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Abstract: A vast number of existing buildings were constructed before the development and enforce-
ment of seismic design codes, which run into the risk of being severely damaged under the action of
seismic excitations. This poses not only a threat to the life of people but also affects the socio-economic
stability in the affected area. Therefore, it is necessary to assess such buildings’ present vulnerability
to make an educated decision regarding risk mitigation by seismic strengthening techniques such
as retrofitting. However, it is economically and timely manner not feasible to inspect, repair, and
augment every old building on an urban scale. As a result, a reliable rapid screening methods,
namely Rapid Visual Screening (RVS), have garnered increasing interest among researchers and
decision-makers alike. In this study, the effectiveness of five different Machine Learning (ML) tech-
niques in vulnerability prediction applications have been investigated. The damage data of four
different earthquakes from Ecuador, Haiti, Nepal, and South Korea, have been utilized to train and
test the developed models. Eight performance modifiers have been implemented as variables with a
supervised ML. The investigations on this paper illustrate that the assessed vulnerability classes by
ML techniques were very close to the actual damage levels observed in the buildings.

Keywords: building safety assessment; artificial neural networks; machine learning; supervised
learning; damaged buildings; rapid classification

1. Introduction

In seismic disturbances scenarios, the substandard performance of Reinforced Con-
crete (RC) frames has always been a crucial concern. Moreover, the massive occupancy
of high-rise RC structures in urban areas and the migration of working professionals into
metropolitan cities due to high-income propensity simply add to the residents’ and owners’
responsibilities and risks. It is imperative to identify the seismic deficiency in the structures
and prioritize them for seismic strengthening. Application of rigorous structural analysis
methods for studying the seismic behavior of buildings is impractical in terms of comput-
ing time and cost, dealing with a large building stock, a quick assessment, and a reliable
method to adapt corrective retrofitting methods for deficient structures. RVS is more widely
known for fundamental computations; a rapid and reliable method used to assess seismic
vulnerability. RVS was developed initially by the Applied Technology Council in the 1980s
(U.S.A.) to benefit a broad audience, including building officials, structural engineering
consultants, inspectors, and property owners. This method was designed to serve as the
preliminary screening phase in a multi-step process of a detailed seismic vulnerability
assessment. The procedure is classified typically as a three-stage process, wherein the first
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phase consists of performing a rapid visual screening process. The structures which fail to
satisfy the cutoff scores in the first step shall be subjected to a stage two and three detailed
seismic structural analysis performed by a seismic design professional. The process of RVS
was developed based on a walk-down survey for physical assessment of the buildings from
the exterior, and, if possible, from the interior for identifying the primary structural load
resisting system. A trained evaluator performs the walk-down survey for recording the
predefined parameters from the structures. The survey outcome grades the buildings based
on basic computations and compares them to a predefined cut-off score. If the building
has scored more than the cut-off score, it can be termed seismically resistant and safe.
On the contrary, the structure shall be subjected to detailed investigation. Therefore, we
can recognize now the need for research contributions in the RVS procedure to make it as
easy and as reliable as possible.

RVS has been adopted widely in various countries globally, especially in the United
States, with several guidelines from the Federal Emergency Management Agency (FEMA)
for seismic vulnerability and rehabilitation of structures. The first edition was published in
1989 with revisions in 1992, 1998, and 2002 (FEMA 154) [1]. The RVS procedure has been
modified by many researchers, such as the application of fuzzy logic and artificial neural
networks (ANN). Trained fuzzy logic application in RVS shows a marked improvement
in the performance of the standard procedure [2]. Furthermore, the logarithmic relation-
ship between the final obtained scores and the probability of collapse at the maximum
considered earthquake (MCE) makes the results difficult. Yadollahi et al. [3] proposed a
non-logarithmic approach after identifying this limitation, especially from the perspective
of project managers and decision-makers, who shall be able to interpret the results readily.
Yang and Goettel [4] have developed an augmented approach to RVS called E-EVS by
using the RVS scores for the initial prioritization of public educational buildings in Oregon,
USA. However, the RVS method has been developed and used in different countries like
Turkey, Greece, Canada, Japan, New Zealand, and India with local parametric variations
depending on the construction method, structural materials used, the structural design
philosophies, and the seismic hazard zones [5].

Background of Study

The RVS approach has been used to determine the structural damage states and index
of the affected buildings [6,7]. The FEMA in the United States identified the demand
for a rapid, reliable, and non-rigorous method for damage state classification in 1988 [1].
The fundamental method (1988) was later subjected to revisions in 2002 to incorporate
the latest research advancements in seismic engineering. A highly relevant and adequate
explanation of this approach has been presented in the research by Sinha and Goyal [8].
This approach was further adopted by various countries across the globe for damage state
characterization [2] with adequate customization in the method according to country-
specific materials, methods, and design philosophies in construction—for example, Indian
RVS approach (IITK-GSDMA) [9]. RVS is highly effective in analyzing a large building
stock due to rapid computational time and non-rigorous methodology. Seismic vulnera-
bility assessment (SVA) is performed mainly in three stages [10]: walk-down evaluation,
preliminary evaluation, and detailed evaluation. The SVA approach’s primary compo-
nent begins with the physical presence of the trained evaluator with the respective data
sheets onsite by performing a walk-down survey to record the seismic parameters of the
structure. In many instances, the evaluator needs to enter and have access to the building;
architectural moldings hide the structural members for aesthetic purposes. The structures
that struggle to fulfill the expectations shall be subjected to the second stage. The second
stage comprises a more detailed and extensive analysis in which seismic aspects to dif-
ferent structural characteristics such as the actual ground conditions, the consistency of
the material, the condition of building elements, etc. shall be considered. If found to be
necessary, the structure shall be subjected to the final stage, where a more detailed and
rigorous analysis is used. In this stage, an in-depth and profound nonlinear dynamic
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analysis and research of the building’s seismic response shall be studied, which shall also
help to optimize the application of seismic strengthening techniques on the structure [11].
The RVS is a scoring-based approach, wherein performing some elementary computations
result in the final performance score for predicting the damage state classification of that
structure. Every RVS approach from different countries has its predefined cutoff scores.

Extensive research has been published to integrate scientific methods from several
domains to blend them into the scope of RVS and propose a smarter resultant approach;
for instance, statistical methods [12,13], ANN and ML techniques [14–20], multi-criteria
decision-making [5,21], deep learning classification [22], and type-1 [23–26] and type-
2 [27,28] fuzzy logic systems. Within the framework of statistical methodology and regres-
sion analysis, multiple linear regression analysis [12] is the most commonly used technique
for damage state classification in the RVS domain [2], preceded by other approaches such as
discriminant analysis proposed in [29]. Morfidis and Kostinakis [30] have investigated the
application of seismic parameter selection algorithms by choosing the optimum number of
seismic parameters that can upgrade the performance of the RVS. Furthermore, Jain et al.
have proved the integrated use of various interesting variable selection techniques such
as R2 adjusted, forward selection, backward elimination, and Akaike’s and Bayesian in-
formation criteria [31]. Furthermore, in the research proposed in [32], the traditional least
square regression analysis and multivariate linear regression analysis were used. Askan
and Yucemen [33] suggested several probabilistic models, such as models based on reli-
ability and “best estimate” matrices of the likelihood of damage for a different seismic
zone by combining expert opinion and the damage statistics of past earthquakes. Mor-
fidis and Kostinakis [34] have explicitly proved that ANN could be practically applied in
RVS from an innovative perspective, carried forward by the pioneering application of the
coupling of fuzzy logic and ANN’s by Dristos [35]. In this research, untrained fuzzy logic
procedures have shown exceptional performance. Even so, the RVS procedures adopted
presently are largely dependent on the evaluator’s perspective, errors, and uncertainties
or the crude assumption of linear dependency in seismic parameters. ML, a subdivision
of artificial intelligence, allows highly efficient computing algorithms with training and
learning for instinctive development. It aims to make forecasts using data analysis software.
The ML algorithms typically include three necessary components: description, estimation,
and optimization.

The domain of the study contained multi-class classification problems that require
multi-class classification techniques of ML. Tesfamariam and Liu [19] conducted a study
using eight different statistical techniques, such as K-Nearest Neighbours, Fisher’s linear
discriminant analysis, partial least squares discriminant analysis, neural networks, Random
Forest (RF), Support Vector Machine (SVM), Naive Bayes, and classification tree, to assess
the seismic risk of the reinforced buildings while using six feature parameters. Extra
Tree (ET) and RF performed better than the others, and the authors suggested further
investigation and calibration of the result using more feature vectors and big datasets.

The study conducted by Han Sun [36] has emphasized various machine learning ap-
plications for building structural design and performance assessment (SDPA) by reviewing
Linear Regression, Kernel Regression, Tree-Based Algorithms, Logical Regression, Support
Vector Machine, K-Nearest Neighbors, and Neural Network. The previous achievements in
the field of SDPA are categorized and reviewed into four sections: (1) anticipation of struc-
tural performance and response, (2) clarifying the experimental data and creating models to
forecast the component-level structural properties, (3) data recovery from texts and images,
and (4) pattern identification in data from structural health monitoring. The authors have
also addressed the challenges in practicing ML in building SDPA.

In another study performed by Harirchian et al. [37], SVM performed comparatively
efficient even in the case of many features. Kernel trick is one of SVM’s strengths that
blends all the knowledge required for the learning algorithm, specifying a key component
in the transformed field [38].
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This work’s focus includes demonstrating and utilizing a multi-class classification of
ML techniques for preliminary supervised learning datasets. Quality and quantity of data
for supervised machine learning models play a significant role in achieving a high yield
working model. Focusing on this, accurate post event data are collected from four separate
earthquakes, including Ecuador, Haiti, Nepal, and South Korea. The issue of data shortage
is crucial as data are the building blocks of ML models. Out of several supervised learning
models, the authors have selected five influential algorithms: SVM, K-Nearest Neighbor
(KNN), Bagging, RF, and Extra Tree Ensemble (ETE). Finally, the research demonstrates the
feasibility of the proposed ETE model and the detailed analysis of the earthquake results.

2. Background of the Selected Earthquakes

The study of structures affected by the Ecuador, Haiti, Nepal, and South Korean
earthquakes has been supplemented by the data archived in the open-access database of
the Datacenterhub platform [39], along with the data collected from the investigations by
different research groups on that platform [40–43].

In this particular study, the earthquake in Ecuador that occurred on 16 April 2016, has
been considered, which additionally caused a tsunami, primarily affecting the coastal zone
of Manabí. The catastrophic earthquake and tsunami had resulted in widespread devasta-
tion of infrastructure, with around 663 deaths [44]. The American Concrete Institute (ACI)
research team, in collaboration with the technical staff and students of the Escuela Superior
Politécnica del Litoral (ESPOL), performed a detailed survey to generate a memorandum
of damaged RC structures affected due to the earthquake [41]. The earthquake data have
been recorded at stations placed primarily upon two different soil profiles, namely APO1,
the IGN strong-motion station’s location, and Los Tamarindos. APO1 consists of both
alluvial soils with an average shear wave velocity at the height of 30 m, Vs30 of 240 m/s,
while Los Tamarindos consist of alluvial clay and silt deposits with a Vs30 of 220 m/s [45].

The Haiti earthquake, which occurred on 12 January 2010, has been considered for
this assessment. Seismologists from the University of Purdue, Washington University,
and Kansas University, in cooperation with research workers from Université d’Etat d’Haïti,
had surveyed and compiled the data of 145 RC buildings that had been affected by the
earthquake [46]. The data had been collected meticulously from the southern and northern
plain of Léogâne city, west of Port-au-Prince, where the structural damage was the most
severe. In the affected region, soil properties indicate granular alluvial fans and soft clay
soils, respectively [47]. The ShakeMap of the U.S. Geological Survey indicates the ground
motion at Léogâne having an intensity of IX and Port-au-Prince having intensity VIII [48].

Moreover, another devastating earthquake that has also been assessed in the current
study is the Nepal Earthquake in May 2015. This earthquake caused massive devastation
of the land and supplementary, long-term effects such as the resultant landslides of the
earthquake continuing to pose immediate and long-term hazards to the affected area’s
life and infrastructure [49]. Surveys conducted by the researchers from Purdue University
and Nagoya Institute of Technology in association with the ACI resulted in collecting and
compiling data of damage of 135 low-rise reinforced concrete buildings with or without
masonry infill walls [43]. The Kathmandu valley has a soil profile consisting primarily
a heterogeneous mixture of clays, sands, and silts with thicknesses ranging up to nearly
400 m [50]. The U.S. Geological Survey ShakeMap recorded a ground motion intensity of
VIII, with the epicenter being 19 Km to the South-East of Kodari. It has been investigated
that the site-specific design spectrum and ground motion intensity have a significant effect
on the performance of the building’s parameters against earthquakes [51].

Finally, the last earthquake considered in the study occurred in Pohang, South Korea
on 15 November 2017. It is assumed that this earthquake was not a naturally occurring
event but was influenced and triggered by various industrial activities. Furthermore,
this earthquake has potentially increased the area’s seismic vulnerability by stressing the
fault lines in the vicinity [52]. Two megacities of Huenghae and Pohang have observed a
considerable impact in terms of structural and social. The economy was affected signifi-



Appl. Sci. 2021, 11, 7540 5 of 33

cantly, with losses amounting to around 100 million US dollars in the public and private
infrastructures. A team of researchers from ACI conducted the damage data collection
in collaboration with multiple universities and research institutes [40]. The subsurface
soil strata show the integration of filling, alluvial soil, weathered soil, weathered rock,
and bedrock. The U.S. Geological Survey ShakeMap recorded a ground motion intensity
of VII [53]. A ShakeMap depicts the intensity of ground shaking produced by an earth-
quake. ShakeMaps provide near-real-time maps of ground motion and shaking intensity
for seismic events. Figure 1 shows the Macroseismic Intensity Maps (ShakeMap) and
Modified Mercalli scale (MM) for the selected earthquakes. Such maps are generated based
on shaking parameters from integrated seismographic networks locations, and combined
with predicted ground motions in places where inadequate data are collected. Finally, it
released electronically within minutes of the earthquake’s occurrence, whenever changes
that occur in the available information maps are updated.

Since peak ground acceleration and peak ground velocity of earthquakes are important
and useful to assess seismic vulnerability and risk on buildings [54], Figure 2 indicates
the properties of selected earthquakes that have been recorded. As the earthquakes in the
selected regions were significantly strong, it has been considered as the MCE in this study.

 

 

a) Ecuador b) Haiti 

c) Nepal d) Pohang 

Figure 1. ShakeMap and intensity scale for the (a) Ecuador; (b) Haiti; (c) Nepal; and (d) Pohang
Earthquake [55–59].
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Figure 2. Properties of selected earthquakes.

Choice of Building’s Damage Inducing Parameters

Past contemplation and acknowledgment of the seismic event are essential require-
ments while performing any RVS study. Many authors have utilized different characteris-
tics of buildings in their research work to assess the seismic vulnerability [3,21,32,60–62].
FEMA154 [1], as a literature review, explicitly states the most useful inputs, such as sys-
tem type, vertical irregularity, plan irregularity, year of construction, and construction
quality. Yakut et al. [63] have suggested a range of additional and significant structural
parameters for evaluating building vulnerability, which indicate damage to buildings and
should apply for potential research purposes. In this study, the parameters are the same
as the basis of the Priority Index that have been proposed by Hasan and Sozen [64]. The
eight parameters are namely No. of story, total floor area, column area, concrete wall area
in X and Y directions, masonry wall area in X and Y directions, and existence of captive
columns (or short columns) such as any semi-infill frames, windows of partially buried
basements, or mid-story beams lead to captive columns. The featured parameters have
been presented in Table 1.

Table 1. Parameters for earthquake hazard safety assessment (adopted from [14,20]).

Variable Parameter Unit Type

i1 No. of story N (1, 2, . . . ) Quantitative

i2 Total Floor Area m2 Quantitative

i3 Column Area m2 Quantitative

i4 Concrete Wall Area (Y) m2 Quantitative

i5 Concrete Wall Area (X) m2 Quantitative

i6 Masonry Wall Area (Y) m2 Quantitative

i7 Masonry Wall Area (X) m2 Quantitative

i8 Captive Columns N (exist = yes = 1, absent = no = 0) Dummy

3. Input Data Interpretations

Derived from artificial intelligence, ML teaches computers to think and make deci-
sions like humans where they can learn and improve upon past their experiences. ML can
automate most of the works that are data-driven or defined by a set of rules. The learning
patterns in ML are widely divided into three sub-classes: Supervised Learning, Unsuper-
vised Learning, and Reinforced Learning. The collection of the dataset for training the
ML model for this study contains multi-class labeled data. Therefore, the data analysis is
applied using some of the popular ML supervised learning algorithms.
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The base of ML predictive models is the training data used to teach the machines
to identify different patterns. The concept of machine learning is ineffective without
quantitative data, but only quality data can build an efficient model.

There are various categories in which the data can be presented, such as categorical,
numerical, and ordinal. ML predicts better with numerical data. For most of the cases where
the dataset contains non-numerical values, the data are transformed into their respective
numerical form using specific methods available in ML libraries, such as One-Hot-Encoding
and Label-Encoder from sciKit-learn library. The following study incorporates data in
numerical form and is collected from four different seismic crisis.

In this section, the input data are interpreted based on their damage scale and are
assigned under a specific damage scale. Table 2 presents the number of buildings for each
earthquake’s dataset and the pie-charts demonstrated together in Figure 3 show the distri-
butions of earthquake affected building samples for Ecuador, Haiti, Nepal, and Pohang
to the respective damage scale. Most of the buildings came under grade 3. The moderate
magnitude of earthquake resulted in the least number of affected buildings in Pohang.

Table 2. Number of buildings for each earthquake’s dataset.

Earthquake No. of Buildings

Ecuador 172

Haiti 145

Nepal 135

Pohang 74

Figure 3. Distribution of input data based on the damage scale: Data from Ecuador and Haiti have a
distribution over three categories, whereas the data for Nepal and Pohang are classified with four
different grades.

Table 3 describes the damage severity of the damage scales for selected earthquakes.
Though the scaling is not the same in all the earthquake cases, the associated risk is
uniformly distributed with varying grades.
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Table 3. Damage scale for selected earthquakes (adopted from [40,43]).

Damage Scale Associated Risk

1 Light: Hairline inclined and flexural cracks were observed in structural elements.

2 Moderate: Wider cracks or spalling of concrete was observed.

3 Severe: At least one element had a structural failure.

4 Collapse: At least one floor slab or part of it lost its elevation.

The seismic damages are evaluated using eight different input parameters drawn from
the sample buildings. Figures 4–7 are the histograms plotted for Ecuador, Haiti, Nepal,
and Pohang, respectively, to analyze the distribution of the input parameters. In each
histogram, the y-axis symbolizes the number of counts or the frequency, and the x-axis
represents the corresponding feature parameter from every dataset. For Ecuador, as it is
shown in Figure 4a–h, (b) Column Area, (e) Masonry Wall Area (EW), (f) Masonry Wall
Area (NS), (g) No. of Floor, and (h) Total Floor Area show Gaussian distribution, whereas
(a) Captive Columns appear to have a bimodal distribution. The absence of data are visible
for (c) Concrete Wall Area (EW) and (d) Concrete Wall Area (NS).

Figure 4. The histogram plot shows the distribution of data of (a) Captive Columns, (b) Column
Area, (e) Masonry Wall Area (EW), (f) Masonry Wall Area (NS), (g) No. of Floor, and (h) Total Floor
Area for Ecuador.
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Figure 5a–h represents data from Haiti. It shows the exponential distribution for the
(b) Column Area, (e) Masonry Wall Area (EW), (f) Masonry Wall Area (NS), (g) No. of
Floor, and (h) Total Floor Area, respectively. It can be concluded that there is no linear
distribution of parameters. (a) Captive Columns have a bimodal distribution. For Nepal
in Figure 6a–h, it gives Gaussian distribution for the (b) Column Area, (g) No. Floors, (h)
Total Floor Area, and (f) Masonry Wall Area (NS), whereas the distribution pattern for (e)
Masonry Wall Area (EW) is exponential. (a) Captive Columns is bimodal, and there is no
data to show for (c) Concrete Wall Area (EW), (d) Concrete Wall Area (NS).

Figure 5. Distribution of data of (a) Captive Columns, (b) Column Area, (e) Masonry Wall Area (EW),
(f) Masonry Wall Area (NS), (g) No. of Floor, and (h) Total Floor Area for Haiti.

The data distribution for Pohang in Figure 7a–h; it is visible that Pohang has very
little sample data in the dataset. The (b) Column Area represents a Gaussian distribution
over the data, whereas the (c) Concrete Wall Area (EW), (d) Concrete Wall Area (NS) and
(h) Total Floor Area are distributed exponentially. (e) Masonry Wall Area (EW) and (f)
Masonry Wall Area (NS) clearly shows the absence of any data.
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Figure 6. The histogram plot shows the distribution of data of (a) Captive Columns, (b) Column Area, (e) Masonry Wall
Area (EW), (f) Masonry Wall Area (NS), (g) No. of Floor, and h) Total Floor Area for Nepal.
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Figure 7. Data distribution of (a) Captive Columns, (b) Column Area, (c) Concrete Wall Area (EW),
(d) Concrete Wall Area (NS), (g) No. of Floor, and (h) Total Floor Area for Pohang.

4. Supervised Learning as Statistical Analysis for RVS

Supervised Learning [65] for multi-class classification has several learning methods.
In this study, five different ML algorithms are applied, such as SVM, KNN, Bagging, RF,
and ETE to the input datasets to examine the most suitable classifier based on accuracy.

4.1. Support Vector Machine

An SVM [66] is a powerful and flexible model in ML. It performs well in linear, nonlin-
ear classification and regression problems and also for outlier detection. SVM’s foundation
is built over linear classification problems, primarily for separating two distinct classes
using decision boundaries created by the support vectors [67]. Often hyperparameter c is
tuned to regularize the over-fitting of the SVM model. By transforming the input space
into a higher dimension, SVM can easily fit for polynomial features, often called as kernel
trick. The following list shows the most popular polynomial kernels used for nonlinear as
well as multi-feature classification problems:

• Linear: K(a, b) = aT · b;
• Polynomial: K(a, b) = (γaT · b + r)d;
• Gaussian RBF: K(a, b) = exp(−γ||a− b||2);
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• Sigmoid: K(a, b) = tanh(γaT · b + r);

where

K: kernel;
d: degree of polynomial;
a and b: vectors in the input space ∈ IR;
γ: mapping function;
r: an independent parameter, such that r ≥ 0.

With an increase in the complexity of the Kernels, the computational time for the
classifier also increases. Linear Kernel SVC is comparatively faster among the rest of the
kernels and fits well for more massive data. In the case of nonlinear and complex data,
Gaussian RBF works fast.

4.2. K-Nearest Neighbor

Proposed by Evelyn Fix [68] in 1951 and further modified by Thomas Cover [69], K-
nearest neighbor, or KNN, is ML’s simple non-parametric procedure used for classification
and regression problems. It presumes that the same class data stay close to each other,
and the data are assigned to a particular class with the maximum vote by its neighbors.
It is also known for lazy learning as the classification is locally approximated. Distance
functions (listed below) play an essential role in the algorithm; therefore, the classification
accuracy is improved when it is standardized or normalized.

• Euclidean:

(√
∑k

n=1(xi − yi)2

)
;

• Manhattan:

(
∑k

n=1 |xi − yi|
)

;

• Minkowski:

(
∑k

n=1(|xi − yi|)q

)1/q

.

where

xi is the ith value of ~x and yi is the ith value of ~y,
k is the number of nearest neighbors, and
q is a positive value.

4.3. Bootstrap Aggregation/Bagging

Leo Breiman proposed bootstrap Aggregation (or Bagging) in 1996 [70]. Bagging can
be considered as a specific instance belonging to the family of ensemble methods [71].
These methods notably bring randomization to the learning algorithm or exploit at each
run a different randomized version of the original learning sample to generate robust,
diversified ensemble models with lower variance. By aggregating the predictions from all
the classifiers, the final accuracy is evaluated. Bagging draws randomization by creating
the models from bootstrap samples built-in subsets from replacing the original dataset.

4.4. Random Forest

RF is an ensemble classifier and a significant advancement in the decision tree in
terms of variance. The idea was proposed by Leo Breiman [72] with combined concepts
of Bagging [70] and random feature selection by Ho [73,74] and Amit and Geman [75,76].
Randomly selected subsets (i.e., a bootstrapped sample) of training data form multiple
numbers of trees that go under evaluation independently. The probability of each tree is
considered, and the average is calculated for all the trees and then decides the class of
the sample. RF classifier merges the concepts of bagging and random feature subspace
selection to build stable and robust models. It performs better than simple trees in terms of
the overfitting of data.



Appl. Sci. 2021, 11, 7540 13 of 33

4.5. Extra Tree

Various generic randomization methodology like Bagging has been proposed [74,77,78],
which have been proven for better accuracy when compared to other supervised learning clas-
sifiers like SVM. Ensemble methods, in combination with trees, provided low computational
cost and high computational efficiency. Several studies focused on specific randomization
techniques for trees based on direct randomization methods for growing trees [71].

ET or Extremely Randomised Trees is also an ensemble learning approach and fun-
damentally based on Random Forest. ET can be implemented as ExtraTreeRegressor as
well as ExtraTreeClassifier. Both methods hold similar arguments and operate similarly,
except that ExtraTreeRegressor relies on predictions made by the tress’s aggregated predic-
tions, and ExtraTreeClassifier focuses on the predictions generated by the majority voting
from the trees. ExtraTreeClassifier forms multiple unpruned trees [79] from the training
data subsets based on the classical top-down methodology. Compared to other tree-based
ensemble methods, the two significant differences are that ET splits the nodes by selecting
the cut-points randomly and thoroughly. Moreover, it utilizes the complete learning sample
(rather than a bootstrap replica) to build the trees.

The prediction for the sample data makes the majority of the voting. While implement-
ing ML algorithms that utilize a stochastic learning algorithm, it is recommended to assess
them using k-fold cross-validation or merely aggregate the models’ performance across
multiple runs. To fit the final model, few hyperparameters can be tuned, like increasing the
number of trees and the number of samples in a node, until the model’s variance reduces
across repeated evaluations. The ET classifier has low variance and has higher performance
with noisy features as well.

5. Data Analysis and Method Implementation

This section discusses the available datasets and implements different ML techniques
to verify their predictive accuracy against the unseen test examples. Figure 8 shows the
different stages of the methodology implemented to build the ML classifiers. Each of the
four stages exhibits the necessary steps connected from data pre-processing to creating the
complete ML model. They are further elaborated in the below sections.

Figure 8. Methodology Flowchart: The given flowchart shows the steps involved to build and
evaluate different classifiers on the given input dataset.
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5.1. First Stage: Data Pre-Processing

Data pre-processing plays an essential part in machine learning as the quality of the
information extracted from the data are responsible for affecting the model’s learning
quality and capacity. Therefore, pre-processing the data is crucial before feeding it to the
algorithm for training, validation, and testing purposes.

In general, raw datasets may contain missing feature points, disorganized data, and im-
balanced input feature points over the attributes. For optimum accuracy, datasets are
pre-processed, which includes handling the missing values, standardizing the data, and bal-
ancing the imbalanced distribution of feature points. An imbalanced dataset contained
an uneven number of input examples for the output classes. The study utilizes Python
programming language, which has inbuilt libraries such as NumPy, sklearn, matplotlib,
which support ML algorithms strongly. Furthermore, the libraries offer different classes
and methods responsible for performing different tasks for the provided datasets.

The datasets used in the study include the data collected from four different earth-
quakes, which occurred in Ecuador, Haiti, Nepal, and Pohang. Haiti’s dataset contains few
missing values, whereas all the datasets show the disproportionate distribution of feature
points over all the eight input parameters. For Haiti, the missing values are replaced with
the attribute column’s respective mean value using the SimpleImputer class from Python’s
sklearn library. SimpleImputer verifies the missing values; if so, it replaces the missing
value using the mean/median/most frequent/constant value from the respective column.
Standardization of the data is performed by MinMaxScaler class from the sklearn library,
which helps to scale the feature points between range 0 and 1. Imbalanced categorization
acts as an objection for predictive modeling as most of the machine learning algorithms
applied for classification are created around the idea of an equal number of examples for
each category class. For balancing the feature point distribution over the different classes,
the over-sampling technique of SMOTE [80] method is used. It creates synthetic samples
for the minority class, hence making a balance with the majority class.

Subsequently, the dataset splits into two subsets, a training set with 80% data and
testing sets with 20% data. Splitting of data in ML is significant, where the hold-out cross-
validation ensures generalization to ensure that the model is accurately interpreting the
unseen data [81].

5.2. Second Stage: Model Evaluation

ML classifier is designed to predict the unseen data. ML models can perform the
various required actions; it is essential to feed them the training subsets, followed by the
validation subsets, ensuring that the model interprets the correct data. A significant and
relevant dataset can help the ML model to learn faster and better. As mentioned in the
earlier section, there are five candidate algorithms with which the models are trained and
fit, namely SVM, KNN, Bagging, RF, and ET. Using the RepeatedStratifiedKFold class from
the scikit learn library, the models are trained to be not too optimistically biased and catch
the selected model’s variance.

Model performance can be influenced by two configuration factors: parameter and hy-
perparameter. Parameters are the internal configuration variable and are often included
as a part of the learning model. They help the model in making predictions and can
characterize the model’s skill for the given problem. In general, parameters can not be set
manually; instead, they are saved as a part of historical learned models.

Hyperparameters can be configured externally (often set heuristically) and are tuned
based on the predictive model user has selected for solving the problem. Hyperparameters
help estimate the model parameters, and the user often searches for the best hyperparame-
ter by tuning the values using methods like grid search or random search available in scikit
learn library.

For the study, all the models are created using the default hyperparameters for their
respective algorithms. While examining the models, the mean and standard deviation
values of predictive accuracy are observed at each iteration. Every algorithm’s efficiency
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is analyzed based on the highest achieved predictive accuracy for the unseen test data.
Figure 9 represents the candidate algorithms’ predictive accuracy for each of the respective
datasets. The observed results suggest that ET performs best on the given datasets while
classifying the unseen test data; the overall accuracy is 64%, 63%, 72%, and 67% for Ecuador,
Haiti, Nepal, and Pohang, respectively. ET and RF have performed better at predicting test
data in comparison to the rest of the ML techniques.

SVM KNN Bagging RF ET

Ecuador 45 57 57 62 64

Haiti 40 54 58 60 63

Nepal 36 58 70 72 72

Pohang 25 46 60 65 67

Average 37 54 61 65 67
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Figure 9. The chart involves the predictive accuracy acquired by each candidate classifier against
every dataset.

5.3. Third Stage: Model Selection and Visualization

Based on the candidate classifiers’ evaluation result, ET has above average perfor-
mance with each of the input datasets, and therefore ExtraTreeClassifier is explored further
in the study to visualize the accuracy results.

Visualization techniques such as Confusion Matrix and ROCAUC plots are used to
show the efficiency of ET clearly. Confusion matrix or error matrix summarize the classi-
fier’s performance [82] by comparing the predicted value with the actual value, presented
in a [nxn] matrix, where n is the number of classes in the data. The structure of this matrix
is shown in Figure 10, and it serves as a basis for calculating several accuracy metrics.

Figure 10. Structure of a confusion matrix for a binary classification.

A recall is the ratio of true positives to the sum of true positives and false nega-
tives (damage misclassified as non-relevant), while Precision illustrates the proportion of
correctly classified instances that are relevant (called true positives and defined here as
recognized damage) to the sum of true positives and false positives (damage misclassified
as relevant). In our case, false positives and false negatives are represented by damage
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grades recognized as higher or fewer damage grades, respectively. Each of the presented
confusion matrices in this study provides the accuracy of each damage scale by each RVS
method and provides information such as recall (true positive rate) and precision (positive
prediction value) calculated from the below equations:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

The Receiver Operating Characteristic/Area Under the Curve or ROCAUC plot
estimates the classifier’s predictive quality and compares it to visualizes the trade-off
between the model’s sensitivity and the specificity. The true positive and false positive
rates are represented by the y-axis and x-axis, respectively, in the plots. Typically, ROCAUC
curves are used to classify binary data to analyze the output of any ML model. As this study
is conducted for a multi-class classification problem (multiple damage scales), Yellowbrick is
used for visualizing the ROCAUC plot. Yellowbrick is an API from scikit learn to facilitate
the visual analysis and diagnostics related to machine learning.

Furthermore, the value of micro-average area under the curve (AUC) is the average of
the contributions of all the classes AUC value, whereas the macro-average is computed
independently for each class and then aggregate (treating all classes equally). For multi-
class classification problems, micro-average is preferable in case of an imbalanced number
of input examples for each class. For this study, since all the classes are balanced with equal
input data, the micro and macro average value is almost identical.

Figures 11–14 illustrate how well the ET ensemble technique worked overall with each
dataset. The confusion matrix presented in Figure 11a and it shows the model’s efficiency
in predicting test examples related to each class, and Figure 11b is the corresponding
ROCAUC plot and similar respective results for the AUC are produced and it applies to
other related figures. Figure 11 represents the confusion matrix for Ecuador that anticipates
the classifier’s prediction accuracy; class 1 has maximum correct predictions, whereas
performance for class 2 is least. Figure 11b depicts the ROCAUC plot for the test data,
and the curves show that the model fits with the unlabeled data sufficiently. Class 1
(AUC = 0.89) clearly shows that the test data belonging to the class are well predicted.
The high value of AUC signifies a better predicting model. Class 1 has the highest AUC
values, whereas class 3 has the lowest among all.

For Haiti, the confusion matrix in Figure 12a shows that class 2 has the maximum
correct predictions for the unseen test data, and class 3 has the least correct predictions.
The ROCAUC plot in Figure 12b also depicts the highest value for class 2. The micro and
average macro value for the classes are nearly the same. The same pattern can be seen in
the AUC values, with the minimum value for class 3 (0.73) and maximum for class 2 (0.94).

Nepal and Pohang have a 4 × 4 matrix, based on their number of damage scale.
Confusion matrix for Nepal in Figure 13a has class 3 with the correct predictions and
maximum for class 1. The AUC value for class 3 in Figure 13b is the maximum. The micro
and macro-average values of AUC for all the classes are 0.97 and 0.96, respectively.
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(a) Confusion matrix

(b) ROCAUC Plot

Figure 11. Performance of ET on Ecuador.

(a) Confusion matrix

Figure 12. Cont.
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(b) ROCAUC Plot

Figure 12. Performance of ET on Haiti.

(a) Confusion matrix

(b) ROCAUC Plot

Figure 13. Performance of ET on Nepal.

In the confusion matrix result for Pohang, Figure 14a illustrates that class 1 has the
maximum correctly predicted test examples, and a similar pattern is visible for the AUC
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value in Figure 14b, with class 1 having a maximum AUC value. The micro and macro
value for all the classes are 0.74 and 0.76, respectively. Insufficient data for Pohang resulted
in several zero values in the confusion matrix. Overall, while predicting the test set, Nepal
has attained the highest accuracy of 72% out of all the datasets.

(a) Confusion matrix

(b) ROCAUC Plot

Figure 14. Performance of ET on Pohang.

5.4. Fourth Stage: Hyper-Parameter Optimization and Model Fitting

After selecting ET as the most suitable classifier and visualizing its performance
with all datasets, the final stage is to tune its relevant hyperparameters and check the
model performance with each dataset to compare with the results before and after tuning
the hyperparameters.

As mentioned in the previous section, a hyperparameter is a factor whose value
dominates the learning process. These hyperparameters are to be set before executing a
machine learning algorithm, unlike model parameters that are not fixed before execution;
instead, they are optimized during the algorithm’s training. These factors or parameters are
tunable and can openly affect how well model trains. Hyperparameters may impact directly
on the training of ML algorithms. Thus, to achieve maximal performance, it is essential
to understand how to select and optimize them [83]. The study includes optimizing three
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important ET hyperparameters (listed below), and each classifier is configured based
on them.

• Number of Trees: One of the critical hyperparameters for the ET classifier is the
number of trees that the ensemble holds, represented by the argument “n_estimator”
ExtraTreeClassifier. In general, the number of trees increases until the performance of
the model stabilizes. A high number of trees may lead to overfitting and a slowing
down of the learning process, but the unlikely ET algorithms approach appears
to be immune to overfitting the training dataset given that the learning algorithm
is stochastic.

• Feature Selection: The number of randomly sampled features for each split point
is perhaps an essential factor to tune for ET, but it is not sensitive to the use of
any specific value. Argument “max_features” in the classifier is used to select the
number of features. While selecting the features randomly, the generalization error
can get influenced in two ways; first, when many features are selected, the strength of
individual tree increases, second when very few features are selected, the correlation
among the trees decreases, and overall the whole forest gets strengthened.

• Minimum Number of Samples per Split: The last hyperparameter for optimizing is the
number of samples in a tree node before any split. The tree adds a new split that occurs
when the number of samples divides equally or if the value exceeds. The argument
“min_samples_split” represents the minimum number of samples required to split an
internal node, and the default value is two samples. Smaller numbers of samples result
in more splits and a more rooted, more specialized tree. In turn, this can mean a lower
correlation between the predictions made by trees in the ensemble and potentially
lift performance.

5.5. Results and Analysis

In this section, the results are visualized and analyzed using a box and whisker plot (or
boxplot for short) and reference table to list the respective mean accuracy. As an alternative to
histograms, boxplots help understand the distribution of sample data. Each dataset is exam-
ined using three models created against each hyperparameter tuning factor. Tables 4–15 show
the mean accuracy of the models are tuning the available hyperparameters, and Figures 15–26
show the corresponding distribution of accuracy over the data.

Tables 4–6 illustrate the outcomes for Ecuador after tuning the hyperparameters.
The total number of features considered in the study is eight. The boxplot is formed to
understand the distribution of accuracy observed across the sample data against different
input features. The orange line in each box acts as the median for summarizing the sensible
data, and the triangle inside the box represents the group means. The vertical line called
the whisker represents the sensible distribution of the values. The small circles outside
the whisker in a few of the boxplots represent the possible outliers present in the dataset.
The outlier is the sample data, unlike the rest of the data, and often does not make sense
for the classifier.

In Figure 15, the overall performance of tuning the feature selection is better than
configuring the two hyperparameters. In addition, the mean accuracy achieved in this
scenario has slight growth compared to the accuracy obtained before optimizing the
hyperparameters (64%). The wall area displays a high impact on attaining the required
accuracy, although the accuracy differences might or might not be statistically significant.
In the boxplot, feature numbers 3 and 5 on the x-axis show peaks, and 7 is low. The boxplot
has different feature input data on the x-axis and accuracy scored by each of them on the
y-axis. In most cases, the box plot’s median is overlapping the mean score, which means
that the distribution is symmetric.
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Table 4. Ecuador: Predictive accuracy score against each input feature.

Feature Mean Accuracy (%)

No. of floor 64
Total floor area 65
Column area 65

Concrete wall area (NS) 66
Concrete wall area (EW) 67
Masonry wall area (NS) 66
Masonry wall area (EW) 65

Captive Columns 66

Figure 15. Ecuador: Boxplot to represent the mean accuracy distribution achieved by hyper-tuning
the input features.

Table 5 illustrates that, as the number of samples per split increases, the accuracy is
decreased. In between 5 to 7 number of samples, the predictive accuracy is showing a
similar trend. The boxplot in the given Figure 16 has the number of samples per split on
the x-axis and accuracy scores for each sample split set on the y-axis. The data distribution
is not even, and the values are falling below the 25th percentile. In addition, the mean and
median are not overlapping for most cases, and there are few outliers in the case of 3, 4,
and 5 number of samples per split.

Table 5. Ecuador:Predictive accuracy score against number of samples per split.

No. of Sample per Split Mean Accuracy (%)

2 64
3 65
4 65
5 65
6 65
7 65
8 64
9 63

10 62
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Figure 16. Ecuador: Boxplot to illustrate the mean accuracy distribution by hyper-tuning the
minimum number of samples per split.

Results after hyper-tuning the number of trees in an ensemble are shown in Figure 17.
Table 6 shows that accuracy increases with the high number of trees; 40 tree ensemble
attains 60% accuracy. The boxplot in Figure 17 is skewed left (also called negatively
skewed), with 40 trees in one sample; the distribution of the sample data’s value is not
uniform as the mean and median are not overlapping.

Figure 17. Ecuador: Boxplot to represent the mean accuracy distribution achieved by tuning number
of trees for every ensemble.

Table 6. Ecuador: Predictive accuracy score against number of trees for each ensemble.

Feature (No. of Tree) Mean Accuracy (%)

10 63
20 64
30 65
40 68

Figure 18 shows the result of the predictive accuracies achieved after tuning different
feature inputs. The Captive Column shows the highest impact on model performance based
on the accuracy value. In Table 7, the boxplots are almost symmetric except for the Column
Area. There are few visible outliers as well among the input data of the Column Area.
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Figure 18. Haiti: Boxplot to represent the mean accuracy distribution achieved by hyper-tuning the
input features.

Table 7. Haiti: Predictive accuracy score against each input feature.

Feature Mean Accuracy (%)

No. of floor 61
Total floor area 60
Column area 62

Concrete wall area (NS) 64
Concrete wall area (EW) 63
Masonry wall area (NS) 63
Masonry wall area (EW) 63

Captive Columns 66

The boxplot result is comparatively asymmetric for tuning the sample per split,
and few outliers are present in the input data. Accuracy data on Table 8 present sim-
ilar results like Ecuador’s performance. A fewer or moderate number of samples per
split have better predictive accuracy than the higher samples per split. The boxplots on
Figure 19 side are not symmetric, and they are somewhat skewed. The outcome of tuning
the feature parameters and the number of samples per split does not significantly change
the model’s average score.

Only the number of trees has shown growth in predictive accuracy in Table 9 as
compared before and after applying hyperparameter tuning. In addition, 100 is the default
hyperparameter value for the number of trees, but, based on the sample size, it may vary
from 10 to 5000. The individual box plot and the mean accuracy scores clearly show that the
score is lowest when the tree numbers are less, and the score goes high when the number
of trees is 30. Further increase in tree number might not be useful in scoring high accuracy
as the sample dataset is small. The median of the box plot and the mean accuracy score is
not necessarily overlapping except for an ensemble with 40 trees. The predictive accuracy
list shows that 20 to 30 trees for creating the ensemble moderately fit the model samples.
A similar result is showcased in the boxplots in Figure 20. With 30 trees, the model has
shown higher accuracy, and it is skewed left (negatively skewed) according to Figure 20
and Table 9. The whisker line for 20 number of trees is visibly drawn towards the bottom
end, which indicates the practical value of the data allocation.
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Table 8. Haiti: Predictive accuracy score against number of samples per split.

No. of Sample per Split Mean Accuracy (%)

2 64
3 65
4 64
5 66
6 62
7 63
8 62
9 61

10 62

Figure 19. Haiti: Boxplot to illustrate the mean accuracy distribution by hyper-tuning the minimum
number of samples per split.

Table 9. Haiti: Predictive accuracy score against number of trees for each ensemble.

Feature (No. of Tree) Mean Accuracy (%)

10 60
20 65
30 66
40 63

Figure 20. Haiti: Boxplot represents the mean accuracy distribution achieved by tuning the number
of trees for every ensemble.
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Figures 21–23 are the results for accuracy scores generated by models for Nepal after
tuning the hyperparameters. Nepal achieved no compelling improvement in accuracy
score, compared to what it achieved before optimizing the hyperparameters. One possible
reason behind the result could be the high variance of the test harness.

In Table 10, the results after hyper-tuning different feature parameters are presented.
The mean accuracy shows that, overall, all the features attain a similar accuracy; total
floor area and Captive column are slightly on the higher side. The boxplots on Figure 21
illustrate that most data distribution is between the 25th and 50th percentile. The boxplots
are skewed in nature.

Figure 21. Nepal: Boxplot to represent the mean accuracy distribution achieved by hyper-tuning the
input features.

Table 10. Nepal: Predictive accuracy score against each input feature.

Feature Mean Accuracy (%)

No. of floor 68
Total floor area 70
Column area 69

Concrete wall area (NS) 68
Concrete wall area (EW) 68
Masonry wall area (NS) 69
Masonry wall area (EW) 68

Captive Columns 70

Outcome after altering the number of samples per split are illustrated in Figure 22.
The mean accuracy presented in Table 11 illustrates that an intermediate number of samples
per split give decent result, e.g., 65 to 67% for 4 to 6 sample size per split. As the number of
samples per split increases, there is a decline in the accuracy. The boxplots illustrate slight
skewness in the data distribution. There are few outliers for a high number of samples
per split.

Table 12 presents the result after tuning the number of trees in an ensemble. The scores
shown on the right side for the mean accuracy of the model depicts that with a higher
number of trees in an ensemble, the model performs better with the unseen examples.
The boxplots in Figure 23 have an almost symmetric result and have overlapping means
and median. There are very few outliers available in the sample data.
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Figure 22. Nepal: Boxplot to illustrate the mean accuracy distribution by hyper-tuning the minimum
number of samples per split.

Table 11. Nepal: Predictive accuracy score against number of samples per split.

No. of Sample per Split Mean Accuracy (%)

2 65
3 64
4 67
5 65
6 65
7 64
8 64
9 63

10 63

Table 12. Nepal: Predictive accuracy score against number of trees for each ensemble.

Feature (No. of Trees) Mean Accuracy (%)

10 66
20 67
30 68
40 71

Figure 23. Nepal: Boxplot represents the mean accuracy distribution achieved by tuning the number
of trees for every ensemble.
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Pohang has got the minimum number of examples in its dataset, reflecting in the
outputs. The outcomes after tuning the hyperparameters are not symmetric for most cases.
Before configuring the hyperparameters or else tuning the number of trees, the number of
samples per split is below the scale.

Before accommodating the hyperparameters, Pohang showed an accuracy of 67%.
Only after tuning the features, the accuracy score is high, as it is clear from Table 13. Every
input feature has almost achieved similar accuracy in between 70% to 72%. The boxplot
results shown in Figure 24 show skewness, which is apparent as almost all the means and
median are non-overlapping except for the Masonry wall area (EW); few outliers are also
visible in the sample data.

Table 13. Pohang: Predictive accuracy score against each input feature.

Feature Mean Accuracy (%)

No. of floor 72
Total floor area 70
Column area 71

Concrete wall area (NS) 70
Concrete wall area (EW) 72
Masonry wall area (NS) 71
Masonry wall area (EW) 71

Captive Columns 71

Figure 24. Pohang: Boxplot to represent the mean accuracy distribution achieved by hyper-tuning
the input features.

Table 14 shows the mean accuracy results after tuning the number of samples per
split. With 2–9 samples, the model performed moderately while the higher value, like
10 number of samples per split, degrades the accuracy. The boxplots shown in Figure 25
have skewness in the distribution, and there are few outliers in the sample input.

Table 14. Pohang: Predictive accuracy score against the number of samples per split.

No. of Sample per Split Mean Accuracy (%)

2 62
3 61
4 60
5 60
6 60
7 61
8 60
9 61

10 53



Appl. Sci. 2021, 11, 7540 28 of 33

Figure 25. Pohang: Boxplot to illustrate the mean accuracy distribution by hyper-tuning the minimum
number of samples per split.

Results in Table 15 are for mean accuracy achieved after hyper-tuning the number of
trees in an ensemble. The result shows that a moderately higher number of trees make a
compelling ensemble and efficient accuracy. The boxplots illustrated in Figure 26 show
essentially similar patterns except for the ensemble with ten trees. There are a few outliers
present as well with the smallest ensemble.

Table 15. Pohang: Predictive accuracy score against number of trees for each ensemble.

No. of Tree Mean Accuracy (%)

10 61
20 63
30 65
40 64

Figure 26. Pohang: Boxplot represents the mean accuracy distribution achieved by tuning the number
of trees for every ensemble.

6. Discussion and Conclusions

The study aimed to investigate ML techniques on RVS and compare each technique’s
efficiency for this issue. Therefore, the conclusion can be divided into two parts; one is
related to the different ML efficiencies, and the other one is towards the future of RVS with
the application of ML.
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6.1. Adequacy of ML Techniques

The study utilized various ML algorithms, such as SVM, KNN, Bagging, RF, and ET,
for categorizing the RC buildings based on their vulnerability subjected to a seismic event.
The input datasets are created from the building samples collected from four real-time
earthquakes in Ecuador, Haiti, Nepal, and Pohang. Each dataset is approached by every
algorithm utilizing the default parameter values.

Bias and variance are essential factors to understand the performance of the models.
Biased models are weak and under fitted. There is a significant disparity between the
actual data and the predicted data—whereas, with high variance, the models fit the actual
data but can not generalize new data well out of that basis.

In the study, ET performed well with all four datasets compared to the rest of the ML
models leaving behind Random Forest. ET and RF ensemble methods have similar tree
growing procedures, and both randomly select a feature of the subset while partitioning
for each node. However, RF has high variance as the algorithm sub-samples the input data
with duplicates. At the same time, ET uses complete original sample data. In addition,
RF finds the optimum split while splitting the nodes, but ET goes for random selection.
Henceforth, ET is computationally economical and faster than RF, and for high order
computational problems, ET would fit better than other supervised learning models.

Furthermore, the ET model for each case study is configured by optimizing the
hyperparameters. The results before and after the hyperparameter tuning or optimization
have shown slight improvement. RF stood as the second performer among the candidate
classifiers. One potential argument behind not achieving substantial growth in the accuracy
score after optimizing the hyperparameters for ET might be the quality, size of the datasets,
and high variance in the test data. This study’s input datasets are of moderate size and
quality because of the lack of proper resources. ET is an ensemble method created by
multiple random trees, and its approach is to leverage the power of the crowd (trees)
instead of one tree and consider the majority of the voting for the final decision. Thus,
ET requires big datasets, which is essential for the model to give an optimized result.
For datasets with high variance, adding bias can neutralize it. Furthermore, the study may
get extended using big and good quality datasets.

6.2. Applicability of ML-Based Methods to RVS Purposes

The study concludes that the assessed vulnerability classes were very close to the
actual damage levels observed in the buildings, which, in comparison to previous methods,
provided a more reliable distribution between different damage levels. The proposed
method is more accurate than other methods as this rate shows a significant improvement
of about 2% to 35% compared to methods stated previously by [5,15,17,18,27]. However,
supervised ML techniques are data dependent, and the scope of this study was on RC
buildings. The selected parameters for this evaluation are also more comfortable to be
measured; moreover, they can be modified based on the availability or demands of experts.
Therefore, the application of the proposed method can be adapted for other countries in the
world but need to give specific or different types of buildings by providing enough data
for training from the selected location. Nevertheless, besides financial benefits and better
natural disaster management planning, this achievement also makes building retrofitting
more intelligent and saves its residents’ lives. It must be mentioned that it is not expected
from RVS methods to have high accuracy and an exact estimate of the possible damage.
Since the proposed method is based on MCE, it can be implemented for each studied
region and building type. In reality, an overwhelming number of factors and significant
parameters play roles in the vulnerability of a building. The main aim of the RVS method
is to obtain acceptable classification and initial assessment of damage and be prepared
to prevent catastrophe. Benefits such as proper budget allocation and prioritization of
building retrofitting and providing measures to prevent buildings and occupants’ damage
benefit this method. Moreover, in future studies, more data and parameters such as
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different structural types, soil conditions, distance to faults, age of buildings, and remote
sensing data can be considered.
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Abbreviations
The following abbreviations are used in this manuscript:

ACI American Concrete Institute
ANN Artificial Neural Network
AUC Area under the Curve
ET Extra Tree
ETE Extra Tree Ensemble
ESPOL Escuela Superior Politécnica del Litoral
FEMA Federal Emergency Management Agency
KNN K-Nearest Neighbor
MCE Maximum Considered Earthquake
MM Modified Mercalli
ML Machine Learning
RC Reinforced Concrete
RF Random Forest
ROC Receiver Operating Characteristics
RVS Rapid Visual Screening
SVA Seismic Vulnerability Assessment
SVM Support Vector Machine
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