Stochastic gradient descent (SGD) optimizer
with a constant learning rate of 0.01 and categorical entropy loss was used. Each model
was trained for 30 epochs. For this investigation, the test dataset consisted of selected real
images from ICOB (i.e., 91 from blocked, 98 from clear). The rest of the dataset was divided
using conventional train:val split with an 80:20 ratio. In addition to the conventional
train:val:test dataset split, the 5-fold cross-validation approach has also been implemented
and compared towards providing better insight into the performance of deep learning
models. The idea of classifying deep visual features extracted from CNN models using
conventional machine learning approaches was also implemented. The simulations were
performed using Nvidia GeForce RTX 2060 GPU with 6 GB memory and 14 Gbps memory
speed. Models were trained at full precision using floating point (FP-32) optimization.

The performance of the models was measured in terms of their test accuracy, test loss,
precision score, recall score, F1 score, Jaccard Index, ROC curves, and processing times.
Each of the evaluation metrics is defined briefly as follows.

• Loss: Loss is the simplest of the measure to evaluate model training and testing
performance. It is the measure of how much instances are classified incorrectly and is
the ratio of number of incorrect predictions over total predictions. Minimum value of
loss indicated better performance;

• Accuracy: In contrast to loss, accuracy is the measure that how much percentage of
data instances are classified correctly. It is the ratio of number of correct predictions
over total predictions. High value of accuracy represents better performance;

• Precision Score: Precision measures the ability of a model to not to classify a negative
instance as positive. It answers the question that from all the positive predicted
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instances by model, how many were actually positive. The equation below presents
the expression for the precision score:

Precision Score =
True Positive (TP)

True Positive (TP) + False Positive (FP)

• Recall Score: Recall answers the question that from all the positive instances, how
many were correctly classified by the model. Expression for recall score is given
as follows:

Recall Score =
True Positive (TP)

True Positive (TP) + False Negative (FN)

• F1 Score: F1 score is the single measure which combines both precision and recall
by harmonic mean and range between 0 and 1. Higher F1 score indicates the better
performance of model. Expression for F1 score is given as follows:

F1 Score = 2× Precision× Recall
Precision + Recall

• Jaccard Index: In context of classification, Jaccard similarity index score measures the
similarity between predicted labels and actual labels. Mathematically, let ŷ denotes
the predicted label and y denotes the actual label, then J index can be expressed as
follows. Higher J index indicates better performance of model.

Jaccard Index =
|ŷ ∩ y|
|ŷ ∪ y| =

|ŷ ∩ y|
|ŷ|+ |y| − |ŷ ∩ y|

In addition, confusion matrices were plotted to assess the Type I and Type II errors.
Type I (False positive (FP)) and Type II (False negative (FN)) errors [30] are commonly used
terms in machine learning and the main goal of the model is to minimize one of these two
errors, depending on the context that which error is more critical in the given task. By
definition, a Type I error is concluding the existence of a relationship, while in fact it does
not exist (e.g., classifying an image as “blocked” while there is no blockage). Similarly,
a Type II error is the rejection of the existence of relationship while, in fact, it exists (e.g.,
classifying an image as “clear” while there is a blockage). For the given culvert blockage
context, Type II error is more critical to be minimized in comparison to Type I error because
having notified as blocked while there is no blockage is tolerable in comparison to having
notified as clear while there is a blockage. Type II error will result in damages because it
may be very late for the response team to clear the blockage before the diversion of flow.
Finally, the performance of implemented deep learning models was benchmarked against
the conventional machine learning models (i.e., SVM, RF, xgboost) to demonstrate the
effectiveness of CNN’s for images (i.e., matrix) type dataset.

5. Results and Discussion

Implemented CNN models were evaluated as per defined measures in Section 4 and
results were compared. Figure 4 shows the training performance of implemented models
in terms of training loss for conventional dataset split and the training times. From the
figure, it can be observed that other than the DarkNet53 and VGG16, all models training
behaviour was similar with loss following the negative exponential curve and converging
to a minimum value. However, unusual training behavior was observed for DarkNet53
and VGG16 where models failed to learn the training examples and loss did not decrease
significantly over the training epochs. In terms of training times, as expected NASNet was
the slowest to train (i.e., 414 s per epoch), while MobileNet was the fastest to train (i.e., 22 s
per epoch) based on their respective complexity.
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Figure 4. Training performance of implemented CNN models for culvert visual blockage classification.

Table 1 presents the empirical results of all implemented models using conventional
dataset split and 5-fold cross-validation when evaluated for test dataset in terms of accuracy,
loss, precision, recall, F1 score, and Jaccard Index. Furthermore, the table benchmarks
the results of deep learning models against conventional machine learning algorithms.
From the results, NASNet was reported as the best among all others with an F1 score of
0.84 and 0.85 for conventional and 5-fold, respectively. MobileNet was reported as the
second-best for conventional dataset split with an F1 score of 0.81, while InceptionV3 was
reported second best for 5-fold with an F1 score of 0.80. DarkNet and VGG performed
worst with the F1 scores of 0.61 and 0.48 for 5-fold cross-validation. When benchmarked
against the conventional machine learning algorithms, it can be clearly observed that deep
learning models performed significantly better. However, for the case where the idea of
classifying deep visual features using conventional machine learning models, comparable
performance to standard CNN models was achieved. 5-fold accuracy of 77% was achieved
as best for the case where MobileNet extracted visual features were classified using an
SVM conventional machine learning classifier.

Performance of deep learning models was also assessed using ROC curves as given
in Figure 5. ROC plot confirmed that NASNet outperformed other models with an area
under the curve (auc) of 0.92. Figures 6 and 7 show the confusion matrices for both
conventional and 5-fold cross-validation experiments, respectively, to observe the Type
I and Type II errors. For the conventional case presented in Figure 6, it can be observed
that NASNet performed best in terms of the lowest Type II error of the only 10%; however,
Type I error was reported 21%. On the other hand, MobileNet was reported with balanced
Type I and Type II errors (19% and 18%). A similar trend was observed for the 5-fold
cross-validation experiment where NASNet was reported with the lowest Type II error (i.e.,
12%) and EfficientNetB3 was reported balanced Type I and Type II errors (19% and 22%).
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Overall, comparatively similar performance was reported for both conventional and 5-fold
experiments except for the case of VGG where 5-fold cross-validation performance was
degraded significantly (see Figure 8a).

Table 1. Classification performance of implemented artificial intelligence models for visual blockage detection.

Test Accuracy Test Loss/Log Loss Precision Score Recall Score F1 Score Jaccard Index FLOPs

Conventional 5-Fold Conventional 5-Fold Conventional 5-Fold Conventional 5-Fold Conventional 5-Fold Conventional 5-Fold

Deep Learning Models

DarkNet53 0.61 0.63 1.20 1.21 0.63 0.65 0.62 0.61 0.61 0.61 0.44 0.46 14.2 G
DenseNet121 0.77 0.79 0.47 0.57 0.77 0.80 0.77 0.79 0.77 0.79 0.62 0.66 5.7 G

InceptionResNetV2 0.79 0.77 0.58 0.65 0.79 0.78 0.80 0.78 0.80 0.77 0.66 0.64 13.3 G
InceptionV3 0.76 0.80 0.74 0.64 0.76 0.80 0.76 0.80 0.76 0.80 0.62 0.66 5.69 G
MobileNet 0.81 0.78 0.51 0.59 0.81 0.79 0.81 0.79 0.81 0.78 0.69 0.65 1.15 G
ResNet50 0.78 0.79 0.70 0.62 0.78 0.76 0.78 0.76 0.78 0.79 0.64 0.65 7.75 G
VGG16 0.71 0.57 0.58 0.79 0.72 0.43 0.70 0.58 0.70 0.48 0.55 0.41 30.7 G

EfficientNetB3 0.78 0.79 0.46 0.57 0.78 0.80 0.78 0.79 0.78 0.79 0.64 0.66 1.97 G
NASNet 0.84 0.85 0.58 0.55 0.85 0.85 0.84 0.85 0.84 0.85 0.73 0.73 47.8 G

Conventional Machine Learning Algorithms

SVM 0.55 0.63 15.53 12.61 0.70 0.64 0.57 0.63 0.46 0.63 0.38 0.47 NA
RF 0.47 0.57 18.27 14.80 0.47 0.57 0.48 0.57 0.40 0.56 0.31 0.40 NA

xgboost 0.50 0.58 17.18 14.62 0.58 0.58 0.52 0.57 0.40 0.57 0.34 0.41 NA

Deep CNN Visual Features Classification using Conventional Machine Learning Approaches

ResNet50 Features + SVM 0.82 0.74 6.31 9.11 0.82 0.74 0.82 0.74 0.82 0.74 0.69 0.58 NA
ResNet50 Features + RF 0.76 0.73 8.24 9.29 0.78 0.73 0.76 0.73 0.76 0.73 0.61 0.58 NA

ResNet50 Features + xgboost 0.78 0.72 7.36 9.64 0.79 0.72 0.79 0.72 0.79 0.72 0.65 0.56 NA
MobileNet Feature + SVM 0.84 0.77 5.25 7.88 0.85 0.77 0.85 0.77 0.85 0.77 0.74 0.63 NA
MobileNet Feature + RF 0.76 0.75 8.06 8.41 0.77 0.78 0.77 0.76 0.77 0.75 0.62 0.61 NA

MobileNet Feature + xgboost 0.72 0.66 9.64 11.74 0.73 0.66 0.72 0.66 0.72 0.66 0.56 0.49 NA

From the FP instances in Figure 9, it was observed that for the cases where there are
more than two openings and only one opening was blocked, the algorithm classified it as
clear. This insight led to a suggestion in the change of labeling criteria. A better approach
could be to label the image as blocked if half or more than half of the openings are blocked;
otherwise, label it as clear. Furthermore, if there is no debris material present in the image
and occlusion is due to some foreground object not similar to debris in visual appearance,
the image should be labeled as clear. From the FN instances in Figure 9, it was observed
that for the cases where the image contained contents with a visual appearance similar
to blockage material, the image was classified as blocked. This indicated the existence of
background clutter/noise problems for this investigation. Background clutter hypothesis
was also verified by the intermediate CNN layers activation and heatmaps as given in
Figures 10 and 11, respectively. From the layers intermediate activation, it can be observed
that at the initial layer, the model retained almost all the visual information as in the input
image. However, as the layers go deeper, the model tends to encode higher-level features,
such as borders, lines, and edges. Going further deeper results in activation which are
not visually interpretable and possess more information related to the class of the input
image. Heatmaps for selected FN cases presented in Figure 11 confirmed the hypothesis
of background clutter. It can be observed that in most cases, the focus was more on the
background contents rather than the culvert opening. Interestingly, in the case of the box
culvert, the reflection of light through the culvert was considered by the model as the
background which resulted in false classification.
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Figure 5. ROC curves for implemented deep learning models.
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Figure 6. Confusion matrices of implemented CNN models for blockage detection (Conventional
Train:Val:Test split).
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Figure 7. Confusion matrices of implemented CNN models for blockage detection (5-fold cross validation).

Da
rk

Ne
t5

3
Ef

fic
ie

nt
Ne

tB
3

In
ce

pt
io

nR
es

Ne
t

In
ce

pt
io

nV
3

M
ob

ile
Ne

t
NA

SN
et

Re
sN

et
50

De
ns

eN
et

12
1

VG
G1

6
SV

M RF
xg

bo
os

t
Re

sN
et

50
+S

VM
Re

sN
et

50
+R

F
Re

sN
et

50
+x

gb
oo

st
M

ob
ile

Ne
t+

SV
M

M
ob

ile
Ne

t+
RF

M
ob

ile
Ne

t+
xg

bo
os

t0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

61

78 79
76

81
84

78 77
71

55

47
50

82
76 78

84

76
72

63

79 77
80 78

85
79 79

57
63

57 58

74 73 72
77 75

66

Conventional
5-Fold

(a) Test Accuracy

Da
rk

Ne
t5

3
Ef

fic
ie

nt
Ne

tB
3

In
ce

pt
io

nR
es

Ne
t

In
ce

pt
io

nV
3

Mo
bi

le
Ne

t

NA
SN

et

Re
sN

et
50

De
ns

eN
et

12
1

VG
G1

6

0.00

0.05

0.10

0.15

0.20

0.25

Ti
m

e 
(s

ec
)

0.12

0.16

0.21

0.17

0.13

0.22
0.2

0.17
0.15

(b) Model Processing Time

Figure 8. Graphical comparison of implemented CNN models for test performance.



Appl. Sci. 2021, 11, 7561 13 of 18

          1 

   
   

   
 

Figure 9. Selected false positive (First row) and false negative (Second row) instances.
          1 

 Filter 1 Filter 2 Filter 4 Filter 18    

 

    

co
nv

1 _
co

nv
 

 

D
ep

th
 o

f C
N

N
 la

ye
rs

 in
cr

ea
se

 d
ow

nw
ar

ds
 

    

co
v2

_ 
bl

oc
k3

_1
_c

on
v  

    

c o
v3

_  
bl

oc
k3

_1
_c

on
v  

 

    

co
v 4

_ 
bl

oc
k2

_ 2
_c

on
v 

 

 
 Filter 1 Filter 2 Filter 4 Filter 18    

 

    

co
nv

1_
co

nv
 

 

D
ep

th
 o

f C
N

N
 la

ye
rs

 in
cr

ea
se

 d
ow

nw
ar

ds
 

    

co
v2

_ 
bl

oc
k3

_1
_c

on
v  

    

c o
v3

_ 
bl

oc
k3

_1
_c

on
v 

 

    

co
v4

_  
bl

oc
k 2

_ 2
_c

on
v  

 

 
 
 
 
 
 
  

Figure 10. Selected intermediate ResNet50 CNN layer activation.
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Figure 11. Selected ResNet50 CNN layers heatmaps.

Given that, existing CNN models, conventional machine learning approaches, and
classification of deep CNN visual features using conventional machine learning approaches
did not achieve high enough accuracy (i.e., maximum 5-fold accuracy of 85% achieved
for NASNet model) that they can be deployed to replace the manual visual inspection
of culverts. However, they can potentially be used to partially automate the process of
manual visual inspection of culverts. Along with the predicted blockage class of a given
culvert (i.e., blocked, clear), the value of class prediction probability can help in estimating
the model confidence of the prediction. Partial automation can be achieved by setting
a threshold on prediction probability (i.e., 80%) to filter only those images for manual
inspection for which prediction probability is less than a set threshold. Figure 12 shows the
conceptual block diagram of the proposed framework for partial automation of the culvert
visual blockage inspection process.

Implemented CNN models were also compared for their processing times to inves-
tigate the relative response times. The purpose of these analyses was to investigate the
hardware implementability of proposed models for real-world applications. Model in-
ference time and image processing time were calculated as two measures to compare
the models. Three different size images were used; image 1 of 2048× 1536, image 2 of
3264× 2448, and image 3 of 4032× 3024. From Table 2 and Figure 8, it can be observed
that MobileNet and DarkNet53 were fastest among others while the NASNet model was
the slowest. In terms of accuracy, NASNet was the most accurate; however, MobileNet
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also exhibited comparatively good accuracy (i.e., 78% in comparison to 85% for NASNet)
and was recommended as a suitable choice to implement for on-board processing. Figure 8
shows the graphical comparison of implemented models in terms of test accuracy and
processing times. It is important to mention that reported processing times are for relative
comparison between models and not the actual measure of cutting edge hardware perfor-
mance. However, given the availability of efficient computing hardware, such as Nvidia
Jetson TX2 [31] and Nvidia Jetson Nano [32], it is highly probable to implement any of the
implemented models for real-world applications (e.g., pedestrian detection [33], wildlife
tracking [34]).

Deep Learning Blockage 
Classification Model 

(e.g., ResNet50)

Blockage Status: Clear
Classification Probability: 86%

Flag the image for 
manual inspection by 

expertIf classification probability <80%

Figure 12. Conceptual block diagram of framework for partial automation of visual blockage classification.

Table 2. CNN model processing times for three different size images.

Model Processing Time (s) Total Execution Time (s)
Image 1 Image 2 Image 3

DarkNet53 0.05 0.12 0.2 0.35
DenseNet121 0.09 0.17 0.24 0.39

InceptionResNetV2 0.14 0.21 0.29 0.44
InceptionV3 0.09 0.17 0.24 0.39
MobileNet 0.06 0.13 0.21 0.36
ResNet152 0.13 0.20 0.28 0.43
ResNet50 0.08 0.15 0.23 0.38
VGG16 0.08 0.15 0.23 0.38

EfficientNetB3 0.09 0.16 0.24 0.39
NASNet 0.15 0.22 0.30 0.45

6. Detection-Classification Pipeline for Visual Blockage Detection

In light of the reported insights from the presented experiments in Section 5, a
detection-classification pipeline is a potential future work in the development process
to address the background clutter issue. The idea is to detect the culvert openings from
the image using the object detection model (i.e., Faster R-CNN [35]) at the first stage
and classify the detected culvert openings as “blocked” or “clear” using a deep learning
classification model (i.e., ResNet50). Figure 13 shows the conceptual block diagram of
the detection-classification pipeline. A preliminary system with such a pipeline has al-
ready been deployed on a cutting edge hardware for testing purposes [18]. For culvert
opening detection, m@AP50 of 0.95 has been achieved using the Faster R-CNN model
while an improved 94% blockage classification accuracy has been achieved using the
ResNet50 model.
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ResNet50
Classifier

Input Image Faster R-CNN
Opening Detector Clear

Clear

Figure 13. Conceptual block diagram of detection-classification pipeline for visual blockage detection.

7. Conclusions and Future Directions

The idea of using visual analytic for the culvert blockage analysis has been successfully
pitched by implementing existing CNN models for culvert blockage classification. Dataset
from three different sources (i.e., ICOB, VHD, SIC) has been developed with a diversity of
clear and blocked culvert instances for training the convolutional neural network (CNN)
models. From the analysis, it has been observed that the NASNet model performed
best among all in terms of classification performance; however, it was the slowest in
relative comparison of processing times. Based on the classification performance and
processing times, MobileNet was recommended model to be deployed for real-world
applications. Deep learning models were benchmarked against conventional machine
learning algorithms and reported significantly improved performance. From the false
positive (FP) and false negative (FN) instances, background noise and oversimplified
labeling criteria were found potential factors for degraded performance. A detection-
classification pipeline was proposed with higher blockage classification accuracy (i.e., 94%)
as a potential solution for real-world implementation. Furthermore, a partial automation
framework based on the model class prediction probability was introduced to facilitate
the manual visual inspections of culverts. A visual attention based approach and problem-
specific CNN design are potential future directions of this research. Furthermore, study
the impact of high-resolution images on the accuracy and developing a hybrid model
taking into account information from multiple sensors are the potential concepts that can
be investigated in future.
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