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Abstract: Electrode-width-controlled (EWC) single-phase unidirectional transducers (SPUDT) con-
tribute to reduction of insertion loss of surface acoustic wave (SAW) devices due to their strong
unidirectional properties. In this work, we propose a method to optimize the unidirectionality of
EWC-SPUDT based on our research results that the unidirectionality of the EWC-SPUDT cell is
strongly related to its reflectivity and its unidirectional angle. Furthermore, in order to ensure strong
unidirectionality to achieve low insertion loss, a simulator based on the finite element method (FEM)
is used to study the relationship between geometrical configuration of the EWC-SPUDT cell and its
reflection coefficient, as well as its transduction coefficient. Simulation results indicate that the reflec-
tion coefficient of the optimized EWC-SPUDT cell composed of 128◦ YX lithium niobite (LiNbO3)
substrate and Al electrodes with thickness of 0.3µm reaches the optimal value of 5.17% when the
unidirectional angle is designed to be −90◦. A SAW delay line is developed with the optimized
EWC-SPUDT cell without weighing, and the simulation results are verified by experiments. The
experimental results show that the directivity exceeds 30 dB at the center frequency and the insertion
loss is just 6.7 dB.

Keywords: single-phase unidirectional transducers (SPUDT); directivity; finite element method
(FEM); Coupling-of-Modes (COM) theory

1. Introduction

Single-phase unidirectional transducers (SPUDT) are frequently employed in surface
acoustic wave (SAW) devices to reduce bidirectional loss and to suppress triple transit
echo [1–4]. Meanwhile, it is found that strengthening the unidirectionality is an effective
way to suppress insertion loss. As is known, the SPUDT cells are the base elements of
SPUDT. DART [5], electrode-width-controlled (EWC) [6], and other SPUDT cells [7,8]
are the best-known cell types, of which the EWC-SPUDT is the most widely used. As
shown in Figure 1, a traditional EWC-SPUDT cell consists of three fingers, two narrow
electrodes, and one wide electrode, whose widths are λ/8 and λ/4, respectively. λ is
the electric period of the gratings. The distance between the two narrow finger is λ/8,
and that between the narrow finger and the wide finger is 3λ/16. In order to describe
its performance, the following two parameters are listed: the reflectivity |κ|λ, and the
unidirectional angle θ, which is defined as θ = ϕκ − 2ϕα, where ϕκ and ϕα are the phases
of reflection coefficient and transduction, respectively [9]. According to our calculation of a
traditional EWC-SPUDT cell, |κ|λ is 1.37% and θ is −83.58◦, which are very close to the
results presented in [10].
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Figure 1. The geometrical configuration of an EWC-SPUDT cell. 
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(SDA) to analyze the SAW propagation characteristics under a type of triple electrodes 
grating (an improved EWC-SPUDT), but they failed to find how the geometric structure 
influences its unidirectionality and how to optimize its structure [11]. Yongan Shui et al. 
studied the optimal design of the three fingers, including their position and width, using 
the periodical Green’s function method, but they did not explicate the influence of these 
parameters on the reflectivity and unidirectional angle [10]. Sho Nakagomi and Honglang 
Li chose Cu electrodes instead of Al electrodes to achieve greater mechanical reflection 
[12,13] since the density of Cu is greater than that of Al; however, they neglected the fact 
that the electrical and mechanical reflection caused by short-circuited gratings consisting 
of either Cu or Al on 128° YX-LiNbO3 substrate are opposite and cancel each other. 

The purpose of this paper is to enhance the unidirectionality of the EWC-SPUDT and 
further reduce its insertion loss by improving the reflection characteristics of the trans-
ducer as much as possible, based on the premise that the minimum width of the electrodes 
is limited and the unidirectional angle is −90°. In addition, the design principles of EWC-
SPUDT are discussed theoretically and experimentally. 

2. Design and Optimization 
The basic idea of an EWC-SPUDT is to place a distributed reflection source in a nor-

mal interdigital SAW transducer to enhance the forward acoustic wave and meanwhile 
reduce that traveling along the backward direction [6]. Scattering matrix is an effective 
description of the performance of the SAW transducers with well impedance matching, 
especially when designing filters. The expressions of scattering matrix parameters 11S  
and 13S  are given below. 
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tions and provide a desired magnitude and phase response for 13S . From Equation (1), 
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Figure 1. The geometrical configuration of an EWC-SPUDT cell.

Hashimoto et al. utilized finite element method (FEM) and spectral domain analysis
(SDA) to analyze the SAW propagation characteristics under a type of triple electrodes
grating (an improved EWC-SPUDT), but they failed to find how the geometric structure
influences its unidirectionality and how to optimize its structure [11]. Yongan Shui et al.
studied the optimal design of the three fingers, including their position and width, using
the periodical Green’s function method, but they did not explicate the influence of these pa-
rameters on the reflectivity and unidirectional angle [10]. Sho Nakagomi and Honglang Li
chose Cu electrodes instead of Al electrodes to achieve greater mechanical reflection [12,13]
since the density of Cu is greater than that of Al; however, they neglected the fact that the
electrical and mechanical reflection caused by short-circuited gratings consisting of either
Cu or Al on 128◦ YX-LiNbO3 substrate are opposite and cancel each other.

The purpose of this paper is to enhance the unidirectionality of the EWC-SPUDT
and further reduce its insertion loss by improving the reflection characteristics of the
transducer as much as possible, based on the premise that the minimum width of the
electrodes is limited and the unidirectional angle is −90◦. In addition, the design principles
of EWC-SPUDT are discussed theoretically and experimentally.

2. Design and Optimization

The basic idea of an EWC-SPUDT is to place a distributed reflection source in a normal
interdigital SAW transducer to enhance the forward acoustic wave and meanwhile reduce
that traveling along the backward direction [6]. Scattering matrix is an effective description
of the performance of the SAW transducers with well impedance matching, especially
when designing filters. The expressions of scattering matrix parameters S11 and S13 are
given below.

S11 = P11 +
2P2

13
GL + P33

(1)

S13 =
2
√

GLP13

GL + P33
(2)

In Equations (1) and (2), P11, P13, and P33 are the elements of P-matrix. In an interdigital
transducer, P11 is the reflection coefficient, P13 describes the excitation efficient, and P33
denotes the transducer admittance, which describes the acoustic and electrostatic currents
due to a drive voltage. Their detailed expressions are given in [14–16]. GL is the combined
effective electrical load conductance which is attached to the SPUDT electrical port. The
goal for designing a SPUDT filter is to make a zero S11 under matched conditions and
provide a desired magnitude and phase response for S13. From Equation (1), GL is required
to match the SPUDT if found by equating S11 to zero [17].

GL = −P33 −
2P2

13
P11

(3)

If a lossless SPUDT is tuned using a lossless matching network, its insertion loss
under the condition of optimum matching will be related to the following parameters:
the unidirectional angle θ, the product of the reflectivity per unit length, and the effective
reflection length |κ|L. After substituting P-matrix elements into (2), the insertion loss can
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be obtained. The minimum insertion loss of the SPUDT occurs when θ equals −90◦, and
then its expression evolves into the following form:

|S13|2 = 1− exp(−2|κ|L) (4)

A similar result was presented in [17].
Equation (4) implies that the insertion loss can be reduced by increasing the reflectivity

of the SPUDT. The directivity D, defined as the ratio between the two acoustic outputs for
an interdigital transducer (IDT), is given by D = |P32/P31|. It can be simplified to (5) at
center frequency.

D =

∣∣∣∣ 1 + j exp(jθ)tanh(|κ|L/2)
1 + j exp(−jθ)tanh(|κ|L/2)

∣∣∣∣ (5)

where j is an imaginary unit.
When D > 1, the wave excitation in the right direction is greater than that in the left

direction, while when D < 1, the situation is just the opposite. In addition, D = 1 means
that the transducer is bidirectional. It can be clearly seen from the expression above that D
tends to increase with the increase in |κ|L, and when θ = −90◦, D reaches the maximum
value exp(|κ|L).

In summary, optimizing the EWC-SPDUT cell is to maximize its reflectivity at a
unidirectional angle of −90◦. Next, we will discuss the relationship between the geometry
of the EWC-SPUDT cell and its unidirectional angle, as well as its reflectivity combining
the coupling-of-modes (COM) theory. The governing equations of COM can be written
as [14,18,19]: 

∂R(x)
∂x = −iδR(x) + iκS(x) + iαV

∂S(x)
∂x = −iκ∗R(x) + iδS(x)− iα∗V

∂i
∂x = −2iα∗R(x)− 2iαS(x) + iωCV

(6)

where R(x) and S(x) are the amplitudes of the waves propagating in positive and negative
x, respectively. i is the current on the busbar and V is the applied voltage. ω is the angular
frequency. δ = ω

v −
2π
λ is a detuning parameter. The four independent parameters of

the model are the effective SAW velocity ν, the reflection coefficient per unit length κ, the
transduction coefficient per unit length α, and the static capacitance per unit length C.

The four COM parameters can be calculated by FEM [20,21]. This approach allows
accurate calculation of the transduction amplitude, reflectivity, and the unidirectional
angle for any cell geometry. There are five parameters, including the widths of the three
fingers and the distances between adjacent fingers, which need to be determined in the
EWC-SPUDT cell. It would be a huge undertaking to optimize all of these five parameters
at the same time, and the physical meaning of the geometry would be unclear. There-
fore, it is necessary to understand the influence of each finger on reflectivity and other
COM parameters.

In this paper, calculations were conducted by FEM with the commercial software
package COMSOL Multiphysics. Al was selected as the electrode material and 128◦ YX
LiNbO3 was chosen as the substrate due to its high coupling coefficients (K2 ∼= 5.6%) [22].
Our previous studies demonstrated that the reflectivity is strongly dependent on the
normalized electrode thickness h/λ, which first increases and then decreases with an
increase in electrode thickness [23]. Accordingly, a thin Al electrode with h/λ = 0.6% is
chosen to provide adequate reflectivity.

Compared with widely used FEM/BEM hybrid methods [24,25], FEM has obvious ad-
vantages, especially its remarkable generality. It can be used to analyze a SPUDT composed
of arbitrary materials, crystal cuts, as well as different electrode shapes [26–31]. Therefore,
we use FEM to calculate the parameters needed for simulation and then to optimize the
design of the transducer structure. Firstly, the structural model of the transducer unit is
established as shown in Figure 2, and the influence of the electrode width on the reflectivity
is discussed by taking the electrode width as a variable.
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Figure 2. FEM model of an IDT unit cell with boundary conditions.

To suppress reflections of SAW from the bottom, an additional 128◦ YX LiNbO3 layer
of 1λ is attached at the bottom as a perfect matching layer (PML) [32,33]. The top surface is
mechanically free, while the bottom is fixed. Mechanical and electrical periodic conditions
are applied on both sides of the unit model [34,35]. The left electrode is assigned as the
electrical terminal with V = 1, while the right one is grounded.

The reflectivity can be calculated by Equation (7):

|κ|λ = 2π
fs+ − fs−
fs+ + fs−

(7)

where fs+ and fs− stand for the anti-symmetric and symmetric frequencies, respectively.
The relationships between the reflectivity and the width of two fingers w and their distance
g are depicted in Figure 3, from which two conclusions can be drawn: (i) The reflectivity
reaches its maximum value when g approaches and this is because the phase difference
between the SAW reflected by the second finger and that reflected by the first finger is
2π, resulting in in-phase superposition; (ii) When g = λ/2, the reflectivity increases at
first and then decreases with the increase in electrode width, and the maximum value of
5.56% occurs at about w = 3λ/32. A measured electrode reflectivity given in [36] confirms
our conclusion.
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As shown in Figure 1, the EWC-SPUDT cell consists of three fingers. The first finger
plays the role of generating surface acoustic waves; however, it also reflects the incident
acoustic waves, while the reflection can be cancelled out with the entry of the second
finger. The function of the third finger is mainly to enhance the reflection, and its position
deviation from the transduction center of λ/8 is so that the acoustic wave can produce
constructive interference in the forward propagation direction while producing destructive
interference in the backward propagation direction. Therefore, we reduce the width of the
first electrode to the minimum width limited by the process conditions (in this paper 2µm
is the minimum width) and set the width of the remaining two fingers to 3λ/32. Finally,
the spacing of the fingers is adjusted according to the results of the FEM simulation. The
optimization model of EWC-SPUDT periodic structure is established as shown in Figure 4.
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In the analysis, the thickness of the electrodes and the wavelength of SAW were set
at two fixed values of 0.3 µm and 50 µm, respectively. Except for the electrical boundary
conditions, other boundary conditions are consistent with Figure 2. In the COM analysis,
cosine of θ can be expressed as the following formula [37,38]:

cos(θ) =
( fo+ − fo−)

2 − ( fs+ − fs−)
2 − (( fo+ + fo−)− ( fs+ + fs−))

2

2( fs+ − fs−)(( fo+ + fo−)− ( fs+ + fs−))
(8)

where fo+ and fo− are the upper edge and lower edge frequencies of the stopband re-
sponding to the anti-symmetry and symmetry frequencies in open-circuited grating eigen-
modes, while fs+ and fs− are the upper edge and lower edge frequencies of the stopband
responding to the anti-symmetry and symmetry frequencies in short-circuited grating
eigenmodes, respectively.

However, using Equation (8), it is difficult to determine the sign of θ. Therefore,
the displacements at lower frequencies in short-circuited and open-circuited gratings are
resorted to for the calculation of θ, the method of which is presented in another article
to be published. Equation (8) can be used to check the accuracy of θ. In a short-circuited
grating, the first finger is assigned as the electrical terminal with V = 1 and the other
two fingers are assigned as the electrical terminal with V = 0. While in an open-circuited
grating, all three fingers are assigned as the electrical terminal with charge Q = 0. We set
the two gaps as: g1, ranging from 0.1069λ to 0.15λ, and g2, ranging from 11λ/32 to 15λ/32.
Then, the reflectivity and the unidirectional angle can be calculated. In Figure 5, we show
the reflectivity contour map and a contour map of θ = −90◦ is also shown. This way it
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is easy to find the optimization conditions mentioned before: increasing |κ|λ as soon as
possible with constraint condition θ = −90◦ being met. The ϕκ and ϕα, which determine
the unidirectional angle, are also expressed in contour maps (see Appendix A, Figure A3).
In Appendix A, we show graphs of all the COM parameters of EWC-SPUDT with different
g1 and g2 values.
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3. Fabrication Technologies

As shown in Figure 5, on the premise of limiting the width of the three electrode
fingers to 2µm, 3/32λ, and 3/32λ, the reflection coefficient and unidirectional angle
reach their optimal values |κ|λ = 5.17% and θ = −90◦, respectively, when the finger
spaces are g1 = 0.1069λ and g2 = 0.4414λ. Due to EWC-SPUDT being a kind of unidirec-
tional transducer—which means that the characteristics of the SAW propagation along
the forward and backward directions are different—it is necessary to study the frequency
responses of acoustic waves in two directions.

According to our analysis based on the COM theory, the transducers face-to-face,
corresponding to the forward direction, shown in Figure 6a have a lower insertion loss
near the center frequency than that of the transducers back-to-back, corresponding to the
backward direction, as shown in Figure 6b. To verify the conclusion above, transducers
both face-to-face and back-to-back, based on optimized EWC-SPUDT cells, were developed
and performance experiments were carried out.
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Figure 7 shows the processing procedure for developing SAW devices. In our experi-
ments, the AZ5214 reversal photoresist was used for ultraviolet (UV) photolithography.
After lithography, Al film of 300 nm thickness was deposited on 128◦ YX LiNbO3 substrate
by magnetron sputtering. Then, the conventional lift-off technique was utilized to remove
the regions of photoresist [39,40]. Each SAW delay line consists of input interdigital IDTs
and output IDTs, each of them including 73 pairs of EWC-SPUDT cells with an aperture
of 50 λ. Figure 8 presents an optical microscope image of the SAW device fabricated by
the conventional lift-off technique. Specifically, as mentioned above, transducers face-to-
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face and back-to-back based on traditional EWC-SPUDT cells were also developed for
comparative experiments.
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4. Experimental Results and Discussion

The other COM parameters can also be obtained by the FEM method; then, the P-
matrix for each EWC-SPUDT cell, which is a very effective tool for analyzing and designing
SAW devices, can be constructed [41–43]. The overall response of the whole device can be
determined by the cascading of the P-matrixes of each individual part of the device. In this
way, we can easily calculate the transmission scattering parameters (S21) of a SAW delay
line and further calculate its insertion loss (by the equation IL = −20 log10(S21)) through
combining the input IDTs and the output IDTs with electrical source or load. Therefore, the
theoretical value of electrode insertion loss can be calculated by COM theory, while the
experimental value can be obtained by network analyzer (Agilent E5061B).

Figure 9 shows the calculated and experimental results of transducers with the opti-
mized EWC-SPUDT cells. These results include the calculated and experimental responses
with the transducers face-to-face, and the experimental response of the transducers back-
to-back as a contrast. The results indicate that the simulation results coincide with the
experimental results expected at the side-lobes, that is to say, the experiment confirms
that our theoretical analysis process is reasonable. It is easy to see that the response of the
transducers based on two structures is indeed different near the center frequency, and that
the transducers face-to-face have better performance than the other one.
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Figure 9. Frequency responses of the test devices with optimized EWC-SPUDT cells.

In addition, as a contrast, two SAW delay lines with traditional EWC-SPUDT cells
were designed, fabricated, and measured. The insertion loss of the transducers face-to-face
(IL = −20 log10(S21)) and back-to-back (IL = −20 log10

(
S′21
)
) are shown in Figure 10. The

results show that the response near the center frequency with transducers face-to-face is
better than with the transducers back-to-back, but the difference is not obvious.
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Figure 10. Frequency responses of the test devices with traditional EWC-SPUDT cells.

The elements of P-matrix are related to the scattering coefficient, therefore, the direc-
tivity D in logarithmic form can also be approximately expressed as −20 log10

(
S21/S′21

)
.

The frequency dependence of D for an optimized EWC-SPUDT compared with that for a
traditional EWC-SPUDT is shown in Figure 11. The maximum directivity of transducer
based on the optimized EWC-SPUDT cells reaches 30.1 dB, which is much larger than that
based on the traditional EWC-SPUDT cell. It suggests that the optimized EWC-SPUDT cell
can be used to achieve miniaturization and higher performance in SAW device design.
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5. Conclusions

The structural optimization of an EWC-SPUDT cell was discussed. The influence
of the geometry of an EWC-SPUDT cell on its reflectivity and its unidirectional angle
were investigated by FEM, and the optimized structure parameters under some certain
restrictions were obtained. Several SAW devices based on the optimized EWC-SPUDT cells
and traditional EWC-SPUDT cells were designed and fabricated to verify our theoretical
analysis results. The experimental results show that the minimum insertion loss of the
SAW device based on the optimized cells is as low as 6.7 dB, and the directivity is as high
as 30.1 dB, which are much better than those based on traditional EWC-SPUDT cells. All
of the results demonstrate that the optimized EWC-SPUDT cell could further be used to
enhance the performance of SAW devices. Although the narrow electrode width limits its
application in the high frequency field, the method proposed in this paper can also be used
to improve performance, to some extent, when the finger width is set to a certain value.
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Appendix A

In the equations of COM model, the COM parameters are the effective SAW velocity
v, the reflection coefficient per unit length κ, the transduction coefficient per unit length α,
and the static capacitance per unit length C. There are six parameters in a structure due to
a complex reflection coefficient and a complex transduction coefficient. In the following
materials, we present all of the COM parameters in graphs to show their variations of
different finger spaces g1 and g2.

The effective SAW velocity under short-circuited grating is shown in Figure A1.
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The normalized capacitance Cλ means capacitance per electrical period and per unit
length of aperture, shown in Figure A6.
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