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Abstract: Gated networks are networks that contain gating connections in which the output of at
least two neurons are multiplied. The basic idea of a gated restricted Boltzmann machine (RBM)
model is to use the binary hidden units to learn the conditional distribution of one image (the
output) given another image (the input). This allows the hidden units of a gated RBM to model the
transformations between two successive images. Inference in the model consists in extracting the
transformations given a pair of images. However, a fully connected multiplicative network creates
cubically many parameters, forming a three-dimensional interaction tensor that requires a lot of
memory and computations for inference and training. In this paper, we parameterize the bilinear
interactions in the gated RBM through a multimodal tensor-based Tucker decomposition. Tucker
decomposition decomposes a tensor into a set of matrices and one (usually smaller) core tensor. The
parameterization through Tucker decomposition helps reduce the number of model parameters,
reduces the computational costs of the learning process and effectively strengthens the structured
feature learning. When trained on affine transformations of still images, we show how a completely
unsupervised network learns explicit encodings of image transformations.

Keywords: unsupervised learning; gated restricted Boltzmann machine; tucker decomposition;
tensors

1. Introduction

Feature engineering is the process of transforming raw data into a suitable representa-
tion or feature vector that can be used to train a machine learning model for a prediction
problem. For decades, the traditional approach to feature engineering was to manually
build a feature extractor that required careful engineering and considerable domain exper-
tise. Manual feature engineering required writing code that was problem-specific and that
had to be adjusted for each new dataset. Deep learning allows computational models that
are composed of multiple processing layers to learn representation of data with multiple
levels of abstraction [1] (p. 436). Deep learning improves the process of feature engineer-
ing by automatically extracting useful and interpretable features. It also eliminates the
need for domain expertise and hard core feature extraction by learning high-level features
from the data in a hierarchical manner. The main building blocks in the deep learning
literature are restricted Boltzmann machines [2,3], autoencoders [4,5], convolutional neural
networks [6,7], and recurrent neural networks [8].

Most of these architectures are used to learn a relationship between a single input
source and the corresponding output. However, there are many domains where the
representation to be learned is the correspondence between more than one source and
one output [9]. For instance, many tasks in vision carry the relevant information in the
encoding of the relationship between observations, not the content of a single observation.

The above deep learning building blocks can be extended to contain gated connections
and allow them to learn relationships between at least two sources of input and at least
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one output. A defining feature of the gated networks is that they contain gating connec-
tions. Unlike other networks, whose layer-to-layer connections are linear, gated networks
introduce higher order interactions. The connection between two neurons x and y is in fact
modulated by the activity of a third neuron h. Figure 1 illustrates two different approaches
for the connection relationship between three neurons: to control the flow of information
in the network or to model multiplicative interactions between several inputs. In the first
type of connection, the neuron h is used as a switch or a gate that stops or does not stop
the flow of information between x and y. In the second type of connection, the connection
implements a multiplicative relationship between x and h, whose values are multiplied
before being projected to the output y by the synaptic connection. In the multiplicative
interaction, we can say that the neuron h modulates the signal between x and y.

(a) (b)

Figure 1. Two types of gating connections. (a): gated connection used to control the flow of
information in a network; (b): gated connection implementing a multiplicative relationship between
two inputs x and h to provide the output y.

Despite the growing interest, the literature about gated networks is still sparse [9]
(p. 2). The focus of this paper is the specific family of neural networks implementing a
multiplicative gating relationship that are built on an RBM architecture. This concept of a
gated restricted Boltzmann machine was first introduced in [10]. The basic idea of the gated
model is to use the binary hidden units to learn the conditional distribution of one image
(the input) given another image (the output). In [11], the authors revisit the problem and
present a factorization alternative to the gated RBM. A gated RBM can be also considered
a higher-order Boltzmann machine. As cited in [10] (p. 1474), Boltzmann machines that
contain multiplicative interactions between more than two units are known in general as
higher-order Boltzmann machines [12].

The remainder of this paper is organized as follows: in the following section, the
RBM model and its popular training method Contrastive Divergence (CD) are presented.
In Section 3, the standard gated RBM model is presented and a mechanism to reduce
the number of its weights by projecting onto factor layers is discussed. Next, we present
in Section 4 a small overview on the subject of tensors and the factorization known as
Tucker decomposition. In Section 5, we introduce a multimodal tensor-based Tucker
decomposition for the three-way parameter tensor in the gated RBM. In this section,
we also show that by using Tucker Decomposition, we can use less than the cubically
many parameters implied by the three-way weight tensor and introduce a Contrastive
Divergence-based training procedure for the gated RBM, which reduces the number of
model parameters and efficiently parameterizes its bilinear interactions. Experimental
results and their corresponding discussion are reviewed in Section 6. Finally, conclusions
are presented in Section 7.

2. Restricted Boltzmann Machines

A restricted Boltzmann machine is a type of graphical model in which the nodes
x = {v, h} form a symmetrical bipartite graph with binary observed variables v ∈ {0, 1}n
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(visible nodes) and binary latent variables h ∈ {0, 1}m (hidden nodes). Each visible unit
(node) is connected to each hidden unit, but there are no visible-to-visible or hidden-to-
hidden connections. Importantly, RBMs are able to model the probabilistic density of the
joint distribution of visible and hidden units, enabling them to generate samples similar
to those of the training data onto the visible layer. This type of model is called generative
models. A classic RBM model is illustrated in Figure 2.

Figure 2. Restricted Boltzmann machine.

An RBM is governed by an energy function, the energy of a joint configuration (v, h)
between the visible layer, and the hidden layer is given by

E(v, h) = − ∑
i∈visible

bivi − ∑
j∈hidden

cjhj −∑
ij

Wi,jvihj, (1)

where θ = {W, b, c} are the parameters of the model. Wij is the connection weight matrix
between the visible layer and the hidden layer, and bi and cj are biases of the visible layer
and the hidden layer, respectively.

E(v, h) is called the energy of the state (v, h). The joint probability distribution under
the model is given by the Boltzmann distribution:

p(v, h) =
1
Z(θ) exp

(
−1
τ

E(v, h)
)

where Z(θ) is a normalizing constant and τ is the thermodynamic temperature (often
considered as 1). Z(θ) is called a partition function and is defined by summing over all
possible visible and hidden configurations. Therefore, it is extremely hard to compute
when the number of units is large. The partition function is represented as follows:

Z(θ) = ∑
v,h

exp(−E(v, h)) for τ = 1.

Since there are no connections between two variables of the same layer, it is possible
to derive an expression for p(vk = 1 | h); this is the probability of a particular visible unit
being on given a hidden configuration:

p(hj = 1 | v) = σ

(
∑

i
Wijvi + cj

)
(2)

This is also true for a particular hidden unit given a visible configuration:

p(vi = 1 | h) = σ

(
∑

j
Wijhj + bi

)
(3)
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where σ(z) = 1/(1 + exp(−z)). This leads to a block Gibbs sampling dynamics, used
universally for sampling from RBMs.

RBM Training

Carreira-Perpinan and Hinton [13] showed that the derivative of the log-likelihood of
the data under the RBM with respect to its parameters is:

∂ log p(v, h)
∂θ

= −
〈

∂ log E(v,h)
∂θ

〉
data

+

〈
∂ log E(v,h)

∂θ

〉
model

(4)

where 〈·〉data denotes the expectation over the data, or in other words the distribution
p(h | v(t), θ). In the same way, 〈·〉model denotes the expectation over the model distribution
p(v, h | θ). However, directly calculating the sums that run over all values of v and h in
the second term in (4) leads to a computational complexity, which is in general exponential
in the number of variables.

The 〈·〉model expectation can be approximated with samples from the model distribu-
tion. These samples can be obtained via Gibbs sampling, iteratively sampling all units in
one layer at once given the other layer using (2) and (3) alternately. However, this requires
running the Markov chain for an infinite time to ensure convergence to a stationary state,
making it an unfeasible solution.

Obtaining an unbiased sample of 〈·〉model is extremely difficult. Hinton [3] approx-
imates the second term in the true gradient in (4) by using an approximation of the
derivative called Contrastive Divergence: the goal of CD is to replace the average 〈·〉model
with samples 〈·〉k obtained after running k steps of Gibbs sampling starting from each data
sample. This is illustrated in Figure 3. A typical value used in the literature is k = 1. More-
over, this way of updating the parameters has become a standard way of training RBMs.
Although it has proven to work well in practice, CD does not yield the best approximation
of the log-likelihood gradient [13,14]. There has been much research dedicated to better
understanding this approach and the reasoning behind its success [13–15], leading to many
variations being proposed from the perspective of improving the Markov chain Monte
Carlo approximation to the gradient, namely, Persistent CD [16], Fast Persistent CD [17],
and Parallel Tempering [18].

Figure 3. The CD-k learning procedure. To estimate
〈

vihj

〉
model

, we initialize the visible units of the
data and alternately sample the hidden and then the visible units. The observed value of vihj at the
(N + 1)st sample is used as the estimate.

3. Gated RBM

Gated RBMs are a natural extension of RBMs, in which the gating idea is applied
via the units of a hidden layer connecting/gating the neurons of two other layers (input
and output). As in the RBM model, the gated RBM is governed by an energy function.
Memisevic and Hinton [10] propose using the following three-way energy function that
captures all possible correlations among the components of the x (input), y (output), and h
(hidden) layers:

− E(y, h; x) = ∑
ijk

Wijkxiyjhk (5)
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where i, j and k index the units in the input, output and hidden layers, respectively; xi is
the binary state of input pixel i; yj is the binary state of output pixel j; and hk is the binary
state of hidden unit k.

Figure 4 shows a fully connected gated RBM. The components Wijk of its three-way
interaction tensor connect units xi, yj and hk and learn to weight the importance of the pos-
sible correlations given some training data. This type of multiplicative interaction among
the input, output, and hidden units leads to a type of higher-order Boltzmann machine
that retains the computational benefits of RBMs, such as being amenable to contrastive
divergence training and allowing for efficient inference schemes that use alternating Gibbs
sampling [11] (p. 1474).

In practice, to be able to model affine and not just linear dependencies, it is useful to
add biases to the output and hidden units, which makes (5):

− E(y, h; x) = ∑
ijk

Wijkxiyjhk + ∑
k

Wh
k hk + ∑

j
Wy

j yj (6)

where the terms ∑k Wh
k hk and ∑j Wy

j yj are bias terms used to model the base rates of activity
of the hidden and output units, respectively. In general, a higher-order Boltzmann machine
can also contain bias terms for the input units, but following [11], we do not use these.

Figure 4. A fully connected multiplicative gated RBM.

The negative energy −E(y, h; x) captures the compatibility between the input, output
and hidden units. As in the RBM model, we can use this energy function to define the
joint distribution p(y, h | x) over output and hidden variables by exponentiating and
normalizing:

p(y, h | x) =
1

Z(x)
exp(−E(y, h; x)) (7)

where
Z(x) = ∑

h,y
exp(−E(y, h; x)) (8)

is a normalizing constant, which depends on the input image x. To obtain the distribution
over output images, given the input, we marginalize and get:

p(y | x) = ∑
h

p(y, h | x) (9)

This marginalization over the hidden units is known in the literature as free energy.
Note that p(y, h | x) or Z(x) cannot be computed exactly, since both contain sums over the
exponentially large number of all possible instances of the hidden units and output units
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for Z(x). However, we do not actually need to compute any of these quantities to perform
either inference or learning, as we shall see in the next section.

It is important to note that the normalization step in (8) is performed over h and y;
thus, it defines the conditional distribution p(y, h | x) rather than the joint p(y, h, x). This
is done deliberately to free the model from many of the independence assumptions that a
fully generative model would need to make, hence simplifying inference and learning [10].

Inference then consists of guessing the transformation, or equivalently its encoding h,
from a given pair of observed images x and y. Since the energy function does not contain
interactions between any pairs of output units or pairs of hidden unis, it is possible to
derive a closed-form expression for p(hk = 1 | x; y); this is the probability of a particular
hidden unit when a input–output image pair is given:

p(hk = 1 | x; y) = σ
(

∑
i

∑
j

Wijkxiyj + wh
k

)
(10)

This is also true for the output units when input and hidden units are given:

p(yj = 1 | h; x) = σ
(

∑
i

∑
k

Wijkxihk + wy
j

)
(11)

where σ(z) = 1/(1 + exp(−z)).
Note that in practice, function σ(·) can be changed for some other non-linear activation

function. Regardless of the activation function, these models are called bilinear because, if
one input is held fixed, the output is linear in the other input.

Consider now the task of predicting the hidden layer h̃ given the input x and output
y units, in such multiplicative network, this consists in computing all the values h̃k of h̃
using (10):

∀k, h̃k = σh

(
∑

i
∑

j
Wijkxiyj + wh

k

)
(12)

Alternatively, one may compute ỹ given the input x and hidden h units using (11):

∀j, ỹj = σy

(
∑

i
∑
k

Wijkxihk + wy
j

)
(13)

Memisevic and Hinton [10] point out that this type of three-way model can be inter-
preted as a mixture of experts. Note from (5) that in the way the energy is defined, the
importance that each hidden unit hk attributes to the correlatedness (or anti-correlatedness)
of a particular pair xi, yj is determined by Wijk.

To train the probabilistic mode,l we can use the same principle from Contrastive
Divergence in the RBM model: we maximize the average conditional log-likelihood L =
1
N ∑α log p(yα | xα) for a set of training pairs {(xα, yα)}. The derivative of the (negative)
log probability with respect to the weight parameter Wijk is given by the difference of two
expectations:

− ∂L
∂Wijk

=

〈
∂E(yα, h; xα)

∂Wijk

〉
h

−
〈

∂E(yα, h; xα)

∂Wijk

〉
h,y

(14)

where 〈·〉z denotes the expectation with regard to variable z. Note that the expectation
in the first term in (14) is over the posterior distribution over hidden units, and it can
be computed efficiently using (12). The expectation in the second term in (14) is over
all possible output/hidden instantiations and is intractable. However, because of the
conditional independences of h given x and y and y given x and h, we can easily sample
from the conditional distributions p(h | x, y) and p(y | x, h). Using Gibbs sampling with
Equations (12) and (13), respectively, for the hidden and output layer, we can approximate
the intractable term.
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Factorized Gated RBM

Memisevic and Hinton [11] propose a way of reducing the number of weights that
consists of projecting the x, y, and h layers onto smaller layers, noted, respectively, as
fx, fy, and fh before performing the product between these smaller layers. Given their
multiplicative role, these layers are called factor layers.

The three-way tensor Wijk is constrained to use these projections; three factor layers
fx, fy, and fh of the same size n f as is illustrated in Figure 5. Moreover, the weights Wijk are
restricted to follow a specific form:

Wijk =
F

∑
f=1

Wx
i f Wy

j f Wh
k f . (15)

With this constraint, the matrices Wx, Wy and Wh are of respective size nx × n f ,
ny × n f and nh × n f ; thus the total number of weights is just n f × (nx + ny + nh), which is
quadratic instead of cubic in the size of input or factors.

Figure 5. A simplified gated RBM introducing factor layers.

4. Tucker Decomposition

Since tensors, specifically a three-way tensor, and its corresponding Tucker decom-
position are at the core of this study, a brief overview of the subject of tensors is pre-
sented. First introduced by Tucker [19] and refined in subsequent articles by Levin [20] and
Tucker et al. [21], the Tucker decomposition is a form of higher-order Principal Component
Analysis. Tucker decomposition factorizes a tensor into a (usually smaller) core tensor and
a set of factor matrices. One factor matrix along each mode. Then, in the three-way case
where WWW ijk ∈ RI×J×K, we have

WWW ijk ≈ GGG pqr ×I Aip ×J Bjq ×K Ckr (16)

where the operator×n denotes the mode-n multiplication of a tensor by a matrix in mode n.
A ∈ RI×P, B ∈ RJ×Q, and C ∈ RK×R are known as the factor matrices and can be thought
of as the principal components in each mode. The tensor GGG ∈ RP×Q×R is called the core
tensor, and its entries show the level of interaction between the different components. The
Tucker decomposition of WWW ijk is usually summarized as:

WWW = JGGG ; A; B; CK (17)

A comprehensive discussion on Tucker decomposition and tensor analysis is available
in Kolda [22]. If GGG is the same size as WWW , the Tucker decomposition is simply a change of
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basis. More often, we are interested in using a change of basis to compress WWW . If P, Q, R
are smaller than I, J, K, the core tensor GGG can be thought of as compressed version of WWW .

For some computations presented in this document, it is important to be able to
transform the indices of a tensor so that it can be represented as a matrix and vice versa.
Matricization, also known as unfolding or flattening, is the process of reordering the elements
of a tensor (N-way array) into a matrix [23]. For instance, a 3 × 4 × 5 tensor can be
rearranged as a 12× 5 matrix or a 3× 20 matrix, and so on.

The matricized forms (one per mode) of (16) are:

Wi ≈ AGp(C⊗ B)T (18)

Wj ≈ BGq(C⊗A)T (19)

Wk ≈ CGr(B⊗A)T (20)

5. Materials and Methods

In this section, we propose a strategy for reducing the number of parameters in a
gated RBM. First, we refactor the gated RBM model by applying a multimodal tensor-based
Tucker decomposition to its three-way weight tensor. Then, we show that by using Tucker
Decomposition, we can use fewer than the cubically many parameters implied in the model.
Finally, we introduce a Contrastive Divergence-based training procedure for the tucker
decomposed gated RBM, which efficiently parameterizes its bilinear interactions.

5.1. Decomposing the Three-Way Tensor in a Gated RBM

The central idea of this research is to represent the required three-way interaction
tensor in the gated RBM model using far fewer parameters through its Tucker Decomposi-
tion. The energy function in a gated RBM (Equation (5)) captures all possible correlations
among the components of the x (input), y (output), and h (hidden) layers. In this function,
parameter WWW defines a three-way interaction tensor that learns the importance of corre-
lations between layers x and y. However, despite its appealing modeling power, a fully
parametrized gated RBM suffers from an explosion in the number of parameters, quickly
becoming intractable because the size of the full tensor WWW is prohibitive using common
dimensions for textual, visual, or output spaces.

As we will see, it is possible to use much fewer parameters by factorizing the multi-
way interaction tensor via Tucker decomposition. We can plug the Tucker decomposition
Equation (16) into the energy function of the gated RBM Equation (5). Then, the energy of
a joint configuration of the visible (input/output) and hidden units is defined as:

−E(y, h; x) =
[
GGG pqr ×P Aip ×Q Bjq ×R Ckr

]︸ ︷︷ ︸
WWW ijk

xiyjhk

Using the distributive law, this can be rewritten as:

−E(y, h; x) = GGG pqr ×P xT
i Aip ×Q yT

j Bjq ×R hT
k Ckr

We can drop subindices for clarity and get:

− E(y, h; x) = GGG ×P (xTA)×Q (yTB)×R (hTC) (21)

It is possible to simplify the notation in (21) if we define:

x̂ = xTA,

ŷ = yTB, and
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ĥ = hTC.

Then the energy function in Equation (21) is given by:

− E(y, h; x) = GGG ×P x̂×Q ŷ×R ĥ (22)

5.2. Interpretation of the Refactored Model: Dimensionality Reduction

Let us consider the three-way tensor with shape (ni, nj, nk) and its corresponding
Tucker decomposition presented in Figure 6. As we parametrize the weights of the three-
way tensor WWW with its Tucker decomposition, we are now able to separate WWW into four
components, each having a specific role in the gated RBM model. Matrices A and B project
the input (x) and output (y) images into spaces of respective dimension np and nq. The
core tensor GGG , whose shape is (np, nq, nr), is used to model the interactions between the
input and output image projections. Finally, the matrix C projects the scores of the pair
embedding h into a space of dimension nr.

Moreover, if GGG has the same shape as WWW , the Tucker decomposition is simply a change
of basis. However, in our case, we are interested in using a change of basis to compress WWW .
If np, nq, nr are smaller than ni, nj, nk, the core tensor GGG can be thought of as compressed
version of WWW . Note that the dimensions for the factor matrices A, B, and C are a result of
the n-mode product between the original tensor WWW and the core tensor GGG . The factor matrix
A has dimensions ni × np as a result of the i-mode product between WWW and GGG . Respectively,
factor matrix B has dimensions nj × nq (from j-mode product) and factor matrix C has
dimensions nk × nr (from k-mode product). By constraining np, nq, nr to be smaller than
ni, nj, nk, we use a lower number of components for each of the three modes while at the
same time linking these components to each other by means of the three-way core tensor.

Figure 6. Dimensionality reduction in the factorized tensor.

Again, consider the three-way tensor in Figure 6, whose respective cardinality of each
layer is given by ni, nj and nk. If we consider ni ≈ nj ≈ 2048 and nk ≈ 2000, then the
number of free parameters in the tensor WWW is ∼8.39 ×109. It is easy to see that having
such a number of free parameters is a problem both for memory and computing costs. In
contrast, if we apply Tucker decomposition to this three-way tensor using a core tensor
with shape 1024× 1024× 1000, then the number of free parameters would be ∼1.05 ×109,
which is given by the sum of parameters from the core tensor and the three factor matrices.
By applying Tucker decomposition we reduce the dimensionality of the model. Note that
the compression in the data is determined by the ranks of the core tensor.

Dimensionality reduction has long been an important technique for data representa-
tion. It reduces the space complexity of the underlying model so that it has higher stability
when fitting, require fewer parameters and consequently becomes easier to interpret.
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5.3. Training the Refactored Gated RBM

To train the refactored gated RBM, we can maximize its average conditional log-
likelihood

L = ∑
α

log p(yα | xα)

for a set of training pairs {(xα, yα)}. By substituting Equations (7) and (9), the derivative
of the negative log probability with regard to any element θ of the parameter tensor is
given by

− ∂L
∂θ

=

〈
∂E(yα, h; xα)

∂θ

〉
h
−
〈

∂E(yα, h; xα)

∂θ

〉
h,y

(23)

where 〈·〉z denotes the average with regard to variable z. By substituting the reparametrized
energy function from (21) into (23), we get

− ∂L
∂θ

=

〈
∂GGG ×P xTA×Q yTB×R hTC

∂θ

〉
h

−
〈

∂GGG ×P xTA×Q yTB×R hTC
∂θ

〉
h,y

(24)

Equation (24) calculates the derivative of the (negative) log probability with respect to
any parameter in the refactored weights tensor: core tensor GGG and the three factor matrices
A, B, and C.

Similar to the unfactored gated RBM model presented in Section 3, note that the deriva-
tive of the (negative) log probability with respect to any parameter of the Tucker refactored
gated RBM is given by the difference of two expectations. The first expectation in (24)
is over the posterior distribution over the hidden units. On the other hand, the second
expectation in (24) is over all possible output/hidden instantiations and is intractable.

Note that the first term in (24) amounts to inferring the transformation (encoding) h
from a given pair of observed inputs x and y as considered in Equation (12). It is possible
to plug the Tucker refactored energy function from (22) into (12) (bias term dropped for
clarity), which becomes:

h̃ = σh

(
G ×I x̂×J ŷ×K C

)
. (25)

In an analogous way, we may consider the task to compute p(ỹ | h, x) from an input
image x and a given fixed transformation h considered in Equation (13). By plugging the
Tucker decomposed energy function from (22) into (13) (bias term dropped for clarity),
when input and hidden units are given, we get

ỹ = σy

(
G ×I x̂×K ĥ×J B

)
. (26)

Let us now focus again on Equation (24). Note that the second term, also known as
the model expectation, is an expectation over all possible instances of the output/mapping
units and is intractable. However, similar to the bipartite structure in an RBM, the tripartite
structure of a gated RBM facilitates Gibbs-sampling. With this in mind, we also consider
the task to compute p(x̃ | y, h).

x̃ = σx

(
G ×J ŷ×K ĥ×I A

)
. (27)

Then, Gibbs sampling suggests itself as a way to approximate the intractable term
in (24). Because of the conditional independences of h given y and h, y given x and h,
and x given y and h, we can easily sample from the conditional distributions p(h̃ | x, y),
p(ỹ | h, x), and p(x̃ | y, x) using (25)–(27) respectively.

Given the tripartite structure of the gated RBM, it is possible to perform three-way
alternating Gibbs sampling. This scheme of optimizing an undirected graphical model is
known as Contrastive Divergence. In this research, we perform a single Gibbs iteration
when approximating the negative phase.
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Using this Contrastive Divergence approach with Equations (25)–(27), we can make
use of a machine learning library that supports reverse-mode automatic differentiation
such as PyTorch.

PyTorch provides two high-level features: tensor computing with strong acceleration
via GPU and automatic differentiation for all operations on tensors. Conceptually, this
method for automatic differentiation records a graph recording all of the operations that
created the data as the operations are executed. The leaves in the graph are the input
tensors, and the roots are the output tensors. PyTorch traces this graph from roots to leaves,
automatically computing the gradients using the chain rule. From a computational point of
view, training a model consists of two phases: a forward pass to compute the value of the
loss function and a backward pass to compute the gradients of the learnable parameters.
With this in mind, we use the Contrastive Divergence approach for building the forward
pass and generating the graph. This process is summarized in Algorithm 1.

Algorithm 1: Forward pass
Input: (xi, yi): Training pair; k number of steps for CD learning
Output: xk: input vector once CD-k is applied; yk: output vector once CD-k is

applied
1. Calculate positive phase performing three-way Gibbs sampling

x0 ← x1
y0 ← y1

Calculate p(h̃0 | x0, y0) using Equation (25).
h0 ∼ p(h̃0 | x0, y0)

hk ← h0

2. Calculate negative phase
For each step in k:

(a) Calculate p(ỹk | x0, hk) using Equation (26). Sample the yk states
yk ∼ p(ỹk | x0, hk)

(b) Calculate p(x̃k | y0, hk) using Equation (27). Sample the xk states
xk ∼ p(x̃k | y0, hk)

(c) Calculate p(h̃k | x0, yk) using Equation (25). Sample the hk states

hk ∼ p(h̃k | x0, yk)

When computing the forward pass, PyTorch simultaneously performs the requested
computations and builds up a graph representing the function that computes the gradient.
Once the forward pass is completed, this graph is evaluated in the backward pass to
compute the gradients. To build the backward pass, we used the concept of free energy as
presented in (9). Under the gated RBM, the probability of observing a configuration of
output units y given the input units x can be obtained by marginalizing out the hidden
units. This computation is called free energy and is given by:

p(y | x) = ∑
h

p(y, h | x)

=
1

Z(x) ∑
h

exp(−E(y, h; x))

=
1

Z(x) ∑
h

exp
(

∑
ijk

Wijkxiyjhk

) (28)
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Generally speaking, RBMs and gated RBMs are a class of models that belongs to the
more general class of energy-based models (EBMs) [24]. EBMs have probabilistic equations
of the following form:

p(x | θ) =
1
Z

exp(−G(x | θ)) (29)

where x is the observed variables, Z is the normalization term, and G is the energy function.
Since (28) yields the same form for the equation describing an EBM (29), we can then
minimize the free energy function for maximum (log-)likelihood.

Unfortunately, p(y | x) is intractable to compute since Z(x) involves an integra-
tion/sum over all possible settings of the input and hidden units:

Z(x) = ∑
h′

∫
y′

exp(−E(y′, h′; x))dy′

However, log p(y | x) can be computed up to a constant, which is useful for scoring
observation under a fixed model. First, we notice that Equation (28) involves a sum over
all possible configurations of the hidden units ∑h, but we observe that the hidden units are
binary. This means that we only need to consider two possible states for each unit. This
observation leads to a non intractable form of the energy function:

p(y | x) = ∑
h∈{0,1}H

exp(WWW ×i x×j y×k h)/Z

= ∑
h1∈{0,1}

· · · ∑
hH∈{0,1}

exp
(

∑
k

hkW::kxy
)

/Z

=
(

∑
h1∈{0,1}

exp(h1W::1xy)
)
· · ·
(

∑
hH∈{0,1}

exp(hHW::Kxy)
)

= (1 + exp(W::1xy)) · · · (1 + exp(W::Kxy))/Z

= exp(log(1 + exp(W::1xy))) · · · exp(log(1 + exp(W::Kxy)))/Z

= exp
( H

∑
k=1

log(1 + exp(W::kxy))
)

/Z

Then the log p(y | x) is:

log p(y | x) = log(exp
( H

∑
1

log(1 + exp(W::kxy))
)

/Z)

=
( H

∑
1

log(1 + exp(W::kxy))
)

/Z

(30)

For scoring observations under a model, we can ignore the partition function Z.
Finally, the backward pass can be computed using the free energy function in its scoring
version (no partition function Z) as it is shown in Algorithm 2.

Algorithm 2: Backward pass
Input:
x0: input vector at step 0
y0: output vector at step 0
xk: input vector once CD-k is applied
yk: output vector once CD-k is applied.
1. Calculate the free energy F(x0, y0) using Equation (30)
2. Calculate the free energy with F(xk, yk) using Equation (30)
3. Calculate the difference between the free energy F(x0, y0) and F(xk, yk)
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6. Results and Discussion

To illustrate the performance and viability of the model, we conducted experiments
on pairs of shifted random binary images using the dataset provided on the accompanying
website of Memisevic and Hinton [11].

We trained the model on pairs of transformed image patches, forcing the hidden
variables to encode the transformations. The goal of this experiment is to investigate what
forms the model weights take on when trained on affine transformations. The dataset
consists of 10,000 binary image patch pairs of size 13× 13 pixels each, where the output
image in each pair is a transformed version of the input image. The input images are shifted
by one pixel in a random direction in each sample. As stated in Memisevic and Hinton [11]
(p. 1482), there is no structure at all in the images themselves, which are composed
of random pixels. The only source of structure in the data comes from the way the
images transform.

Figure 7 shows three different samples of the binary images in the upper row. The
lower row shows the shifted binary samples. This dataset was generated by a set of initial
images where each pixel in the image is turned on randomly with probability 0.1. These
initial images are used as input for the input layer x in the gated RBM model. Then, a
random direction is chosen from the set {up, down, left, right, up-left, up-right, down-left,
down-right, no shift} and each initial image is shifted by one pixel to create the output
images. The newly appearing edges are filled randomly and independently as before with
probability 0.1. The shifted images are used as input for the output layer y in the gated
RBM model.

Figure 7. Samples of shifted binary images.

For this task, we trained a gated RBM with the proposed training algorithm from
Section 5.3. We performed parameter exploration via grid search considering the following
parameters: core tensor ranks, number of units in the hidden layer, and learning rate. We
ranged the value of hidden units from 64 to 144 units. We did not identify significant
changes in the filters learned given the number of units in the hidden layer or the core
tensor ranks. The reason is that much of the interactions between the input and output
layers are captured in the core tensor. The learning rate ranged from 1× 10−2 to 1× 10−4,
and the core tensor ranks evaluated were 80× 80× 80, 120× 120× 120 and 169× 169× 169.

In Figure 8, we display the filters learned at different stages by the input, output, and
hidden layers as a qualitative assessment of the trained gated RBM model. The filters
displayed in Figure 8 correspond to a model with a core tensor with ranks 120× 120× 120,
144 units in the hidden layer, and a learning rate of 1× 10−3. In the figure, each column in
the factor matrices is rearranged to be displayed as a square. For example, if factor matrix
A is of shape 120× 169, then 120 squares of shape 13× 13 are displayed. From iteration 0
in Figure 8, we observe that the weights for each layer are randomly initialized. On each
iteration, the weights become more structured with no supervision in the model. Note that
the filters presented in iteration 211 in Figure 8 do not totally resemble the filters found
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in [11] although the same dataset of random transformations is used. The reason is that
the factorization of the three-way tensor proposed in this research is different to the one
presented in [11]. While Memisevic and Hinton [11] project each mode of the three-way
tensor in the gated RBM onto smaller layers, the current factorization involves a core tensor
that models the interactions between the input and output image projections modulated
via the gated connections in the hidden layer.

(a) Iteration 0

(b) Iteration 100

(c) Iteration 150

(d) Iteration 200

(e) Iteration 211

Figure 8. Image filters learned from shifted random images at different iterations.
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In fact, the core tensor also learns filters, as presented in Figure 9. Moreover, the filters
learned by each layer of the model show a correspondence with the filters in the three-way
core tensor. In other words, each unit in the model is connected to the core tensor with
variable strengths, and this allows them to detect specific changes in frequency, orientation,
and phase shift in the data. In Figure 9, we show the filters learned by a model with a core
tensor of shape 49× 49× 49. In the image, we display each frontal slice of the core tensor.
For simplicity, we present the frontal slices for this model with a smaller tensor, but the
same behavior was observed regardless of the tensor shape.

Figure 9. Core tensor filters learned from shifted random images.

We also confirmed that the learning rate would affect convergence. The learning rate
controls how much the parameters in the model are adjusted with respect to the energy
loss gradient. Figure 10 shows energy loss during training for different learning rate
configurations: 1× 10−2, 1× 10−3, and 1× 10−4. We limit the number of epochs to 10. The
number of units in the hidden layer is 144, and the ranks selected for the core tensor is
120× 120× 120. As can be observed in the figure, the largest learning rate provides the
fastest convergence in less than one epoch. On the other hand, the smallest learning rate
decreases steadily on each epoch but does not arrive to a point of convergence. In each case,
we observed that the corresponding model learns filters at different stages. In general, a
smaller learning rate requires more training epochs given the smaller changes made to the
model parameters in each update. However if the learning rate is too small, it can cause the
learning process to get stuck and not converge. On the other hand, a larger learning rate
results in rapid changes and requires fewer training epochs. However, it is possible that
too large a learning rate causes the model to converge to a sub-optimal solution. The rate at
which the learning takes place is an important hyper-parameter and will vary depending
on the application of the model.
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Figure 10. Gated RBM energy loss comparison with different learning rate configurations.

To gain insight into the way the core tensor affects the learning speed, we also trained
the gated RBM model on the random-shifts dataset under various configurations of the
core tensor while holding the learning rate and the number of hidden units constant.
The gated RBM evaluated has 169 units both in its input and output layer and 169 units
in its hidden layer. With this configuration, the original weight tensor has a shape of
169× 169× 169. On the other hand, the core tensor was tested with ranks 80× 80× 80,
120× 120× 120, and 169× 169× 169. Note that in the last configuration, the core tensor
provides no compression since it has the same shape as the original tensor. For simplicity,
we only considered cubical tensors. The models were trained using the same learning rate
of 1× 10−3 for 10 epochs and were not stopped via early stopping. The idea is to isolate
the effect of the core tensor configurations.

Figure 11 shows the energy loss when training under the three core tensor configu-
rations. Note that in each case, the energy loss decreases steadily although with different
gradients. We should remember that in a gated RBM as well as in an RBM, the concept of
the energy function is analogous to the cost function. In fact, the configuration with the
smallest core tensor has the highest energy decrease, while the core tensor configuration
that is the exact shape of the original tensor has the lowest energy decrease. The reason is
because the core tensor does not provide any compression but only functions as a change
of basis. In addition, note that different configurations of the core tensor explore different
configuration of the energy loss, which is explained by the fact that the core tensor modu-
lates the level of interaction between the different components of each layer, resulting in
different configurations of energy.

In Figure 12, we show the training time (in seconds) for the same core tensor configu-
rations. As was expected, this figure confirms that the training speed is a function of the
core tensor dimensionality. Although it could be inferred from Figures 11 and 12 that the
best model configuration is the one with the smallest core tensor, it should be noted that
the core tensor ranks should be calibrated according to the specifics of the problem to solve
and evaluated according to the desired performance of the model.

As a last evaluation, we compared the Tucker refactored gated RBM proposed in this
research against the unfactored model presented in [10], which uses a full three-way tensor.
The filters learned by the input, output, and hidden layers in combination with the filters
learned by the core tensor are highly structural and in fact are very similar to the ones that
are applied to the output images in [10], as shown in Figure 13b. The latter produces a
canvas-like effect on the image. In both cases, the filters are learned in an unsupervised
fashion. We should underline that there is no available code accompanying the research
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in [10] and that we implemented their unfactored model using the update rules provided
in the paper using PyTorch.

Although the filters produced both for the Tucker refactored and unfactored models
might be similar, the training for both approaches has different performance metrics. To
better understand this, we trained both models on the same random shifts dataset while
holding all the variables constant. The input and output images have a size of 13× 13
pixels each, which determines the number of neurons in the input and output layers to be
169 in both models. The number of hidden units and learning rate are kept the same in
both implementations and have values of 121 and 1× 10−3, respectively. Figure 14 shows
the energy loss for the Tucker refactored, while Figure 15 shows the energy loss for the
unfactored model.

Figure 11. Gated RBM energy loss comparison with different core tensor ranks.

Figure 12. Gated RBM training time comparison with different core tensor ranks.
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(a)

(b)

Figure 13. (a): Filters learned in by the input, output and hidden layers. (b): Filters applied
from Memisevic and Hinton [10]. Reproduced with permission from R. Memisevic and G. Hinton,
Unsupervised Learning of Image Transformations; published by IEEE, 2007.

Figure 14. Energy loss when training the Tucker refactored model.

The only difference between the two models is that the unfactored gated RBM uses a
full tensor 169× 121× 169, and the Tucker refactored model factorizes the full tensor into
a core tensor 80× 80× 80, input and output factor matrices 169× 80 and a hidden factor
matrix 121× 80. Note that the unfactored gated RBM starts with a much higher energy
configuration. On the other hand, the Tucker refactored model starts at a much smaller
energy configuration as a result of the core tensor modulating the interactions of the three
layers. The relationship between the core tensor configuration and the resulting energy
configuration explored is also observable in Figure 14. From Figures 14 and 15, we see
that the Tucker refactored gated RBM reaches convergence in fewer iterations than the
unfactored gated RBM while having the same learning rate and hidden units.
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Figure 15. Energy loss when training the unfactored gated RBM from Memisevic and Hinton [10].

Finally, in Figure 16, we show a comparison of the training time (in seconds) for both
the Tucker refactored and unfactored gated RBMs. It is easy to see that the unfactored
model using a full tensor takes much longer than the Tucker decomposed factored model
proposed in this research. This is because the core tensor reduces the number of free
parameters in the model while maintaining its learning capacity.

Figure 16. Training time in Tucker refactored vs unfactored gated RBMs.

7. Conclusions

The multimodal tensor-based Tucker decomposition presented in this research has the
useful property that it keeps the independent structure in the gated RBM model intact. We
take advantage of this independent structure by developing a contrastive-divergence-based
training procedure used for inference and learning.

In this paper, we combine Tucker Decomposition for a gated RBM and showed how
the model allows us to obtain image filter pairs that are highly structural when trained
on transformations of images. There is some resemblance between our approach and the
bilinear model for Visual Question Answering (VQA) task proposed in [25]; however,
the problems solved and the learning methods presented are quite different. Despite its
appealing modeling power, the literature on gated RBMs is still scarce. The literature
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review on gated RBMs revealed that almost all the publications on the subject present only
different applications for the model, namely texture modeling [26], classification [27], and
rotation representations [28]. In that sense, this research contributes an alternative method
for training the gated RBM.

As we have seen, Tucker decomposition is a great tool for multidimensional data
dimensionality reduction. Implementing it in the gated RBM means adding an additional
hyperparameter to the model: the multimodal shape of the core tensor. In fact, the resulting
model allows us to explicitly control the model complexity and to choose an accurate
and interpretable factorization of the learnable parameters. One important property of
tensor decomposition is that the number of parameters from the core tensor and factor
matrices is usually much smaller than the number of parameters in the original tensor.
Using the compression ratio (number of elements before and after tensor decomposition)
and the approximation error caused by tensor decomposition, we can evaluate the proper
decomposition to be performed.

Time complexity for inference or one-step inference in the Tucker decomposed gated
RBM is O(npnqnr), where np, nq, and nr correspond to the dimensionality of each mode
in the core tensor and directly impact the modeling complexity that will be allowed for
each modality. Note that the core tensor can be fixed to a small rank regardless of the
dimensionality of each layer in the weight tensor. This is in contrast to the time complexity
for inference in a fully parameterized gated RBM, which is O(ninjnk). The latter is in terms
of the dimensionality of the input, output, and hidden layers in the fully parametrized
gated RBM and is not efficient in terms of memory with large inputs.

Strictly speaking, we could also select the dimension of each modality np, nq, nr to
be equal to or greater than ni, nj, nk. This would lead to a change of basis or an explosion
in the number of free parameters. There are several interesting directions for future work.
In this research, we used a fixed shape in the core tensor; however, fine tuning this new
hyperparameter needs to be addressed in future research. A possible idea is to measure
the approximating error and select the smallest multimode dimensionality that meets a
selected threshold. Another idea is to use the tripartite structure of the gated RBM to model
discriminative tasks in which an image on layer x and its corresponding target in layer y
are provided.
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