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Abstract: Designing an effective grounding system for AC substations needs predetermination
of ground resistance and ground potential distribution caused by fault current’s presence in the
ground. Therefore, it is necessary to have a suitable grounding grid structure in the soil properties
in which the grid is buried. Though the soil composition where the grounding grid is located is
typically non-homogeneous, the soil is often presumed to be homogeneous due to the complexities
of grounding system analysis in non-homogeneous soil. This assumption will lead to inaccuracies
in the computation of ground resistance and ground potentials. Although extensive research has
been done on non-homogeneous soil structure, comprehensive literature on grounding system
performance in non-homogeneous soil is yet to be reviewed. Thus, this paper reviews the effect
of non-homogeneous soil on the grounding system, with different soil characteristics in horizontal
and vertical two-layer soil structure and the horizontal three-layer soil structure. In addition, the
effect of design parameters on the grounding performance in non-homogeneous soil conditions for
non-transient fault conditions is also studied. The significance of this study is that it provides a
comprehensive review of grounding performance as grounding design changes and their effects as
soil layers and their corresponding features change. This knowledge will be useful in developing
safe grounding designs in non-homogeneous soil.

Keywords: homogeneous soil; non-homogeneous soil; two-layer soil; three-layer soil; soil characteristics;
substation grounding

1. Introduction

Generally, the earth is made of multiple compositions with distinct soil properties.
The electric constants of soil, such as permittivity (ε) and resistivity (ρ) depend on the type
of soil such as sand, limestone, clay, or gravel [1–7]. The effect of various electric constants
of soil on the grounding performances has been tested through many types of research. For
example, authors in [8–14] explained the fundamental knowledge on soil resistivities and
their effects on the performances of grounding systems; the effects of grounding system
design in two-layer soil are well presented in [15–22]; the grounding system responses in
multilayer soil with different resistivities are also explained in [18,23–26], and algorithms
developed to evaluate apparent soil resistivity [27–34]. These values typically differ on the
surface of the soil from layer to layer, which may affect the effectiveness of the touch and
step potentials and grounding resistance.

For example, the effect on grounding resistance is more significant when there are
large differences between the soil layer resistivity. The nature and structure of soil available
such as sand, gravel, etc., determines the soil resistivity. Although some fundamental
information and equations on two-layer soil structure are available—most standards
and regulations specify grounding grid designs based on homogenous soil conditions.

Appl. Sci. 2021, 11, 7468. https://doi.org/10.3390/app11167468 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9670-5440
https://orcid.org/0000-0002-1328-0617
https://orcid.org/0000-0001-7263-2953
https://doi.org/10.3390/app11167468
https://doi.org/10.3390/app11167468
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11167468
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11167468?type=check_update&version=1


Appl. Sci. 2021, 11, 7468 2 of 17

Homogeneous soil conditions are used as an input to the measurement of safety threshold
values in most substation grounding system safety assessments and design protocols.
Authors in [35–37] examined the performance of grounding systems under homogenous
soil conditions. However, due to the difficulty of the numerical computations required,
multiple soil layers are usually ignored when designing a grounding system. The substation
grounding design will be inaccurate if non-homogeneous soil conditions are not taken
into account during the grounding designing phase [25]. Thus, as a result, this study
offers a comprehensive review of the effects of non-homogeneous soil structure (two and
three-layered horizontal soil and two-layer vertical soil), with various characteristics on
grounding system performance.

2. Effect of Horizontal Two-Layer Soil Characteristics on Grounding System Performances
2.1. Depth of Grid Buried in a Two-Layer Soil

Apart from grounding grid design parameters, the depth of the grid buried in the soil,
especially in the two-layer soil model [19,38–41] has a significant impact on the protection
of a grounding system. Grid burial depths are generally in the range of 0.5 m to 1.5 m, or
2.0 m to 2.5 m in some cases, according to IEEE 80 [42]. Generally, increasing the depth
of the grounding grid buried into soil reduces the grid impedance and ground potentials
in homogeneous soil. On the other hand, the behavior of a grounding system would be
different when the depth of the grid increases in a two-layer soil structure, which will be
discussed in this section.

An example has been adapted from [40] to show the Ground Potential Rise (GPR)
performances as the depth of the grid is increased. The GPR is obtained for 30 m × 35 m
area, the top layer’s soil resistivity is 37.82 Ωm (ρ1) with 5.15 m depth (h), the deep layer
soil resistivity is 120.42 Ωm (ρ2) with infinite depth, the grid is attached with 3 m vertical
rod length as shown in Figure 1. The figure shows 4 different scenarios (A, B, C, D); with
the presence of 3 m ground rods and without the rods. Cases A and C show the grounding
grid with vertical rods; whereas in the case of A, the top layer soil is less resistive than the
bottom layer and vice versa in case C. Cases B and D show the grounding grid without
vertical rods; wherein case B, the top layer soil is less resistive than bottom layer and vice
versa in case D.
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Table 1 summarizes the findings such that increasing the depth of the grid in high
resistive bottom layer soil increases the GPR value [40]. The bottom layer’s high resistivity
allows more current flow towards the upper layer’s lower resistivity, raising the ground
surface potential. In the low resistive top layer soil, however, increasing the grid depth
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decreases the GPR value. A number of vertical rods attached to the main grounding grid
help to enhance a grounding grid’s safety by reducing the GPR value. Therefore, it is also
evident that the GPR is lower for a grounding system with vertical rods than a grounding
system without vertical rods.

Table 1. GPR performances for each case.

Case GPR

A Reduces until it reaches the border of the top layer and increases after the grid enters
the bottom layer with high resistivity.

B The same trend as case A, but the GPR values are higher than case A.

C Reduces significantly as the depth of the grid buried rises, particularly after the
border of the top layer.

D The same pattern as in case C but higher GPR values than case C.

2.2. The Resistivity and Depth of Top Layer Soil

A grounding system for a substation in a two-layer soil structure must be carefully
designed for safety purposes. The IEEE 81-2012 standard [43] explains how a grid buried
in a non-homogeneous soil layer with a different soil resistivity affects its performance.
The soil resistivity in each layer, as well as the height of the soil’s top layer, influence
the grid’s behavior. This study is crucial because it allows the designer to anticipate the
grid impedance pattern and determine the length of additional vertical rods if needed to
enhance the grounding safety, depending on the top soil layer height.

A sudden transformation in resistivity that occurs at the borders of the soil layer is
denoted in Equation (2) as a reflection coefficient (K). Equations (1) and (2) [18] are used to
calculate the two-layer soil’s parameters where K signifies the reflection coefficient, ρa is the
soil’s apparent resistivity, h shows the finite height of soil top layer, n, represents the total
sum of measurements and a, is the distance of the probe in Wenner’s test [26,38,44–47]. The
effect of the reflection factor (K) on current dispersal into the soil layer has been addressed
in [24,40,48–50].

ρa = ρ1.

1 + 4 ∑∞
n=1 Kn

 1√
1 +

(
2.n.h

a

)2
− 1√

4 +
(

2.n.h
a

)2


 (1)

K =
ρ2 − ρ1
ρ2 + ρ1

(2)

The effect of the upper layer’s soil resistivity of a two-layer soil in terms of GPR is
explained in [40]. Based on the results presented in [40], K < 0 is denoting that the top
layer’s soil resistivity is greater than the bottom layer, where the GPR of the grounding
grid reduces significantly. That is because the current density is high at the center, and
the conductor ends. The fault current discharges directly into the lower resistivity bottom
layer. In contrast, there will be a slight reduction in GPR value for K > 0, in which the top
layer’s soil resistivity is lower than the bottom layer’s resistivity. Since the fault current
stays inside the top layer and expands as it disperses into the soil, the density of the current
is higher only at the conductor’s ends.

Apart from the top soil layer’s soil resistivity, the top soil layer’s height also affects
the grounding performance. Figure 2 displays the grid resistance for 30 m × 30 m with
four meshes placed 0.5 m within the soil. The bottom layer resistivity differs to obtain
different reflection factors (K), while the top layer’s soil resistivity is kept constant. From
Figure 2, it can be seen that a homogeneous soil structure exerts no response from the
on-grid resistance (K = 0). Increasing the depth of the top soil layer for K > 0, the grid
resistance reduces as the top layer’s soil depth increases. On the other hand, the grid
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resistance increases as the top layer’s soil depth increase when K < 0. The grid resistance
values converge with a homogeneous soil structure as the top layer’s soil depth approaches
infinity [19,50].
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When the top layer’s soil depth is 0.5 m, which is equivalent to the grid burial depth,
a substantial change in grid resistance can be seen. The grounding resistance value is
impacted by the bottom layer’s soil resistivity when the top layer’s is small in height. This
is clear that grid resistance is highly affected by properties of bottom layer soil, especially
for K > 0, which can be ignored at high depth, which is two times more of the overall grid
diameter. Table 2 summarizes the effect of soil resistivity and depth of the top layers of a
two-layer soil on the GPR and grid resistance value.

Table 2. The effect of soil resistivity and depth of top layer in a two-layer soil structure.

Soil Resistivity of the Top Layer Increasing Top Soil Layer Height

K 1 < 0 Significant reduction in GPR value Increases grid resistance
K 1 > 0 A slight reduction in GPR value Reduction in the grid resistance increases
Ref. [40] [19,50]

1 K is the reflection factor between the first and second soil layers.

2.3. Number of Meshes

The number of meshes in a grounding grid can be increased to protect the effectiveness
of a grounding system, according to a common understanding of the grounding system.
The greater the number of meshes in a grounding grid, the more fault current flows through
it and into the soil, decreasing potential gradients above it [39,51].

Unde and Kushare [39] conducted a study on the influence of the number of meshes
in a grounding system on the ground resistance, Rg, in a two-layer soil structure. A
20 m × 20 m grounding grid with 1, 4, 16, and 64 meshes are simulated. A 1000 A current
is discharged into the grids and the depth of grid burial is kept at 0.5 m. Case 1 is referring
to the top soil layer with lower resistivity than the bottom layer (K > 0), while Case 2 is
referring to the top soil layer with higher resistivity than the bottom layer (K < 0).

Figure 3 below indicates the ground resistance plotted against the number of meshes.
The findings show that if the number of meshes for both cases is increased, the ground
resistance decreases. However, as the number of meshes increased, the percentage of
reduction in grid resistance for the high resistive top layer (case 2) is evident, which is
about 41.67% relative compared to the low resistive top layer (case 1), which is just 10.72%
(almost constant) as can be seen in Figure 3. This might be owing to the uniform current
density dispersion across the grounding conductors in the high resistive top layer and
concentrated current density at the grounding perimeter in the low resistive top layer.
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2.4. Length of Horizontal Conductors

The position for the grounding system installation is determined by the soil layers
involved; either uniform soil; horizontal soil, or vertical soil layers. The performance of a
grounding system would be influenced by the electrical characteristics of each soil layer
present. To demonstrate this, a study was conducted on single short and long horizontal
conductors of 10 m and 50 m, respectively, with a 0.005 m radius buried within the top or
bottom layer of soil at a depth of 0.75 m [52]. The conductor is energized with a current
amplitude of 1 A. The horizontal electrodes are buried at 100 Ωm soil layer where it is kept
constant as shown in Table 3 and Figure 4 and the relative permittivity of both top and
bottom soil layers are also kept constant at 10. The (a) in Table 3 represents the soil layer
with high resistivity of 1000 Ωm while the (b) represents the soil layer with low resistivity
of 10 Ωm.

Table 3. Parameters of soil layers adapted from [52].

Case Depth of Upper
Layer, d1 (m)

Top Layer Resistivity,
ρ1 (Ωm)

Bottom Layer
Resistivity, ρ2 (Ωm)

1 (Conductor in a top
soil layer)

1.0 100
(a) 1000

(b) 10

2 (Conductor in a
bottom soil layer)

0.5
(a) 1000

100
(b) 10

The resistivity of homogeneous soil is assumed as 100 Ωm to make a comparison
between homogeneous and two-layer soil structures. Table 4 gives the impedance of short
and long horizontal grounding conductors, respectively. Although the results presented
in [52] consist of various frequencies, only 10 kHz is considered in this paper as it is com-
monly tested for both lengths of conductors. Both short and long conductors display the
same impedance pattern. The impedance of the grounding conductor in Case 1 and Case 2
is higher when the neighbouring soil layer of which the grounding conductor is buried is
high (bottom layer-1000 Ωm). In contrast, the impedance is lower when the neighbouring
soil layer of which the grounding conductor is buried is low (top layer-100 Ωm) compared
to impedance in homogeneous soil [52]. A summary of the grounding impedance in Case 1
and Case 2 is presented in Table 5.
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Table 4. The impedance of 10 m and 50 m grounding conductor adapted from [52].

Soil Structure 10 m 50 m

Homogeneous 14.3 Ω 4.4 Ω

Case 1
(a) 35.1 Ω 14.1 Ω

(b) 8.3 Ω 2.6 Ω

Case 2
(a) 15.6 Ω 4.6 Ω

(b) 10.8 Ω 3.6 Ω

Table 5. Summary of grounding impedance in Case 1 and Case 2.

Case 1 (Grounding
Conductor in the Top

Soil Layer)

Case 2 (Grounding
Conductor in the Bottom

Soil Layer)

High resistive neighbouring
soil (a) High impedance Low impedance

Low resistive neighbouring
soil (b) Low impedance High impedance

Even if the grounding conductor is located in a low resistive soil layer, the impedance
is affected by the resistivity of the neighbouring soil layer, according to the findings.
Compared to the homogeneous soil layer, the impedance in high resistive neighbouring
soil (case 1 and case 2) is higher, while the impedance is lower in low resistive neighbouring
soil for both cases. In case 2, the grounding conductor’s impedance is lower than in case 1
when the neighboring soil is highly resistive. This might be because the neighboring soil’s
high resistivity (top layer) allows more current to pass to the lower resistivity of the bottom
layer, decreasing the grounding impedance. On the other hand, low resistive neighbouring
soil (top layer) allows more current flow to the lower resistivity in the top layer, raising
grounding impedance. Case 1 exhibits a grounding behavior that is the contrary of case 2.

2.5. Length of Vertical Rods

The vertical rod length is a key design element in affecting the grounding behavior
and protection in a two-layer soil structure. When it comes to assessing the safety of a
grounding system, the placement of vertical rods is crucial [16,53–55]. A study on the effect
of the length of vertical rods on a grounding system is conducted in [16]. Two horizontal
grounding grids with 150 m × 150 m and 100 m × 100 m were analyzed, and four vertical
rods were attached to the horizontal grounding grids as in Figure 5. The grids are placed
0.6 m within the soil and the mesh dimension for both grids is 10 m. Figure 5 shows the
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comparison between two different grid sizes on grounding resistance in two-layer soil. For
two-layer soil, the top layer, ρ1, has a resistivity of 200 m while the bottom layer, ρ2, has a
resistivity of 600 m. The top soil layer is 20-m deep.
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It shows that the two curves in Figure 6 are almost superposed, whereas the grounding
resistance reduction rate, ζ (at the y-axis) for different grid sizes are almost similar due to
the ratio of the corresponding radius and the vertical rod-length (L/Req) (at the x-axis) is
same. Grounding resistance reduction rate, ζ measures the grounding resistance reduction
when the length of vertical rod varies, which is calculated using Equation (3), while Req is
the equivalent radius of the horizontal grounding grid calculated using Equation (4) [16].
S represents the horizontal grounding grid area. Ro denotes the horizontal grounding
grid’s resistance. R1 represents the grounding resistance after vertical rods are added [16].
The reduction rate for a larger grounding grid (150 m × 150 m) is lower than the smaller
grid (100 m × 100 m) in two-layer soil [16].
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The findings show that the curves overlap each other when they are far from the two-
layer boundary; whereas they diverge significantly when they are near the soil boundary.
The resistance reduction rate differs significantly between two different sizes of grounding
grids for the same length of vertical rods. The impact of soil resistivity of the top and
bottom layers of a two-layer soil structure might explain this phenomenon. According
to research findings in [11,55–57], when the length of the rod is long enough to penetrate
the high resistive bottom soil layer, its resistivity impacts the behavior of the grounding
system, increasing grid resistance. The length of rods to be installed at the grounding grid
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is dependent on the resistivity of the soil layer. Longer rods are only effective in two-layer
soil with lower resistivity at the bottom since more current will spread via a longer rod,
making the grounding system safe. For a low resistive top layer, shorter rods are sufficient.

3. Effect of Horizontal Three-Layer Soil Characteristics on Grounding
System Performances
3.1. Apparent Soil Resistivity and Reflection Factor (K)

Grounding performance analysis in horizontal three-layer soil structure is not as
common as horizontal two-layer soil structure due to its complexity in computation. Since
the computations and analysis of grounding systems which deal with the multilayer, soil
structure are usually complex; the equations and the derivations of three-layered soils’
apparent soil resistivity were explained in [49,58,59], and are discussed in this section.
Figure 7a,b below represent the three-layer soil structure.
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(b) The second and third layers are represented as ρa0 [50].

According to IEEE 80 [42], the initial apparent soil resistivity between the first and
second layers is calculated using Equations (5) and (6) and is represented by ρ12 where ρ1
and ρ2 are the resistivities of the first and second layers, respectively, and H’ is the thickness
of the first layer, as shown in Figure 7a. The apparent soil resistivity of the three layers
is then calculated using the following IEEE 80 equation, with the first- and second layers
having soil resistivity of ρ12 as one layer and the third layer resistivities having a resistivity
of ρ3 as another layer. In this example, K’ is the reflection factor defined in Equation (7).

ρ12 =
l2(ρ1ρ2)

(ρ2(H′ − h) + ρ1(I2 + h− H′))
(5)

ρa =
l2(ρ12ρ3)

(ρ3(H′ − h) + ρ12(I2 + h− H′))
(6)

K′ =
ρ3 − ρ12
ρ3 + ρ12

(7)

Figure 7b depicts the calculations in Equations (8)–(10) and is presented according to
IEEE 80 [42]. The apparent soil resistivity of the second and third layers is ρ23; the resistivity
values of the second and third soil layers are ρ2 and ρ3, respectively. As illustrated in
Figure 7b, H stands for the height of first layer soil, H1 for the second layer’s height, l2 for
the length of grounding rods, and h for the grounding laying depth. The reflection factor,
K” is defined in Equation (10).

ρ23 =
l2(ρ2ρ3)

(ρ3(H1 − h) + ρ2(I2 + h−H1))
(8)

ρa =
l2(ρ1ρ23)

(ρ23(H− h) + ρ1(I2 + h−H))
(9)
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K′′ =
ρ23 − ρ1
ρ23 + ρ1

(10)

The performance of the grounding grid is investigated using two three-layered soil
structures with different soil resistivities and reflection factors, as shown in Table 6. The
apparent resistivity of the soil is calculated using Equations (5)–(10).

Table 6. Soil data for two different structures adapted from [50].

Structure Soil Layer Resistivity (Ωm) Soil Thickness (m)

A

1 200 2

2 20–2000 2

3 300 ∞

B

1 200 2

2 1000 2

3 20–2000 ∞

Figure 8a indicates that a rise in the positive reflection factors (+K) reduces the appar-
ent soil resistivity when ρ12 > ρ3 and increases the apparent soil resistivity when ρ3 > ρ12
for negative reflection factors (−K) in structure A. The same Figure 8a also indicates that
a vice versa trend of the apparent soil resistivity in case of ρ1 > ρ23 or ρ3 > ρ12. Similar
measurements are conducted using structure (B), where the apparent soil resistivity in-
creases with positive reflection factor in both cases of (ρ23 > ρ1) and (ρ3 > ρ12) and reduces
for negative reflection factors when (ρ12 > ρ3 or when ρ1 > ρ23) given in Figure 8b [49]. A
similar pattern on apparent resistivity behavior can also be seen in [58].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 17 
 

in Figure 7b, H stands for the height of first layer soil, H1 for the second layer’s height, l2 

for the length of grounding rods, and h for the grounding laying depth. The reflection 

factor, K’’ is defined in Equation (10). 

ρ23 =  
l2(ρ2ρ3)

(ρ3(H1−h)+ ρ2(I2+h−H1))
  (8) 

ρa =  
l2(ρ1ρ23)

(ρ23(H−h)+ρ1(I2+h−H))
  (9) 

𝐾′′ =  
ρ23  −  ρ1

ρ23  +  ρ1

 (10) 

The performance of the grounding grid is investigated using two three-layered soil 

structures with different soil resistivities and reflection factors, as shown in Table 6. The 

apparent resistivity of the soil is calculated using Equations (5)–(10). 

Table 6. Soil data for two different structures adapted from [50]. 

Structure Soil Layer Resistivity (Ωm) Soil Thickness (m) 

A 

1 200 2 

2 20–2000 2 

3 300 ∞ 

B 

1 200 2 

2 1000 2 

3 20–2000 ∞ 

Figure 8a indicates that a rise in the positive reflection factors (+K) reduces the ap-

parent soil resistivity when ρ12 > ρ3 and increases the apparent soil resistivity when ρ3 > ρ12 

for negative reflection factors (-K) in structure A. The same Figure 8a also indicates that a 

vice versa trend of the apparent soil resistivity in case of ρ1 > ρ23 or ρ3 > ρ12. Similar meas-

urements are conducted using structure (B), where the apparent soil resistivity increases 

with positive reflection factor in both cases of (ρ23 > ρ1) and (ρ3 > ρ12) and reduces for neg-

ative reflection factors when (ρ12 > ρ3 or when ρ1 > ρ23) given in Figure 8b [49]. A similar 

pattern on apparent resistivity behavior can also be seen in [58]. 

 

Figure 8. The relationship between the soil’s apparent resistivity and the reflection factor (K) (a) soil 

structure (A) (b) soil structure (B) [49]. 

As previously stated, analyzing the performance of a grounding system in a horizon-

tal three-layer soil structure is more complex and difficult than in a two-layer soil struc-

ture. There is no comprehensive and extensive study on the performance of grounding 

systems in horizontal three-layer soil constructions. In next Sections 3.2 and 3.3, a few 

Figure 8. The relationship between the soil’s apparent resistivity and the reflection factor (K) (a) soil
structure (A) (b) soil structure (B) [49].

As previously stated, analyzing the performance of a grounding system in a horizontal
three-layer soil structure is more complex and difficult than in a two-layer soil structure.
There is no comprehensive and extensive study on the performance of grounding systems
in horizontal three-layer soil constructions. In next Sections 3.2 and 3.3, a few relevant
works on the influence of grounding design parameters, such as grounding electrode types
and vertical rod length in horizontal three-layer soil structures will be discussed.

3.2. Types of Grounding Electrodes

The analysis in [60] was conducted for three types of grounding electrodes namely;
liner, ring-shaped and cross-shaped. The placement of ring-shaped grounding electrodes
and directions for X and Y coordinates of the three-layer soil are shown in Figure 9. The
same placement is applicable for the linear grounding electrode. The electrodes are buried
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0.05 m depth into the soil. Only the linear and ring-shaped grounding electrodes will be
discussed in this section to summarize the information on the effect of different types of
grounding electrodes on grounding performance in horizontal three-layer soil, as the ring-
shaped grounding electrode has the best dispersion properties and the linear grounding
electrode has the poorest. Table 7 shows the maximum current and potential distribution
for linear and ring-shaped grounding electrodes.
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Table 7. Current and potential distribution for linear and ring-shaped grounding electrodes.

Linear Ring-Shaped

Peak Current density (A/m2) 67.4 43

Optimum Potential (V) 278 173

For linear grounding electrodes in Figure 10a,b, the peak current density is likely to be
right above the linear grounding electrode’s edges. The current peak value of 65.9 A/m2

occurs at 0.25 m and 0.35 m of Y coordinates. The current density decreases to 25 A/m2 at
the soil structure boundary. The optimum potential can be seen right above the middle of
the linear grounding electrode [60].
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The peak current density can be seen at about 0.15 m from the center point in a circular
field for the ring-shaped grounding electrode as in Figure 11a,b. The surface current
density is near to 0 in a circular field about 0.05 m from the core and two smaller current
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peaks of 1 A/m2. The current density dropped to 24 A/m2 at the soil’s border. On the
other hand, the optimum potential can be seen right above the ring-shaped grounding
electrode structure.
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In both X and Y directions, it can be deduced that the current density and potential
distribution curves for ring-shaped grounding electrodes overlap. Since both types of
grounding electrodes are fully symmetrical, this overlap makes sense. Furthermore, under
the same conditions, the current and voltage in the soil surrounding the ring-shaped
grounding electrode are 35–40% [60] lower than those around the linear grounding electrode.

3.3. Vertical Grounding Rods

Similar to horizontal two-layer soil, the length of vertical rods connected to a ground-
ing grid plays a vital part in defining grounding behavior and protection. The effect of
vertical grounding rod length in a horizontal three-layer soil configuration is studied in
Ref [16]. The effect of vertical grounding rods on the decrease rate of grounding resistance
is seen in Figure 12. High resistivity layer (H) of 1000 Ωm, medium resistivity layer (M)
of 500 Ωm and low resistivity layer (L) of 100 Ωm comprise a three-layer soil structure.
The first soil layer is 10-m deep, while the second soil layer is 50-m deep. The graph in
Figure 12 shows the grounding resistance reduction rate, ζ at the y-axis, and the ratio of
the corresponding radius and the vertical rod-length (L/Req) at the x-axis, where Req is
the equivalent radius of the horizontal grounding grid calculated using Equation (4) from
Section 2.5.
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From the graph, it can be seen that a similar behavioural pattern is present in horizontal
two-layer soil structures. The findings show that long rods will not be able to reduce
the grounding resistance when the first layer soil resistivity is low, as can be seen at
‘L, H, M’ (5) and ‘L, M, H’ (6). It is also found that the grounding resistance reduction
rate of the ‘M, L, H’ (4) is lower than that of ‘M, H, L’ (3) before the vertical rods reach
the bottom layer. This is attributed to the effect of the second soil layer of low resistivity.
The low resistivity second layer causes more current to disperse thus the reduction rate of
grounding resistance is lower compared to the ‘M, H, L’ soil structure. Therefore, based on
the results, it is recommended that it is best for vertical rods to remain in the second soil
layer in ‘M, L, H’ soil structure, compared to the ‘M, H, L’, soil structure where the vertical
rods need to long enough to enter the bottom layer.

4. Effect of Vertical Two-Layer Soil Characteristics on Grounding System Performances
Electrodes Spacing (a), the Distance between Electrodes and Two-Layers Interface (d) and
Electrodes Angle (β) on Apparent Resistivity (ρa)

Commonly, before measuring the actual soil parameters, horizontal soil layers, either
two-layers soil or several soil layers are recommended. For representing more realistic
scenarios, vertical-layer soil may be considered. This will assist in clarifying the features
of soil properties and their measurements [48,61–69]. Otherwise, in calculating the soil
parameters and grounding system designs, the error in assuming soil structure would
probably result in a malfunction. The calculation and analysis of vertical two-layer soil
structures are more complex than horizontal two-layer soil structures. As a result, a
comprehensive and extensive analysis of grounding performance in vertical two-layer soil
structures has yet to be performed.

The general apparent resistivity expression ρa, in vertical-layered soil, as in Equation (11)
is suggested in [48] to determine the relationship between the locations of 4 electrodes
in Wenner’s method and the apparent resistivity. According to Equation (11), “a” is the
distance between the four electrodes (m), ρ1 is the resistivity of the first soil layer (Ωm),
k is the reflection factor between first and second soil layers, “d ” represents the standard
distance between the first electrode and the border between the first and second soil
layer and the angle between a perpendicular line to the soil border and the line where
four electrodes are positioned is represented by angle, β. The parameters of vertical soil
structure are shown in Figure 13.

ρa = aρ1(
1
a + k√

4d2+4da cosβ+a2
+ k√

4(d+3a cosβ)(d+2a cosβ)+a2
− k√

4d2+8da cosβ+4a2
− k√

4(d+3a cosβ)(d+a cosβ)+4a2
) (11)
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There are two cases (Case 1 and Case 2) that were analyzed based on the apparent soil
resistivity using Equation (11) in [67]. The analysis was conducted to examine the effects
of varying electrode spacing ‘a’, and the distance from two-layer soil interface ‘d’ and the
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angle ‘β’ between a perpendicular line to the soil border and the line where four electrodes
are positioned on the apparent resistivity. The results are summarized in Table 8.

Table 8. Summary of performance of apparent resistivity with varying parameters ‘a’, ‘d’ and β.

Case 1 Case 2

(ρ1 =100 Ωm), (ρ2=1000 Ωm) (ρ1 =1000 Ωm), (ρ2=100 Ωm)

Distance, ‘a’ between
electrodes increases

Apparent resistivity started to increase
significantly until a certain distance, and
then increases with a small rate

Apparent resistivity started to decrease
significantly until a certain distance, and
then decreases with a small rate

The distance, ‘d’ increases Due to the impact of the second layer with high
resistivity, the apparent resistivity reduces.

Due to the impact of the second layer with low
resistivity, the apparent resistivity increases.

The angle, β increases. The apparent resistivity increases The apparent resistivity decreases

ρ1 is the resistivity of the first soil layer either on the left or right of the vertical soil boundary (Ωm). ρ2 is the resistivity of the second soil
layer neighbouring the first soil layer (Ωm).

Zeng et al. [62] reported important research on the position of the current electrode
on the grounding system in vertically layered soil where the grounding resistance is
determined by the 0.618 DCG procedure for grounding resistance calculation in the analysis.
In the analysis, the DCG technique refers to the distance between the test current electrode
and the grounding system. The fall-of-potential approach was used to examine the apparent
grounding resistance curves in various measurement routes. The investigation found that
if the measuring lead is positioned parallel to the vertical soil border, which is within the
engineering range, the measurement error of the 0.618 techniques is extremely minimal.
Even if the distance between the grounding system and the potential electrode is longer,
the findings in [62] concluded that positioning the potential electrode on the opposite side
of the current electrode in all measurement paths is not recommended because it leads to a
measurement error of more than 10%.

5. Conclusions

The existing standards available to design a grounding system are typically relevant
only for homogeneous soil conditions, as opposed to the fact that most of the soil structures
on this earth are non-homogenous. The layered structure of a non-homogeneous soil can
affect the ground resistance and ground potentials on soil profile particularly when the
soil resistivity between layers differs enormously. However, owing to the complexities of
computations needed to resolve the problem, often the soils are assumed to be homogenous,
which resulted in significant inaccuracies. In varying soil conditions, the performance
of different grounding grid parameters may dramatically change. Although an exact
comparison is impossible because grounding grid designs vary depending on the location
to be installed, a broad overview of grounding performance as design changes and their
effects as soil layers and their corresponding characteristics change will be useful in
providing more information on safe grounding designs in non-homogeneous soil.

The design parameters for grounding behavior analysis in a horizontal two-layer
soil structure were varied in terms of grid depth, mesh number, and length of horizontal
conductors and vertical rods, while the soil characteristics were altered in terms of depth
and resistivity of the first soil layer. It can be observed that the resistivity of each soil layer
has an impact on grounding behavior and safety. For example, the GPR reduces when
the depth of the grid increases until it reaches the border of the top layer and increases
after the grid enters the bottom layer with high resistivity when the soil resistivity in the
bottom layer ρ2 is higher than the top soil layer ρ1. Longer vertical rods in a horizontal
two-layer soil structure are only effective when the bottom layer’s soil resistivity, ρ2 is
lower than the top soil layer’s resistivity, ρ1. When the soil resistivity in the bottom layer
ρ2 is higher than the top soil layer ρ1 increasing the top soil layer’s depth and resistivity
for simulation purposes increases the GPR and grid resistance, while vice versa shows
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a substantial reduction. This demonstrates the impact of the first soil layer’s depth and
corresponding resistivity on grounding behavior.

The design parameters for grounding behavior analysis in a horizontal three-layer soil
structure were changed in terms of grounding electrode types and vertical rod lengths. The
analysis utilized ring-shaped and linear grounding electrodes in a three-layer horizontal
soil structure and found that the ring-shaped grounding electrode has the best current and
potential dispersion properties, while the linear grounding electrode has the poorest. The
findings for the length of vertical rods are similar to the horizontal two-layer soil structure
when it reaches the low resistive soil layer. Besides, the study on the impact of reflection
factor, K, on the soil apparent resistivity shows that when the soil resistivity in the bottom
layer is higher than the top layer (K > 0), the apparent resistivity reduces for ρ12 < ρ2 and
increases for ρ23 < ρ1 and vice versa for (K < 0).

Vertical two-layer soil structures are more difficult to compute and analyze than
horizontal two-layer soil structures. As a result, a comprehensive study of grounding
performance in vertical two-layer soil structures has yet to be performed. The only analysis
in vertical soil layer was conducted to examine the effects of varying electrode spacing ‘a’,
and the distance from two-layer soil interface ‘d’ and the angle ‘β’ between a perpendicular
line to the soil border and the line where four electrodes are positioned on the apparent
resistivity. The analysis concluded that the apparent resistivity increases as the distance ‘a’
and the angle ‘β’ increases while the that the apparent resistivity reduces as the distance
‘d’ increases.

Relatively few detailed studies have been published on the influence of multilayer
soil, particularly on the effect of the grounding-grid design parameters in vertical soil
structure. Therefore, further works on the effect of multilayer soil layers and vertical soil
layers on grounding system performances with various design parameters such as the
grounding grid dimensions, number, and position of vertical electrodes attached to the
main grounding grid, need to be conducted. The outcomes of these analyses could serve as
an important guide on the substation grounding grid design to be appropriate and safer
for the public and personnel.
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