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Abstract: Random outbreaks of infectious diseases in the past have left a persistent impact on
societies. Currently, COVID-19 is spreading worldwide and consequently risking human lives. In
this regard, maintaining physical distance has turned into an essential precautionary measure to
curb the spread of the virus. In this paper, we propose an autonomous monitoring system that is
able to enforce physical distancing rules in large areas round the clock without human intervention.
We present a novel system to automatically detect groups of individuals who do not comply with
physical distancing constraints, i.e., maintaining a distance of 1 m, by tracking them within large
areas to re-identify them in case of repetitive non-compliance and enforcing physical distancing. We
used a distributed network of multiple CCTV cameras mounted to the walls of buildings for the
detection, tracking and re-identification of non-compliant groups. Furthermore, we used multiple self-
docking autonomous robots with collision-free navigation to enforce physical distancing constraints
by sending alert messages to those persons who are not adhering to physical distancing constraints.
We conducted 28 experiments that included 15 participants in different scenarios to evaluate and
highlight the performance and significance of the present system. The presented system is capable of
re-identifying repetitive violations of physical distancing constraints by a non-compliant group, with
high accuracy in terms of detection, tracking and localization through a set of coordinated CCTV
cameras. Autonomous robots in the present system are capable of attending to non-compliant groups
in multiple regions of a large area and encouraging them to comply with the constraints.

Keywords: COVID-19; pandemics; physical distancing; disease prevention; contact tracking; enforce-
ment; assistive robotics; autonomous systems; human–robot interaction (HRI)

1. Introduction

In the past few years, infectious diseases have been found to be very challenging and
difficult to control due to their transferring effect, resulting in a large impact on society.
They can spread at different geographical levels due to their ability of human-to-human
transmission. According to the national public health institute named the Centers for
Disease Control and Prevention (CDC) in the United States, an infectious disease can be
declared as a ‘pandemic’ when a sudden and rapid increase in its cases is seen in the global
population. In recent history, various pandemics have been reported. In a report created by
Nicholas [1], the history of pandemics over a period of time has been explained with their
impact in terms of death toll, which is summarized in Table 1.
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Table 1. The history of pandemics with respect to the death toll.

Disease Name Time Period Death Toll

Spanish Flu 1918–1919 40 Million–50 Million
Hong Kong Flu 1968–1970 1 Million

HIV/AIDS 1981–Present 25 Million–35 Million
SARS 2002–2003 770

Swine Flu 2009–2010 200,000
Ebola 2014–2016 11,000

COVID-19 2019–Present 2.04 Million

Based on the history of pandemics presented in this study [1], it is likely that more
such pandemics will arise in the future. Therefore, nations should be prepared for them.
It is imperative to understand the reasons behind the transmission of such infectious
diseases. A large number of epidemiological studies have pointed out that the main path
of the spread of such infectious diseases has been human-to-human transmission [2]. This
indicates that infectious diseases spread when people maintain direct physical contact with
each other. Physical distancing has always been recommended as the most effective safety
measure to avoid the spread of such pandemics [3] and is currently being implemented
by governments worldwide to slow the spread of the COVID-19 virus [4]. Despite the
implementation of such measures, the span of the virus spread has been increasing with
time due to the violation of set constraints because of lack of knowledge and carelessness.
In this case, continuous monitoring is required to enforce the constraints to control the
spread of the virus. It is difficult to manually monitor all areas; therefore, intelligent and
autonomous systems are required for efficient and persistent monitoring of set constraints
such as the use of facemasks, physical distancing, body temperature checks, etc. Moreover,
modern interactive technology platforms such as robots hold potential to be used for the
enforcement of those constraints through social interaction with people. Such approaches
can be beneficial in reducing human-to-human interaction to potentially curb the spread
of the virus. Robotics has a huge potential to play a vital role in the current fight against
the COVID-19 virus [5]. Robots can be deployed for various purposes to help curb the
spread of the virus. For instance, they can be utilized for mobile surveillance, disinfection,
delivery, interactive awareness systems, companion robots, vital signs detection, etc. In
past research, a wide range of multi-agent robot systems (MARS) based on heterogeneous
distributed sensor networks have been proposed for effective and efficient surveillance in
multiple scenarios [6,7]. MARS is a system that comprises fixed agents, i.e., sensors fixed at
some location, and single or multiple mobile agents, i.e., robots.

During the current pandemic situation, performing operational tasks, such as surveil-
lance, digital interaction, help desks and medical service provision, using robots has
gained huge popularity [8]. Fan et al. [9] presented an autonomous quadruped robot to
ensure physical distancing to combat COVID-19. The designed robot was supposed to
roam around the place for persistent surveillance to detect violations of physical distanc-
ing constraints. In case of any violation, the robot informed the people through verbal
cues to maintain a safe distance. Moreover, social robots are playing a vital role in com-
bating COVID-19 by minimizing person-to-person interactions, especially in healthcare
services [10–12]. Recently, Sathyamoorthy et al. [13] presented a robot system to monitor
physical distancing constraints in crowds and enforce them through robots by displaying
alert messages on the robot’s mounted display. In the case of persistent non-compliance by
a group of persons wandering from one place to another, the robot pursued that group and
kept displaying the message. One of the limitations of this system is that while pursuing
that group, there is a high possibility that the robot would not be able to attend to other
non-compliant groups. Moreover, this study is missing the mechanism to track groups
that remained unattended by the robot. Furthermore, there was no long-term tracking of
non-compliant groups to further monitor their behavior after receiving the alert message
from the robot. Consequently, it was not possible to track repetitive violations using this
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system. Due to these issues, this system may not be able to effectively enforce physical
distancing constraints in large areas such as shopping malls, airports, etc. In this regard, we
present an autonomous and interactive monitoring system with large-scale area coverage
for effective and efficient monitoring to combat COVID-19 and future pandemics.

In the present study, we present a cooperative MARS for monitoring and enforcing
physical distancing constraints in large areas through human–robot interaction (HRI) to
combat COVID-19 and future pandemics. In the present study, a group of persons who
violate physical distancing constraints is referred to as a non-compliant group. The aims
of the proposed system are as follows: (1) persistent monitoring of large indoor areas
using multiple CCTV cameras to detect the violation of physical distancing constraints;
(2) interactive encouragement of non-compliant groups to adhere to physical distancing
constraints by giving them an alert message through speech-based HRI; (3) long-term
tracking and re-identification of non-compliant groups through a multi-camera system
to alert them on highest priority and report to the control room in the case of repetitive
violations of physical distancing constraints. As shown in Figure 1, the design of the
proposed system is based on two types of agents: (1) fixed agents, i.e., calibrated CCTV
cameras, and (2) mobile agents, i.e., self-docking autonomous robots with collision-free
navigation. Both agents work cooperatively by mutually sharing useful information
between each other.
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Figure 1. Multi-agent robot system.

In the present system, the persistent monitoring of physical distancing constraints
is performed based on the visual information received from the distributed network of
multiple CCTV cameras mounted within the building. The team of robots stay at their
docking stations until a violation of physical distancing constraints is detected by the
cameras. In the case of a detected violation, the system shares the location of the non-
compliant group with the robot that is located closest to the area of the building where the
violation was detected. After receiving the location, the robot navigates to the given location
to convey an alert message to the target non-compliant group. The system architecture
with a detailed description of each functional module is presented in Section 3. The main
contributions of the present study are summarized as follows:

1. We propose an intelligent and cooperative MARS for the efficient monitoring of phys-
ical distancing constraints and interactively enforcing them through HRI to combat
COVID-19 and future pandemics. To the best of our knowledge, we are the first to pro-
pose such a monitoring system, which is based on a distributed network of multiple
cameras and a multi-robot system (MRS) to combat ongoing and future pandemics.

2. We develop a pipeline for group re-identification through person re-identification
using a deep learning-based technique to track and re-identify non-compliant groups
through the multi-camera system. This method ensures the long-term tracking of
non-compliant groups that are wandering from one place to another in large areas,
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attending to them at highest priority through a robot and notifying the security control
room in a timely manner in case of repetitive violations.

3. Based on our proposed system, we ensured that all non-compliant groups were inclu-
sively tracked and received the alert message about a breach of physical distancing
constraints through HRI.

The rest of the paper is organized as follows. Section 2 provides an overview of
the existing work related to multi-agent systems (MAS) with regard to surveillance, the
effectiveness of physical distancing and the potential of robotics to combat COVID-19
and future pandemics. The proposed system with detailed descriptions of its modules
is presented in Section 3. Evaluation metrics and experimental results are described in
Section 4. Finally, we conclude our proposed system in Section 5 with a discussion about
limitations and future directions.

2. Related Work

In this section, we review the previous literature on robotic systems specifically
categorized into MAS for surveillance, the potential of robotics to combat COVID-19, the
effectiveness of physical distancing and emerging technologies to monitor physical distancing.

2.1. Multi-Agent Systems for Intelligent Surveillance

Intelligent surveillance includes various tasks such as detection, tracking and under-
standing different behaviors in various environments [14]. MAS has gained huge attention
in recent years due to its broad range of applications such as cooperative surveillance,
distributed tracking of objects and intrusion detection [15–17]. Various advancements and
methods have been proposed and implemented based on MAS to increase efficiency in
surveillance. Milella et al. [6] implemented a MARS that is based on fixed and mobile
agents for the active surveillance of places such as museums, airports, warehouses, etc.
The system was able to detect the intrusion of persons within forbidden areas and send the
location to the mobile agent, i.e., a robot, for further exploration of that area. Furthermore,
Pennisi et al. [7] proposed an MRS for surveillance through a network of distributed sen-
sors to detect a person through fixed sensors and send a robot to the location of the detected
person for inspection and stopping the target person in case of any anomaly by blocking
their way. Du et al. [18] presented a strategy for MAS-based surveillance to track an evader
through cooperation between mobile agents. In another work, Mostafa et al. [19] proposed
an autonomy model based on fuzzy logic to manage the autonomy of a MAS in complex
environments. The aim of this model was to assist the autonomy management of the agents
by helping them in making competent autonomous decisions. The application of this
model was presented in the monitoring of movements of elderly people. In another work,
Kariotoglou et al. [20] developed a framework based on stochastic reachability and hierar-
chical task allocation to solve the dimensionality problem faced by state-space gridding
solutions based on dynamic programming for Markov decision processes in autonomous
surveillance with a collection of pan-tilt cameras. The authors conducted the experiment
with the proposed framework on a setup targeting industrial pan-tilt cameras and mobile
robots. A MAS that includes robot as mobile agents is referred to as a MARS. During
persistent surveillance through MARS, robots sequentially visit regions of interest (ROIs)
based on applied constraints known as temporal logic (TL). Aksaray et al. [21] presented
a method to minimize the time between visits of robots to ROIs by sharing the times of
visits among them while considering their TLs to enhance efficiency and reduce redun-
dant visits to those regions. Wu et al. [22] proposed an optimal method to sense robots
based on less energy consumption for efficiently adjusting the position of mobile relay for
maintaining the quality of the wireless link while the robots are moving. In another work,
Jahn et al. [23] proposed a distributed technique for a team of robots to plan deformation
while they are moving around a region to create a fence for perimeter surveillance and
need to take this fence to another region. Scherer et al. [24] introduced multiple heuristics
with various planning perspectives for convex-grid graphs and combined them with the
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tree traversal approach for better communication in the MRS for persistent surveillance
with connectivity constraints.

2.2. Role of Robotics during COVID-19

The outbreak of the COVID-19 pandemic has negatively impacted our society. This
situation is inevitable and requires modern solutions. COVID-19 has interrupted our
usual face-to-face interactions and frustrated us because of the possibility of spreading
the virus through physical interaction. The fourth industrial revolution, known as Indus-
try 4.0, should fulfil the requirements to effectively control and manage the COVID-19
pandemic [25]. The presence of intelligent robots surged in various fields, e.g., autonomous
driving, medical, rehabilitation, education, companionship, surveillance, information
guide, telepresence, etc., to minimize the potential spread of this virus [26]. Robot-assisted
surgeries are also being taken into positive consideration in surgical environments [8,27].
Furthermore, Mahdi Tavakoli et al. [28] presented an analysis of the robotics and au-
tonomous systems for healthcare during COVID-19. Based on their analysis, they rec-
ommended immediate investment in robotics technology as a good step toward making
healthcare services safe for both patients and healthcare workers. Moreover, the ongoing
pandemic is affecting the social well-being of people and triggering feelings of loneliness
in them. Social and companion robots have been considered as a potential solution to
mitigate these feelings of loneliness through continuous social interaction with less fear of
spreading the infectious disease [29–33]. Rovenso recently developed a UV disinfectant
robot targeting offices and commercial spaces [34]. Moreover, there is another autonomous
robot named AIMBOT developed by UBTECH Robotics that performs disinfection tasks at
Shenzhen Third Hospital [35].

2.3. Effectiveness of Physical Distancing

Multiple works have simulated the spread of the virus [36–38] to show the effective-
ness of different social distancing measures. The ratio between the total cases of infections
during the entire course of the outbreak is termed as the attack rate [39]. According to
Mao [36], the attack rate can be decreased up to 82% if three consecutive days are elim-
inated from working days of a workplace setting. Within the same setting, the attack
rate can be reduced up to 39.22% [37] or 11–20% by maintaining a physical distance of
6 feet between the individuals at the workplace depending upon the frequency of contact
between them [38].

2.4. Emerging Technologies to Monitor Physical Distancing

Recently, different methods have been proposed to monitor the physical distancing
between people. Workers in the warehouses of Amazon are monitored through CCTV
cameras to detect physical distancing breaches [40]. Other techniques are based on the use
of wearable devices [41,42]. These devices use the technologies of Bluetooth or ultra-wide
band (UWB). Moreover, different companies such as Google and Apple are developing
applications to trace the contacts of people so that alert messages can be delivered to the
users if they come in close contact with an infected person [43]. In an extensive survey
by Nguyen et al. [39], the technologies that can be used to track people to detect if they
are following social distancing rules properly are discussed. The pros and cons of these
technologies, such as WiFi, RFID, Bluetooth, artificial intelligence and computer vision, are
also discussed in this comprehensive survey.

3. Proposed System

In this section, we first describe the hardware architecture used to build the pro-
posed system. Then, we present our method with a detailed description about each
functional module.
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3.1. Hardware Architecture

We developed the robot on top of the smart base named ‘EAIBOT SMART’ [44], which
is shown in Figure 2. The smart base consists of dual liDAR sensors of type YDLIDAR
G4 to map the surrounding area. One of the liDAR sensors was mounted on top while
the second was mounted beneath the smart base. Dual liDAR sensors mounted at two
different heights made the collision avoidance and mapping system more robust. Collision
avoidance was aided by a gyroscope and five ultrasonic sensors mounted in different
directions to cover the world at 360◦. We used built-in collision avoidance, mapping and
navigation in this robot base. Moreover, the smart base had a 10-h battery life, which was
long enough for it to survive for longer durations. It had a docking station as well and was
able to autonomously navigate to the docking station to automatically put itself on charge.
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We equipped our robot with a laptop on top of it to use its RGB camera, speaker and
microphone for HRI. This laptop can be replaced with a tablet or any other setup having
the sensors mentioned above for HRI. Furthermore, we set up the CCTV RGB cameras with
the resolution of 1080, mounted at heights that provide angled views of different locations
of the building so as to monitor different areas. We used a machine with the Intel i7 10th
generation CPU and an Nvidia RTX 2070 Super GPU to process video streams received
from the CCTV cameras.

3.2. Our Method

We used the Robot Operating System (ROS) [45] with the ‘kinetic’ distribution named
to build our system. The ROS is very efficient in structuring and managing robot ap-
plications. Moreover, it ensures a modular and expandable system. The overall system
architecture is shown in Figure 3.
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In this section, we describe the main components of our method to detect the violation
of physical distancing constraints and enforce them using HRI. The main components
of our method are as follows: (1) Detection, localization and tracking of the persons;
(2) Search for non-compliant groups based on the violation of physical distancing con-
straints; (3) Re-identification of the moving non-compliant groups through a multi-camera
system; (4) Prioritization of the non-compliant groups; (5) Delivery of alert message to
non-compliant groups through speech-based HRI.

3.2.1. Monitoring Physical Distancing Constraints

The criterion used for detecting the violation of physical distancing constraints by
non-compliant groups in our method was to detect the physical distance of less than 1 m.
All CCTV cameras continuously monitored the environment within their respective fields
of view (FoV) to detect non-compliant groups. The main components of this functional
module are as follows.

Person Detection and Tracking

Object detection [46,47], localization and tracking have been active areas of research.
For person detection and tracking, we used a pipeline based on the tracking algorithm
proposed in [48] and the object detection method named ‘You Only Look Once (YOLO)’
version four, i.e., YOLOv4 [49]. According to the results presented in [49], it outperformed
state-of-the-art object detection methods such as ‘EfficientDet’ [46] and its own previous
version named ‘YOLOv3’ [47] in terms of the average precision and frames per second (FPS)
speed. The experimental results showed that the pipeline achieved very good performance
in terms of accuracy and speed. Input to this pipeline was RGB images received from the
CCTV camera and output was the set of bounding boxes, i.e., top left corner coordinates,
width, and height, for the detected persons in the given image. It also generated a unique
identity for each detected person that remains same while the person remains in the current
FoV of the camera. In order to consume this pipeline for video streams from each CCTV
camera within the multi-camera system for monitoring, we used multi-threading and
asynchronous calls. Each video stream was handled in an independent thread.

Localization of Detected Persons

All CCTV cameras were mounted in such a way that they provided angled views
of the ground plane. In order to accurately calculate the distance between the persons,
we preferred the top view of the ground plane, which represents the exact location of
persons’ feet on ground. For this purpose, we converted the angled view to the top view
by applying the homography matrix to the four reference points on the angled view from
CCTV. These reference points were manually selected during camera calibration so that
they could cover the maximum area of the FoV of the CCTV camera, as shown in Figure 4.
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The conversions of these points were performed by using Equation (1).[
xtopView
ytopView

]
= H ∗

[
xangledView
yangledView

]
(1)

In Equation (1), xangledView and yangledView indicate the pixel coordinates of one of the
four reference points in the angled image view from the CCTV; xtopView and ytopView represent
the same point after conversion to top view; and ‘H’ represents the scaled 3× 3 homography
translation-matrix. To transform the angled view to the top view of any detected person,
as shown in Equation (2), we used the middle point of the bottom corners’ points of the
bounding box yielded by the detection and tracking pipeline (Section ‘Person Detection
and Tracking’) against that detected person. This middle point represented the feet of the
detected person. [

xP(k)
topView, yP(k)

topView

]
= H ∗

[
xP(k)

angledView, xP(k)
angledView

]
(2)

where
[

xP(k)
angledView, yP(k)

angledView

]
represents the pixel coordinates of the feet of the detected per-

son P(k) with a unique ID ‘k’ in the angled image view from the CCTV, and
[

xP(k)
topView, yP(k)

topView

]
represents the same point after conversion into top view.

Distance Estimation and Search for Non-Compliant Groups

After transforming the pixel coordinates of the detected persons into top view, we
estimated the distance between each person. Here, we treated each transformed position
as a node. The distance between two nodes was calculated using the formula of Euclidean
distance. The pair-wise Euclidean distances between multiple persons are shown in Table 2.

Table 2. Euclidean distances between persons.

Pk P1 P2 P3

P1 0 1 2

P2 1 0 1

P3 2 1 0

Then, a truth table was created based on this correlation matrix of Euclidean distances.
Any connection or Euclidean distance less than one meter between the two nodes was
denoted as True (Table 3).

Table 3. Truth table based on the correlation matrix.

Pk P1 P2 P3

P1 1 1 0

P2 1 1 1

P3 0 1 1

A modified depth-first search algorithm [50,51] was used to find all paths between
the nodes in the environment, with no repeated nodes. In an environment with only one
path, the algorithm can find this path in ‘O(V + E)’ time, where ‘V’ and ‘E’ represent the
number of vertices and edges in the graph, respectively. However, there is a possibility of
a very large number of paths in a graph, for instance, ‘O(!n)’ in a graph of order ‘n’. In
order to deal with this problem, the search on each path was terminated when it reached
the threshold of group size ‘xc’, where ‘c’ represents the number of nodes, i.e., persons, in
the group. In our case, we considered ‘xc = 10’ as a threshold value to stop searching. For
each returned path, the average position of all the nodes in a group was considered as the
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position of that group in the map. This information about the position of a non-compliant
group was used to navigate the robot. Representation of the list of non-compliant groups
of detected persons is shown in Equation (3).

G = {Gl | G = Jl, Pk, . . . . . . , Pc, tlK} (3)

where ‘l’ is the unique identity assigned to the group ‘Gl’, ‘k’ is the unique identity of the
person ‘Pk’, ‘c’ is the total number of nodes and ‘tl’ is the duration of non-compliance by the
lth non-compliant group ‘Gl’. ‘tl’ was computed by the tracking of non-compliant groups
based on unique identities given to the tracked persons.

3.2.2. Re-Identification of Non-Compliant Groups

This module of the system ensured the persistent monitoring and tracking of the
non-compliant groups that were moving within the environment through a multi-camera
setup. It was performed using the motion tracking and the re-identification modules based
on the information communication between multiple CCTV cameras through the server.
Re-identification was performed in parallel to the detection, tracking and localization of
the non-compliant groups, as shown in Figure 3. The duration of non-compliance (tl) by a
moving non-compliant group kept incrementing until that group was re-identified while
again violating the physical distancing constraints. The flow diagram in Figure 5 shows
the overall process of group re-identification.
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Motion Tracking

In the process of the motion tracking of each non-compliant group, we first se-
lected bounding boxes based on the identities of the detected persons belonging to a
non-compliant group, yielded by the section ‘Distance Estimation and Search for Non-
Compliant Groups’. After selecting the bounding boxes, we found the center position of the
non-compliant group in an image received from the CCTV camera by taking the average of
the pixel coordinates representing the top leftmost and bottom rightmost corners among
all corners of the bounding boxes selected in the previous step. We repeated the previous
two steps with the skip of five frames in the video stream to find the position of that group
in the next frame. After finding the positions of the group in two different frames, we
calculated the Euclidean distance (Equation (3)) between pixel coordinates at both positions
of the group. It was considered as a change in position if the calculated distance reached a
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set threshold value. We divided the FoV of the CCTV camera into boundary regions, which
is shown in Figure 6.
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If the new position of the moving non-compliant group was located within the bound-
ary regions, images of the persons of that group were extracted based on the bounding
boxes yielded by the person detection pipeline, which is discussed in the section ‘Person
Detection and Tracking’. Later, these images were stored in the database to re-identify that
non-compliant group in the case of being detected through other CCTV cameras while
again violating the physical distancing constraints. Information kept in the name of each
stored image of a person was person identity and group identity as ‘Plk’.

Re-Identification

We developed a pipeline for group re-identification based on the existing algorithm
for person re-identification. In order to perform the re-identification of non-compliant
groups, we used a lightweight and state-of-the-art person re-identification deep learning
model termed as Omni-Scale Network (OSNet) [52]. We used a pre-trained model, which
was trained on six widely used person re-identification image datasets: Market1501 [53],
CUHK03 [54], MSMT17 [55], DukeMTMC-reID (Duke) [56,57], GRID [58] and VIPeR [59].
In this person re-identification technique, the database of existing images of the persons,
from which the model has to re-identify the target person, is called ‘Gallery’, and the
image of the target person is called the ‘Query’ image. For implementation, we used a
library for deep learning person re-identification named Torchreid [60], which is based on
a well-known machine learning library named PyTorch.

Group re-identification was performed whenever a non-compliant group was detected
through any CCTV camera to re-identify if it was previously detected by another camera
while violating the physical distancing constraints. We cropped and extracted images
of the persons in non-compliant groups detected by the person detection and tracking
pipeline (Section ‘Person Detection and Tracking’) through a current CCTV camera for
using them as query images in the re-identification module. The Gallery was based on the
images of the persons present in moving non-compliant groups, which were tracked and
extracted by the motion tracking module (Section ‘Motion Tracking’) We used the term
re-identification score ‘Sl’ to determine if the target non-compliant group was re-identified,
where ‘l’ represents the unique identity of that group. It was based on how many persons
were re-identified from the group based on the query images. ‘Sl = 1’ meant that one person
from the query images was re-identified. The target non-compliant group was considered
as re-identified in case of ‘Sl ≥ 2’, which means that at least two persons were re-identified
from query images. The steps included in the pipeline developed for performing group
re-identification are shown in Algorithm 1.
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Algorithm 1 Re-identification of non-compliant group

Input: [Plk, . . . . . . , Pln] = Extracted images of persons in target non-compliant group as
Output: Re-identification Status (True or False), [IDPlk, . . . . . . , IDPln] = List of identities of
re-identified persons as IDPi
Steps:
1: OSNet← Pi, D

2: [Plk, . . . . . . , Pln]← OSNet
3: Compute Sl
4: If Sl ≥ 2 then return True, IDPi
5: Else return False, IDPi

Where ‘l’ represents the identity of the group, ‘k’ represents the identity of the person
and ‘D’ represents the Gallery database of the persons belonging to the moving non-
compliant groups. Whenever a non-compliant group was re-identified, the corresponding
identities of the persons from that group were updated in the database to keep track
of them.

3.2.3. Prioritization of Non-Compliant Groups

Prioritization refers to which non-compliant group should be addressed first by the
robot. Only those non-compliant groups were considered in this step who were locked at a
location and not moving, which was decided based on the section ‘Motion Tracking’. It was
performed based on two factors, namely, the size of the non-compliant group (xc) and the
duration of non-compliance (tl). Prioritization was performed in a hierarchical way based
on these two factors. ‘tl’ was considered first while prioritizing the non-compliant groups
because the continuous violation of physical distancing constraints over a longer period
can be more dangerous. ‘tl’ was divided into different ranges with a constant difference. It
could be ‘0 min ≤ tl ≤ 5 min’, ‘5 min ≤ tl ≤ 10 min’, etc. The non-compliant groups within
the higher range of ‘tl’ were given high prioritization based on ‘xc’. The group with a
higher value of ‘xc’ was given higher priority. On top of these two factors, a non-compliant
group that was re-identified while again violating physical distancing constraints was
given highest priority due to its continuity in violation.

3.2.4. Enforcement of Physical Distancing Constraints

After the prioritization of locked non-compliant groups, a prioritized list of locations
of these groups was transmitted to the social robot for sending it to these locations one
by one and giving alert messages to these non-compliant groups through speech-based
HRI. The robot received an updated list of locations of non-compliant groups after a fixed
interval of time (i.e., 5 s) after every search for non-compliant groups. Once the robot
arrived in the vicinity of the location of a group, it played an audio message to alert the
persons in the group about violation and encourage them to maintain a physical distance
of at least one meter. Moreover, the robot explained to them the reason that they were
approached by it was because they were not abiding by the rule of maintaining a safe
physical distance.

4. Experimental Results

In this section, we explain the experimental setup and the metrics used to evaluate
the proposed system and provide an analysis of the results obtained during experiments.
We tested our system in the main building of our university (Norwegian University of
Science and Technology (NTNU)) with a total of 15 participants divided into four different
groups. All groups were given demonstrations of the test scenarios, which are discussed in
Sections 4.1 and 4.2 Three cameras were mounted in different locations of the building to
monitor three different areas. Overall, 28 experiments were conducted to test the proposed
system. The number of violations detected and the successful enforcements performed
under different configurations are shown in Table 4.
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Table 4. Overall performance of proposed system with respect to different configurations.

Configuration Total Experiments
(Violations Made) Number of Violations Detected Number of

Enforcements

Without Group
Re-identification

19
Single Group at

a Time
Multiple Groups

at a Time 17

11 6

With Group
Re-identification 9 8 8

In overall experiments, the system was unable to properly detect the violation on
three occasions. In two of them, the reason was that one individual was fully occluded
by the other person standing in front them in-line with the camera’s angled view in a
two-person group. The third system failure was due to the failure in group re-identification,
which occurred due to a large variation in lighting conditions. However, the violation
was detected, and enforcement was performed precisely. Details of these experiments and
metrics used to evaluate the proposed system and their results are discussed as follows:

4.1. Accuracy of Non-Compliant Group Localization

This evaluation metric was used to measure the accuracy of localization based on
comparison between the ground truth location of the non-compliant group and the loca-
tion estimated using our method. Prior to the experiments, ground truth locations were
manually marked on the 2D map of the ground plane based on the Cartesian coordinate
system used by the robot for navigation and localization. Participants were planted at
those ground truth locations in order to test the accuracy of our system with respect to the
localization of non-compliant groups. The plot of the ground truths as green circles and
estimated locations of non-compliant groups as orange circles is shown in Figure 7.
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The above plot shows the non-compliant groups being localized with respect to the
Cartesian coordinate system fixed to the robot. The maximum error observed between
the ground truth and the estimated location was 0.24 m and the average error observed
between them was approximately equal to 0.12 m. The detection and localization of the
non-compliant groups during two different experiments performed with the proposed
system and navigation of the robot to these groups are shown in Figure 8.
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4.2. Accuracy of Re-Identification of Non-Compliant Groups

We designed multiple scenarios in order to test the accuracy of the proposed system in
the re-identification of non-compliant groups and the enforcement of physical distancing
constraints. As shown in Table 4, eight experiments were based on group re-identification.
Groups of participants were asked to violate physical distancing constraints within the
FoV of one of the three mounted CCTV cameras and then walk to the other side and
perform the same action within the FoV of another CCTV camera. Here, the purpose was to
re-identify the non-compliant groups while repeating the violation of physical distancing
constraints. We stored the video streams captured by all the mounted CCTV cameras
while conducting the experiments for creating our own dataset and testing the overall
accuracy of the re-identification deep learning model with respect to the environmental
conditions in our designed test scenarios. We used YOLOv4 [49] to crop the images of the
persons from all video frames and then annotated each person with a personal as well as
camera identity. In this way, we created our own dataset, which consisted of 7687 images
of 15 different persons captured through three different CCTV cameras. After annotation
of the dataset, we divided it into two categories: Gallery and Query images. Ten percent of
the total images were categorized as Query images and rest were used as Gallery images.
The results of the re-identification module based on the deep learning model on our created
dataset are shown in Table 5.

Table 5. Accuracy of re-identification module on our dataset.

R1 (%) R5 (%) R10 (%) mAP (%)

99.8 100 100 95.1
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Figure 9 shows the enforcement of physical distancing constraints based on the re-
identification of a non-compliant group, and Figure 10 presents some of the results that
were generated while testing group re-identification.
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not deployed by the robot. The re-identification of the non-compliant group through the 
robot would increase the overall accuracy of the system with regard to the enforcement of 
physical distancing constraints. Due to COVID-19 restrictions, we could only test the sys-
tem in controlled settings with a low crowd density. Moreover, due to the same reason, 
we could not evaluate the social impact of our system. 

In the future, testing our system in environments with high crowd densities is re-
quired to make it more robust. Furthermore, usability tests with security officials need to 
be conducted to demonstrate the effectiveness of the proposed system. In future studies, 
we will develop a mechanism based on our MARS to predict the future location from the 
past motion trajectory of a non-compliant group that is wandering within the environ-
ment. This can help to attend to non-compliant groups that are wandering within the area 
in a timely manner. 

Figure 10. Images of persons re-identified by re-identification module based on images stored in database (Gallery) and
given query images.
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5. Conclusions, Limitations and Future Work

A novel system for monitoring and enforcing physical distancing constraints in large
areas is proposed in this paper, which consists of multiple CCTV cameras and an MRS.
Monitoring was conducted using a multi-camera system to detect and track groups of
persons who did not comply with physical distancing constraints. We proposed a pipeline
for group re-identification to detect repetitive violations of physical distancing constraints
by a non-compliant group of individuals. We used an autonomous, collision-free mobile
robot for the enforcement of physical distancing constraints by attending to non-compliant
groups through HRI and encouraging them to comply with the set constraints. The
effectiveness and accuracy of our system were demonstrated in terms of the detection
and localization of non-compliant groups, group re-identification in the case of repetitive
non-compliance and the enforcement of physical distancing constraints through HRI. We
conclude that the monitoring of physical distancing constraints with group re-identification
is effective in the long-term tracking of non-compliant groups to detect repetitive violations
and notify the security control room in a timely manner to stop them. We also considered
the ethical concerns in our system through efficient and secure data gathering and data
handling mechanisms.

A limitation of our system is that the re-identification of the non-compliant group is
not deployed by the robot. The re-identification of the non-compliant group through the
robot would increase the overall accuracy of the system with regard to the enforcement
of physical distancing constraints. Due to COVID-19 restrictions, we could only test the
system in controlled settings with a low crowd density. Moreover, due to the same reason,
we could not evaluate the social impact of our system.

In the future, testing our system in environments with high crowd densities is required
to make it more robust. Furthermore, usability tests with security officials need to be
conducted to demonstrate the effectiveness of the proposed system. In future studies, we
will develop a mechanism based on our MARS to predict the future location from the past
motion trajectory of a non-compliant group that is wandering within the environment.
This can help to attend to non-compliant groups that are wandering within the area in a
timely manner.
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33. Joshi, S.; Collins, S.; Kamino, W.; Gomez, R.; Šabanović, S. Social Robots for Socio-Physical Distancing. In Proceedings of the
International Conference on Social Robotics, Golden, CO, USA, 14–18 November 2020; pp. 440–452.

http://doi.org/10.3182/20100906-3-IT-2019.00005
http://doi.org/10.1038/s42256-020-00238-2
http://doi.org/10.3390/ijerph17113819
http://doi.org/10.1016/j.jbi.2020.103483
http://doi.org/10.1007/s12555-010-0501-4
http://doi.org/10.1137/060657005
http://doi.org/10.1016/j.inffus.2009.09.002
http://doi.org/10.1016/j.automatica.2017.06.022
http://doi.org/10.1016/j.ijmedinf.2018.02.001
http://www.ncbi.nlm.nih.gov/pubmed/29500017
http://doi.org/10.1115/1.4028589
http://doi.org/10.1109/LWC.2016.2601612
http://doi.org/10.1109/ACCESS.2020.2967650
http://doi.org/10.1016/j.dsx.2020.04.032
http://www.ncbi.nlm.nih.gov/pubmed/32344370
http://doi.org/10.1080/14616688.2020.1762118
http://doi.org/10.3802/jgo.2020.31.e59
http://www.ncbi.nlm.nih.gov/pubmed/32242340
http://doi.org/10.1002/aisy.202000071
http://doi.org/10.1108/JOSM-05-2020-0148
http://doi.org/10.3389/fpsyg.2020.02245
http://doi.org/10.1108/JOSM-05-2020-0145


Appl. Sci. 2021, 11, 7200 17 of 17

34. Ackerman, E. Swiss Startup Developing UV Disinfection Robot for Offices and Commercial Spaces. IEEE Spectrum 2020. Available
online: https://ieeeusa.org/swiss-startup-developing-uv-disinfection-robot/ (accessed on 5 December 2020).

35. Reuter, J.Y.a.T. Aerial Spray and Disinfection. Available online: https://www.weforum.org/agenda/2020/03/three-ways-china-
is-using-drones-to-fight-coronavirus/ (accessed on 5 December 2020).

36. Mao, L. Agent-based simulation for weekend-extension strategies to mitigate influenza outbreaks. BMC Public Health 2011, 11,
522. [CrossRef]

37. Kumar, S.; Grefenstette, J.J.; Galloway, D.; Albert, S.M.; Burke, D.S. Policies to reduce influenza in the workplace: Impact
assessments using an agent-based model. Am. J. Public Health 2013, 103, 1406–1411. [CrossRef] [PubMed]

38. Timpka, T.; Eriksson, H.; Holm, E.; Strömgren, M.; Ekberg, J.; Spreco, A.; Dahlström, Ö. Relevance of workplace social mixing
during influenza pandemics: An experimental modelling study of workplace cultures. Epidemiol. Infect. 2016, 144, 2031–2042.
[CrossRef] [PubMed]

39. Nguyen, C.T.; Saputra, Y.M.; Van Huynh, N.; Nguyen, N.-T.; Khoa, T.V.; Tuan, B.M.; Nguyen, D.N.; Hoang, D.T.; Vu, T.X.;
Dutkiewicz, E. Enabling and Emerging Technologies for Social Distancing: A Comprehensive Survey. arXiv 2020, arXiv:2005.02816.

40. Palmer, A. Amazon Is Rolling out Cameras That Can Detect If Warehouse Workers are Following Social Distancing Rules. Available
online: https://www.cnbc.com/2020/06/16/amazon-using-cameras-to-enforce-social-distancing-rules-at-warehouses.html
(accessed on 14 December 2020).

41. Spacer, S. Keep People Safe and Workplaces Open. Available online: https://www.safespacer.net/ (accessed on 14 December 2020).
42. Waltz, E. Back to Work: Wearables Track Social Distancing and Sick Employees in the Workplace. IEEE Spectrum 2020. Available

online: https://spectrum.ieee.org/wearables-track-social-distancing-sick-employees-workplace (accessed on 3 July 2020).
43. Exposure Notifications: Using Technology to Help Public Health Authorities Fight COVID-19. Available online: https://www.

google.com/covid19/exposurenotifications/ (accessed on 14 December 2020).
44. Technology, E. EAIBOT SMART. Available online: http://www.eaibot.com/product/Smart (accessed on 10 June 2020).
45. Robotics, O. Robot Operating System (ROS). Available online: https://www.ros.org/ (accessed on 9 April 2020).
46. Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, Virtual, 13 June 2020; pp. 10781–10790.
47. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
48. Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric. In Proceedings of the 2017

IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3645–3649.
49. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934.
50. Developers, N. All Simple Paths—NetworkX 1.9.1 Documentation. Available online: https://networkx.org/documentation/

networkx-1.9.1/reference/generated/networkx.algorithms.simple_paths.all_simple_paths.html#r277 (accessed on 14 December 2020).
51. Sedgewick, R. Algorithms in c, Part 5: Graph Algorithms; Pearson Education: London, UK, 2001.
52. Zhou, K.; Yang, Y.; Cavallaro, A.; Xiang, T. Omni-scale feature learning for person re-identification. In Proceedings of the IEEE

International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 3702–3712.
53. Zheng, L.; Shen, L.; Tian, L.; Wang, S.; Wang, J.; Tian, Q. Scalable person re-identification: A benchmark. In Proceedings of the

IEEE International Conference on Computer Vision, Washington, DC, USA, 7–13 December; pp. 1116–1124.
54. Li, W.; Zhao, R.; Xiao, T.; Wang, X. Deepreid: Deep filter pairing neural network for person re-identification. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 152–159.
55. Wei, L.; Zhang, S.; Gao, W.; Tian, Q. Person transfer gan to bridge domain gap for person re-identification. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 79–88.
56. Ristani, E.; Solera, F.; Zou, R.; Cucchiara, R.; Tomasi, C. Performance measures and a data set for multi-target, multi-camera

tracking. In European Conference on Computer Vision; Springer: Amsterdam, The Netherlands, 2016; pp. 17–35.
57. Zheng, Z.; Zheng, L.; Yang, Y. Unlabeled samples generated by gan improve the person re-identification baseline in vitro. In

Proceedings of the IEEE International Conference on Computer Vision, Cambridge, MA, USA, 20–23 June 1995; pp. 3754–3762.
58. Loy, C.C.; Xiang, T.; Gong, S. Multi-camera activity correlation analysis. In Proceedings of the 2009 IEEE Conference on Computer

Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1988–1995.
59. Gray, D.; Brennan, S.; Tao, H. Evaluating appearance models for recognition, reacquisition, and tracking. In Proceedings of

the IEEE International Workshop on Performance Evaluation for Tracking and Surveillance (PETS), Rio de Janeiro, Brazil,
14 October 2007; pp. 1–7.

60. Zhou, K.; Xiang, T. Torchreid: A library for deep learning person re-identification in pytorch. arXiv 2019, arXiv:1910.10093.

https://ieeeusa.org/swiss-startup-developing-uv-disinfection-robot/
https://www.weforum.org/agenda/2020/03/three-ways-china-is-using-drones-to-fight-coronavirus/
https://www.weforum.org/agenda/2020/03/three-ways-china-is-using-drones-to-fight-coronavirus/
http://doi.org/10.1186/1471-2458-11-522
http://doi.org/10.2105/AJPH.2013.301269
http://www.ncbi.nlm.nih.gov/pubmed/23763426
http://doi.org/10.1017/S0950268816000169
http://www.ncbi.nlm.nih.gov/pubmed/26847017
https://www.cnbc.com/2020/06/16/amazon-using-cameras-to-enforce-social-distancing-rules-at-warehouses.html
https://www.safespacer.net/
https://spectrum.ieee.org/wearables-track-social-distancing-sick-employees-workplace
https://www.google.com/covid19/exposurenotifications/
https://www.google.com/covid19/exposurenotifications/
http://www.eaibot.com/product/Smart
https://www.ros.org/
https://networkx.org/documentation/networkx-1.9.1/reference/generated/networkx.algorithms.simple_paths.all_simple_paths.html#r277
https://networkx.org/documentation/networkx-1.9.1/reference/generated/networkx.algorithms.simple_paths.all_simple_paths.html#r277

	Introduction 
	Related Work 
	Multi-Agent Systems for Intelligent Surveillance 
	Role of Robotics during COVID-19 
	Effectiveness of Physical Distancing 
	Emerging Technologies to Monitor Physical Distancing 

	Proposed System 
	Hardware Architecture 
	Our Method 
	Monitoring Physical Distancing Constraints 
	Re-Identification of Non-Compliant Groups 
	Prioritization of Non-Compliant Groups 
	Enforcement of Physical Distancing Constraints 


	Experimental Results 
	Accuracy of Non-Compliant Group Localization 
	Accuracy of Re-Identification of Non-Compliant Groups 

	Conclusions, Limitations and Future Work 
	References

