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Abstract: To establish an accurate sea ice model is a tremendous challenge in Arctic acoustic research.
Regarding this matter, a multilayered porous sea ice model is proposed based on Biot’s theory
in this paper. Assuming that the model is sandwiched between the water and air half-spaces,
the reflection coefficient of an incident wave from water into ice is deduced and contrasted with
the solution calculated by impedance transfer method (ITM) to demonstrate the verification of the
model. Furthermore, the influences of frequency, porosity and layering on reflection coefficients are
analyzed. The results reveal that the reflection coefficient is closely associated with layering and
porosity. Therefore, it is reasonable and necessary to simultaneously take the layering and porosity
of ice into consideration. Different from the existing layered or porous ice model, the presented
model synthesizes the layered characteristic and porous structure of ice, which better portrays the
real condition of sea ice. It is an improvement of the broadly used stratified or porous sea ice model,
which provides ideas for further sea ice modeling.

Keywords: layering; porosity; Biot’s theory; reflection

1. Introduction

With the growing exploitation of the Arctic, extensive research into Arctic acoustics
has been carried out in contemporary marine science and engineering fields [1]. Due to the
seasonal existence of ice in most of the Arctic Ocean, it causes an effect on the propagation
of acoustic waves [2]. Consequently, having a further understanding about sea ice models
is essential. Arctic ice has a complicated structure because of the changeable environmental
condition [3,4], which makes it challenging to establish a plausible model. When it comes
to sea ice modeling, scholars conducted a study concentrating mainly on its three charac-
teristics: layered, porous and rough surface. Chen [5] simplified the ice model by ignoring
the surface roughness and regarded acoustic reflection from sea ice as from flat plate.
What is more, they deduced the reflection coefficient in detail and analyzed the sound
field propagation loss using the Bellhop simulation model. McCammon [6] put forward
the multilayered ice model and extended the impedance transfer method to calculate the
reflection coefficient at a water–ice interface, and then they determined the effects of the
physical parameters and layering of ice and snow cover on reflections. Based on the layered
model, Liu [7] assumed that the water–ice and ice–air interfaces are rough and used the
self-consistent perturbation method proposed by Kuperman [8] to obtain the boundary
conditions of rough surfaces to calculate the reflection coefficient. Then, a numerical anal-
ysis was conducted about the relations between reflection coefficients and ice thickness,
grazing angle and frequency of acoustic wave. Kuperman treated rough surfaces with a
Gaussian distribution rather than concentrating on the specific scale of ridges generated by
collisions of large packs of floating ice floes [9]. Nevertheless, Diachok [10] calculated the
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reflectivity from ridges based on the Burke–Twersky model [11], in which ridges are con-
sidered as elliptical half-cylinders situated at the bottom surface of ice. Besides the layering
and rough surface of ice, scholars took porosity into account in the process of modeling
sea ice. Schwarz [12] modeled sea ice as a transversely isotropic brine-saturated porous
medium, and the cylindrical pores align themselves vertically. In accordance with the
model, Yew [13] studied the reflection and refraction of waves at the interface of water and
porous sea ice and the effect of ice thickness and porosity of the skeleton layer on reflection.

Comparing these models, it can be found that most models are established based on
one of the three characteristics, deviating from the actual condition of ice. Therefore, in an
attempt to obtain precise results during analyses of transmission of acoustic signals in
ice, a more comprehensive model is needed to incorporate those characteristics as much
as possible.

Based on this situation, a multilayered porous sea ice model which combines the
layered characteristic and porous structure is proposed in this paper. Due to the difference
of the formed time of ice layers, the density and sound velocity vary in each layer [14],
which has a different effect on the propagation waves. Moreover, when the plane wave
propagates into pores within ice, it gives rise to vibration of the fluid trapped in pores,
and thus its energy is dissipated on account of the friction between the fluid and ice
frame [15]. Hence, it is reasonable to model sea ice as multilayered and porous.

2. Theoretical Modeling

Figure 1 depicts the model in detail: sea ice is regarded as a multilayered porous
medium embedded between the water and air half-spaces. The ice is divided into n layers
whose physical properties are different vertically but the same horizontally [16], and lateral
dimensions are assumed to be infinite. When an incident wave propagates at the interface
between water half-space and the first layer of ice, it is reflected as an acoustic wave in water
and gives rise to three transmitted waves [17]: a fast longitudinal wave Lf, a transverse
wave T and a slow longitudinal wave Ls. When these three refracted waves impinge on
the next boundary, these waves generate three reflected waves and three refracted waves,
and this process continues at the following ice interfaces [18]. Finally, when reaching the
ice–air interface, the longitudinal wave is transmitted into air half-space.
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Figure 1. Reflection model of plane wave from water into multilayered porous sea ice. Figure 1. Reflection model of plane wave from water into multilayered porous sea ice.
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To better illustrate the inner structure of sea ice, the cross-section of the ith ice layer is
chosen to portray it. It can be seen from Figure 2 that porous sea ice is comprised of an ice
frame and tubular pores in which fluid is trapped. These pores are randomly distributed
and approximately along the depth direction, so sea ice is regarded as a transversely
isotropic fluid-saturated porous medium.
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2.1. Calculation of Displacements, Pressures and Stresses

To calculate the reflection coefficient of the plane wave from the model, first, the rela-
tions between displacement potentials and displacements, stresses or pressures in different
media are deduced. Then, a set of simultaneous equations for the amplitudes of displace-
ment potentials is derived using the boundary conditions of the displacements, stresses
or pressures at each interface. Eventually, the reflection coefficient can be calculated by
solving these equations.

When a plane wave with the angular frequency ω propagates from water into sea ice,
the sound field in water contains the incident and reflected waves. However, in air, only the
propagated upward wave exists because of its half-space. Therefore, the displacement
potentials in water and air are as follows:

φ0 = ej(ωt+α0z−kx x) + Vej(ωt−α0z−kx x) (1)

φa = φ+
a ej(ωt+αa−kx x) (2)

where α0 =
√

k2
0 − k2

x, kx and k0 refer to the vertical wavenumber, horizontal wavenumber
and wavenumber in water, respectively; V is the reflection coefficient of the plane wave;
αa =

√
k2

a − k2
x is the vertical wavenumber in air and ka is the wavenumber in air.

Then, the normal displacement uz0, uza and the pressure p0, pa [19] in water and air
are given by the following:

uz0 =
∂φ0

∂z
, uza =

∂φa

∂z
(3)

p0 = ρ0ω2φ0, pa = ρaω2φ0 (4)

where ρ0 and ρa are the density of water and air.
Taking the ith layer of sea ice as an example, the sound field contains three reflected

and three refracted waves. Thus, the displacement potentials of the fast longitudinal wave,
slow longitudinal wave and transverse wave can be written as follows:

φ f i = φ+
f ie

j(ωt+α f iz−kx x) + φ−
f ie

j(ωt−α f iz−kx x) (5)

φsi = φ+
si ej(ωt+αsiz−kx x) + φ−

si ej(ωt−αsiz−kx x) (6)

ψi = ψ+
i ej(ωt+σiz−kx x) + ψ−

i ej(ωt−σiz−kx x) (7)

where α f i =
√

k2
f l,i − k2

x, αsi =
√

k2
sl,i − k2

x and σi =
√

k2
t,i − k2

x and kfl,i, ksl,i and kt,i are

the vertical wavenumbers and wavenumbers of the three kinds of waves, respectively;
φ+

f i,φ
−
f i, φ+

si ,φ−
si ,ψ+

i and ψ−
i are the amplitudes of the three kinds of waves to be determined

and the subscripts + and − signify waves propagating upward (i.e., in the positive z-axis)
and downward, respectively.
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The normal displacements of the ice frame and the fluid in pores can be represented
by displacement potentials as follows:

uxi =
∂(φ f i + φsi)

∂x
− ∂ψi

∂z
(8)

uzi =
∂(φ f i + φsi)

∂z
+

∂ψi
∂x

(9)

Wzi =
∂(ri1φ f i + ri2φsi)

∂z
+

∂(ri3ψi)

∂x
(10)

where ri1 and ri2 represent the ratio of the velocity of the fluid in pores over the velocity
of the frame for the fast longitudinal and slow longitudinal waves, and ri3 is the ratio
of the amplitude of displacement of the fluid and of the frame. Then, according to the
stress–strain relations in Biot’s theory [20], the normal and tangential stresses of the ice
frame and the pressure of fluid in pores can be obtained:

τzzi = (P + Qri1)(
∂2φ f i
∂x2 +

∂2φ f i
∂z2 ) + (P + Qri2)(

∂2φsi
∂x2

+ ∂2φsi
∂z2 )− 2N(

∂2(φ f i+φsi)

∂x2 − ∂2ψi
∂x∂z )

(11)

τzxi = 2N
∂2(φ f i + φsi)

∂x∂z
+ N(

∂2ψi
∂x2 − ∂2ψi

∂z2 ) (12)

p f i = (Q + Rri1)(
∂2φ f i
∂x2 +

∂2φ f i
∂z2 )

+(Q + Rri2)(
∂2φsi
∂x2 + ∂2φsi

∂z2 )

(13)

where P, Q and R are elasticity coefficients and N is the shear modulus of the frame.
For detailed derivation of these parameters and wavenumbers of three kinds of waves,
the reader can refer to the paper by Allard [21].

As the same factor ej(ωt−kx x) is present in the expressions of displacement potentials
in these media, it will be neglected in the following calculation.

2.2. Boundary Condition

Continuity relations of normal displacements and stresses exist at the interface be-
tween water and porous sea ice. Meanwhile, shear stress in the ice vanishes. Therefore,
the boundary conditions [22] are as follows:

(1 − β)uz1 + βWz1 = uz0 (14)

τzz1 = −(1 − β)p0 (15)

p f 1 = −βp0 (16)

τzx1 = 0 (17)

where β is the porosity of the porous sea ice. When substituting the normal displacement
and pressure of water in Equations (3) and (4) and Equations (8)–(13) into Equations (14)–(17),
a series of equations about the unknown amplitudes of displacement potentials can be
derived, which can be described in the form of matrices:

B0(kx)A0;1 = 0 (18)

where B0(kx) is the 4 × 8 coefficient matrix, A0;1 = [1, V, φ+
f 1, φ−

f 1, φ+
s1, φ−

s1, ψ+
1 , ψ−

1 ], repre-
senting the vector of amplitudes of displacement potentials of water and the first layer of
sea ice.
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For simplicity of calculation, it is assumed that adjacent ice layers have the same
porosity. Nevertheless, it is also applicable to adjacent layers with different porosities as
long as the boundary conditions are changed. Additionally, the continuity of displacements,
stresses and pressure of the ice frame and the fluid in pores at the ith ice–ice interface can
be given as follows:

ux(i−1) = uxi, uz(i−1) = uzi, Wz(i−1) = Wzi (19)

τzz(i−1) = τzzi, τzx(i−1) = τzxi, p f (i−1) = p f i (20)

where the subscript i means the ith ice–ice interface, as Figure 3 shows.
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Similarly, when substituting Equations (8)–(13) into Equations (19) and (20), the fol-
lowing can be derived:

Bi(kx)Ai−1;i = 0(i = 2, 3, 4 . . . n) (21)

where Bi(kx) is the 6 × 12 coefficient matrix, Ai−1;i = [φ+
f (i−1), φ−

f (i−1), φ+
s(i−1), φ−

s(i−1), ψ+
i−1,

ψ−
i−1,φ+

f i, φ−
f i,φ

+
si ,φ−

si ,ψ+
i , ψ−

i ], representing the vector of amplitudes of displacement poten-
tials of adjacent layers of sea ice.

Finally, the boundary condition of the ice–air interface is similar to that of the water–
ice interface:

(1 − β)uzn + βWzn = uza (22)

τzzn = −(1 − β)pa (23)

p f n = −βpa (24)

τzxn = 0 (25)

When substituting the normal displacement and pressure of air in Equations (3) and (4)
and Equations (8)–(13) into Equations (22)–(25), the following can be obtained:

Ba(kx)An;a = 0 (26)

where Ba(kx) is the 4 × 7 coefficient matrix,An;a = [φ+
f n, φ−

f n, φ+
sn, φ−

sn, ψ+
n , ψ−

n , φ+
a ], sig-

nifying the vector of amplitudes of displacement potentials of the nth layer of sea ice
and air.

Based on the boundary conditions at all interfaces, a set of matrix equations about
Equations (18), (21) and (26) is derived. There are a total of 4 + 6(n − 1) + 4 = 6n + 2 linear
equations about amplitudes of displacement potentials. Solving these equations, 6n + 2 so-
lutions are derived:

V, φ+
f i, φ−

f i, φ+
si , φ−

si , ψ+
i , ψ−

i , φ+
a (i = 2, 3, 4 . . . n) (27)

Thus, the reflection coefficient of the plane wave is obtained.

3. Model Validation

In this section, the computed values of the reflection coefficient are compared with
the results calculated by ITM [6] to demonstrate the validation of the model. These two
methods can be set with the same parameters for comparison, which overcomes the diffi-
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culties of obtaining precise data from the changeable environment of the Arctic. The ITM is
widely utilized to calculate the reflection coefficient of acoustic waves from multilayered
materials. Therefore, the ITM was employed to verify the model. The principle of the ITM
is to establish the relations of displacements and stresses between the first and the last layer.
As for the displacement and stress field in the ith interface of ice, it can be described by the
vector U(i):

U(i) = [uxi, uzi, Wzi, τzzi, τzxi, p f i]
T (28)

Furthermore, U(i) can be expressed by the amplitudes of displacement potentials:

U(i) = Ai[φ
+
f i, φ−

f i, φ+
si , φ−

si , ψ+
i , ψ−

i ]
T (29)

where Ai is the matrix of order 6, signifying the coefficient matrix of the ith interface of ice,
and its elements can be deduced by Equations (8)–(13). In the paper, double-layered porous
sea ice is chosen as the model to simplify the calculation. Then, from the bottom surface of
ice to the top surface, the transfer matrix G, which relates U(3) and U(1), is derived:

U(1) = GU(3) (30)

G = A1 A−1
2d A−1

2u A−1
3 (31)

where A2d and A2u are the coefficient matrix of the second interface in the first layer and
the second layer of ice. Based on the boundary condition at the ice–air half-space interface
along the condition p f 1 = −βp0 and τzx1 = 0, the transfer matrix H from the air to the
upper ice layer can be obtained:

U(3)= HU(a) (32)

where U(a) = [ua, pa]
T. Therefore, the transfer matrix from the bottom surface of the ice

to the ice–air half-space interface is deduced:

U(1) = GU(3) = GHU(a) (33)

Furthermore, using the two remaining boundary conditions at the water–ice interface,
the following can be derived:

U(0)= KU(1)= KGHU(a) (34)

where U(0) = [u0, p0]
T and K is the transfer matrix. Solving Equation (34), the reflection

can be calculated.
For the double-layered model, the acoustic velocity and density are 1500 m/s and

1000 kg/m3 in water and 343 m/s and 1.2 kg/m3 in air, respectively. The density of the ice
frame and the fluid in pores is 1.2 and 1000 kg/m3, respectively. The porosity of the two
layers is 0.1, and the other parameters of porous ice are given in Table 1. For long-range
propagation of acoustic waves in the Arctic, the transmission loss increases dramatically
with the increase in frequency. Therefore, we focused on the low-frequency region below
2000 Hz. Using the parameters in Table 1, reflection coefficients as a function of incident
angle for sound frequencies of 500, 1000, 1500 and 2000 Hz were calculated by solving the
system of equations method (EM) and the ITM. To better distinguish our method from the
ITM in the following figures, the former method is described as the EM. Figure 4 shows the
comparisons between the EM and the ITM on the basis of the same double-layered porous
ice model.

Curves of the reflection coefficient through EM and ITM nearly coincide with each
other at different frequencies in Figure 4. The minor differences in those peaks are caused
by the difference in accuracy of calculation between the two methods. Nevertheless,
the similarity between the EM and ITM results is enough to confirm the validity of the
model. Consequently, a conclusion can be drawn that the proposed double-layered porous
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model is valid, which simultaneously demonstrates the correctness of the multilayered and
porous model.

Table 1. Parameters of the porous ice.

Fluid Viscosity Young’s Modulus
(Pa) Layer Depth (m) Shear Modulus (Pa) Poisson’s Ratio

Layer 1 0.001 7.24 × 109 0.5 2.74 × 109 0.32
Layer 2 0.001 7.98 × 109 0.5 3.05 × 109 0.32
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(a) Curves of the reflection coefficient at 500 Hz. (b) Curves of the reflection coefficient at 1000 Hz.
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4. Analysis of Factors Affecting the Reflection Coefficient

In Section 3, the double-layered porous ice model was verified to be correct, on the
basis of which a further study was made on the factors influencing the reflection coefficient,
such as frequency, porosity and ice thickness.

4.1. Effects of Frequency on Reflection Coefficients

A map of the reflection coefficients is shown in Figure 5, mapped versus incident angle
and frequency. The other parameters are the same as the model in Section 3. Obviously,
the reflection coefficients approach 1 at 1–100 Hz. With the increase in frequency, there is
a more rapid change in reflection coefficient. It is noted that frequency has an apparent
effect on reflection coefficients, which decrease at first and then increase at small incident



Appl. Sci. 2021, 11, 7411 8 of 11

angles. As for larger incident angles, the reflection coefficient decreases with the increase in
frequency and even reaches 1 between 82◦ and 90◦. It can be explained that total reflection
easily happens at those larger incident angles, in which case frequency is not the dominant
factor. Moreover, the acoustic wavelength at low frequency is larger than the thickness of
ice, so the wave is not trapped in pores without energy loss. Nevertheless, the wavelength
is small at higher frequency and, thus, trapped in pores, which causes the loss of the
incoming energy. Regarding the area in Figure 5 where the reflection coefficients approach
1 at 1000 Hz, it might be caused by other dominant factors, which needs further exploration.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 11 
 

4.1. Effects of Frequency on Reflection Coefficients 

A map of the reflection coefficients is shown in Figure 5, mapped versus incident 

angle and frequency. The other parameters are the same as the model in Section 3. Obvi-

ously, the reflection coefficients approach 1 at 1–100 Hz. With the increase in frequency, 

there is a more rapid change in reflection coefficient. It is noted that frequency has an 

apparent effect on reflection coefficients, which decrease at first and then increase at small 

incident angles. As for larger incident angles, the reflection coefficient decreases with the 

increase in frequency and even reaches 1 between 82° and 90°. It can be explained that 

total reflection easily happens at those larger incident angles, in which case frequency is 

not the dominant factor. Moreover, the acoustic wavelength at low frequency is larger 

than the thickness of ice, so the wave is not trapped in pores without energy loss. Never-

theless, the wavelength is small at higher frequency and, thus, trapped in pores, which 

causes the loss of the incoming energy. Regarding the area in Figure 5 where the reflection 

coefficients approach 1 at 1000 Hz, it might be caused by other dominant factors, which 

needs further exploration. 

 

Figure 5. Reflection coefficients at different frequencies. 

4.2. Effects of Ice Thickness on Reflection Coefficients 

Figure 6a depicts the reflection coefficients at different thicknesses of the first layer 

while keeping the second layer invariable. On the contrary, the second layer’s ice thick-

ness varies and the thickness of the first is constant in Figure 6b. An apparent phenome-

non in these two figures is that the reflection coefficients decrease with the increase in 

thickness in most cases. This is because the length of tubular pores increases with the 

thickness, and the waves trapped in pores could be reflected more times, thus causing 

more energy losses. Furthermore, it can be seen in Figure 6a that the change in the first 

layer’s ice thickness at small values has a minor effect on the reflection coefficient. Con-

trarily, Figure 6b shows that the reflection coefficient is deeply influenced by the second 

layer’s ice thickness. To further illustrate this matter, a comparison was made between the 

double-layered porous model and the single-layered porous model at the same thickness 

in Figure 6c. The solid line represents the 1.5-m thickness of the single-layered model and 

the other two lines signify the 1- and 0.5-m thickness of the two layers in the double-lay-

ered model, in which the dashed line represents a first layer of 1 m and a second layer of 

0.5 m and the dotted line is the opposite. As Figure 6c shows, these lines have the same 

trend to some degree but differences in detail. Consequently, the layering and the distri-

bution of thickness of sea ice have an effect on the reflection coefficient, and it is necessary 

to establish the layered model. 

Figure 5. Reflection coefficients at different frequencies.

4.2. Effects of Ice Thickness on Reflection Coefficients

Figure 6a depicts the reflection coefficients at different thicknesses of the first layer
while keeping the second layer invariable. On the contrary, the second layer’s ice thickness
varies and the thickness of the first is constant in Figure 6b. An apparent phenomenon in
these two figures is that the reflection coefficients decrease with the increase in thickness in
most cases. This is because the length of tubular pores increases with the thickness, and the
waves trapped in pores could be reflected more times, thus causing more energy losses.
Furthermore, it can be seen in Figure 6a that the change in the first layer’s ice thickness at
small values has a minor effect on the reflection coefficient. Contrarily, Figure 6b shows that
the reflection coefficient is deeply influenced by the second layer’s ice thickness. To further
illustrate this matter, a comparison was made between the double-layered porous model
and the single-layered porous model at the same thickness in Figure 6c. The solid line
represents the 1.5-m thickness of the single-layered model and the other two lines signify
the 1- and 0.5-m thickness of the two layers in the double-layered model, in which the
dashed line represents a first layer of 1 m and a second layer of 0.5 m and the dotted line
is the opposite. As Figure 6c shows, these lines have the same trend to some degree but
differences in detail. Consequently, the layering and the distribution of thickness of sea ice
have an effect on the reflection coefficient, and it is necessary to establish the layered model.

4.3. Effect of Porosity on Reflection Coefficients

The relation between the reflection coefficient and the porosity of sea ice is shown in
Figures 7 and 8. The porosities were chosen as 0.1, 0.2, 0.3 and 0.4. It is shown that there is
a trend that reflection coefficients decrease with the increase in porosity, except at some
special large angles. It is because sea ice contains more pores when the porosity increases.
Then, waves are more easily trapped in many pores and absorbed during the process of
propagating in the ice. Therefore, porosity should be included in sea ice modeling.
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Based on these analyses, a conclusion can be drawn that frequency, layering and
porosity have profound effects on the reflection coefficient. Therefore, a comprehensive
consideration about the frequency of acoustic waves and ice properties is needed in Arctic
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acoustic research. Furthermore, it is necessary to take the layering and porosity characteris-
tics into account in sea ice modeling.

5. Conclusions

A multilayered porous sea ice model has been proposed in this paper. The reflection
coefficient of an incident wave from water into ice was deduced. Then, a simplified double-
layered model was established for numerical calculation and verification. On the basis of
the model, a further study was made on the factors influencing the reflection coefficients.
It was found that the frequency, layering and porosity have a comprehensive effect on the
reflection coefficient. Therefore, it is essential to simultaneously take layered and porous
structures into account in sea ice modeling. Different from the layered or porous models,
the multilayered porous model fully combines the layered and porous characteristics of ice,
which more closely approaches the real condition of ice, thus improving the accuracy of
sea ice modeling to a great degree. In this model, the roughness of the water–ice interface
is omitted. Nevertheless, the sea ice surface roughness affects the interactions between
ice and acoustic waves to some extent [23]. Consequently, the roughness of the water–ice
interface should also be included when modeling sea ice in subsequent research.
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