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Abstract: In the first days of social networking, the typical view of a community was a set of
user profiles of the same interests and likes, and this community kept enlarging by searching,
proposing, and adding new members with the same characteristics that were likely to interfere with
the existing members. Today, things have changed dramatically. Social networking platforms are not
restricted to forming similar user profiles: The vast amounts of data produced every day have given
opportunities to predict and suggest relationships, behaviors, and everyday activities like shopping,
food, traveling destinations, etc. Every day, vast data amounts are generated by the famous social
networks such as Facebook, Twitter, Instagram, and so on. For example, Facebook alone generates
4 petabytes of data per day. The analysis of such data is of high importance to many aspects like
recommendation systems, businesses, health organizations, etc. The community detection problem
received considerable attention a long time ago. Communities are represented as clusters of an entire
network. Most of the community detection techniques are based on graph structures. In this paper,
we present the recent advances of deep learning techniques for community detection. We describe
the most recent strategies presented in this field, and we provide some general discussion and some
future trends.

Keywords: deep learning; network analysis; community detection; social computing

1. Introduction

Nowadays, more than ever before, the analysis of the vast data amounts produced in
the social media is used in a variety of ways: recommendation engines, marketing, crime
detection. Examples abound: Innovative companies like Netflix and Amazon have used
predictive analytics for years as their basis to develop highly accurate recommendation
systems (like the products recommended by Amazon or the movies and TV shows sug-
gested specifically to each Netflix customer). The data collected by users as they browse
Facebook or Instagram are used to match them with a large number of companies which
offer products and services that, based on statistical models, they would probably be inter-
ested in. Facebook and Instagram maintain the biggest and most comprehensive databases
of personal information. These databases are expanding rapidly every day.

The meaningfulness and usability of the data retrieved from the social networks
highly depend on the existing relationships among the social media users. Apparently,
people that follow the same groups are likely to be suggested similar products or ser-
vices. In other words, the extraction of meaningful relationships among the billions of
Facebook or Instagram users provides high value to many applications. The community
detection paradigm mainly uses datasets that include the likes, the opinions, and the current
relationships among social media users, in order to detect underlying clusters and to
verify the accuracy of the already formed clusters within an entire network. In this regard,
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community detection can facilitate the uncovering of hidden relationships between social
network users.

Traditional methods of community detection are based on statistical inference, heuris-
tic approaches, or conventional machine learning [1]. However, despite their past pop-
ularity, these strategies are not efficient in the modern era, where the datasets are larger,
more complex, and the social relationships over the networks are becoming more complex
and much more difficult to define and extract [2–7]. In conventional machine learning,
community detection has been treated as a problem of forming, extracting, and verifying
the accuracy of clusters on large graphs. These approaches attempt to generate a network
embedding with few dimensions to reconstruct the original network. However, this type
of representation to a low dimensional space is, in a broad sense, linear [8]. The fact that
the real world networks include nonlinear structures makes the traditional strategies less
useful. In a world where the scale of networks increases and the datasets become larger and
larger, more robust and efficient techniques are required to achieve high performance [9,10].
Deep communities in a graph are connected components that can only be located after
removing nodes and edges from the rest of the graph.

In this work, we are reviewing the most recent community detection approaches,
which use deep learning strategies. The main contributions of our work are the following:

1. We describe and analyze the most prominent new strategies for community detection.
2. We organize the existing schemes in groups, depending on the technique being used.
3. We outline several points of interest based on the study of each family of community

detection papers.
4. We present some possible future trends.

At this time, we must point out that community detection on big data networks is an
ongoing field and the majority of the papers presented are quite recent. In this survey, we
have selected to present quite recent papers, the majority of which have been published
between 2019–2020. Still, one can expect more published papers on the topic. A quite
recent review [1] in 2020 briefly discusses only a few of the papers which are presented in
this survey, while only future trends are presented (there is no detailed commenting on the
presented schemes). In another survey [11], the authors introduce a new taxonomy that
divides the existing methods into two categories, namely probabilistic graphical models
and deep learning.

The remainder of this work is organized as follows: Section 2 presents the prelim-
inaries, a brief discussion on non-DL community detection schemes with emphasis on
their categorization, and some definitions which are required for this study. Section 3
presents the three categories of DL community detection and a discussion on each category.
Section 4 provides some future trends. Section 5 concludes this survey.

2. Preliminaries and Definitions Used in This Survey

It is commonly known that people’s personal networks can be quite big, and their
identification is very cumbersome. Generally, the idea to construct social networks is based
on the assumption that a society’s users will have some features in common. In this sense,
researchers have developed a number of techniques that usually start from small predefined
communities and implement some type of algorithm that (1) expands these communities,
(2) detects newly formed communities, and (not in all cases) (3) finds overlaps between
communities. For example, Figure 1 shows a network with three communities.

Let G = (V, E) be a weighted, undirected graph, where V and E are the sets of nodes
and edges, respectively. The nodes represent users, and edges represent the connections
between two users. The similarity wi,j between users i and j is the weight of the edge that
connects i and j. This value lies in the interval [0 . . . 1] and indicates how similar are their
interests in terms of the files they request through the network.

Regularly, the network nodes are also weighted: the weight of a node i indicates its
Network Connectivity Degree (NCD), i.e., how well the preferences, likes, and views of a
user are fitted to a community. The network connectivity degree is also between [0 . . . 1].
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The letters are the node names, the edge values indicate view similarities, and the node
values indicate similarity degrees. The network connectivity degree NCDi of the i user is
computed as follows:

NCDi =
∑ wi,j

n
(1)

where wi,j is the weight of any edge that connects user i with any user j that lies in the
same community, and n is the number of such edges.
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Figure 1. A network with three communities.

A community detection strategy is fed with a network structure as well as node and
edge attributes. The network structure identifies the relationships between the nodes;
specifically, the related nodes are linked and the weights over the links (edges) show the
strength or importance of a connection. The attributes include the information for nodes,
like profession, age, and groups of interest that one can find in a Facebook or Instagram
profile. Sometimes, signs are also used to indicate positive or negative relationships.
Datasets for a number of social networks, which can be used as inputs for a community
detection problem, can be found in [12–14]. The output of a community detection strategy
is a set of communities. If the strategy considers overlapping, then there are communities
that have nodes in common. Otherwise, the communities are perfectly disjoint.

Before we present the categories of DL-based community detection schemes schemes,
let us briefly describe how the non-DL community detection schemes can be grouped.
There are three basic approaches for the non-deep community detection schemes: (a) top-
down approaches (for example [15,16]), which start from the graph representing the entire
network and try to divide it into communities, (b) the bottom-up approaches that use the
local structures and try to expand them to form communities, and (c) the data-structure
based approaches that try to convert the entire network into a data structure, which is then
processed to detect communities.

The main advantage of the top-down approaches is that they can easily detect over-
lapping communities. However, when this overlapping is too high (a node is connected
to large number of links distributed to many different communities), there are very large
processing delays.

The majority of papers follow the second approach, bottom-up (for example [17,18]).
This approach starts from local structures and expands to the overall network. During this
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process, various communities are formed. The main advantage of the bottom-up approach
is the linear time complexity in most of the cases. However, strategies that belong to
these sub-categories often fail to detect very small communities, even in cases they are
well-defined. This happens because the initial local structures do not capture these small
communities from scratch, and the expansion method used fails to incorporate node-
members of a community. Finally, the data structure-based approach is based on the idea
of forming a network to some type of data structure (usually in a tree form), which is
then analyzed in a way to detect communities (examples are [9,10]. Generally, the idea of
converting a network to a data structure is an interesting one; however, this conversion
should be implemented carefully, as it may be very expensive in terms of computation
costs, especially when processing networks of millions nodes or edges. Careful parallelism
can partially solve this issue.

Some definitions required are given below:

1. Overlapping Communities: Overlapping communities are communities that have
nodes in common.

2. Normalized-Cut: A measure that computes the cut cost as a fraction of the total edge
connections to all the nodes in the graph.

3. Seed nodes: Key nodes of high influence over the network.
4. Graph embedding: A process that learns a mapping from a network to a vector space,

while preserving relevant network properties.
5. Node embedding: The process of mapping each node into a low-dimensional space,

to get insight of its similarity and network structure.
6. Random walks: Given network G(V, E), the random walk is a process used to obtain

random sequences of vertices rooted on each vertex v ∈ V. The walks are randomly
sampled starting from the neighbors of the last visited vertex.

7. Normalized Mutual Information (NMI): a measure used to evaluate network parti-
tioning performed by community detection schemes.

8. Modularity: A measure of the network structure for the strength of division of a
network into clusters or communities.

3. Deep Community Detection Strategies

Due to the variety of information, the different network topologies, which are normally
irregular, and the different node characteristics, different types of models for community
detection have been proposed. Complex modern networks are represented by graphs.
Graph clustering aims at partitioning graphs into several densely connected disjoint com-
munities [19,20]. The deep community detection strategies can be divided into three big
families: (i) AE-Based Community Detection (Auto-encoders are used), (ii) CNN/GNN-
Based Community Detection (Convolutional Neural Networks (CNNs) and their variant
Graph Neural Networks (GNNs) are used), and (iii) GAN-Based Community Detection
(Generative Adversarial Networks (GANs) are used). In the remaining of this section, we
describe the more recent, state-of-the-art papers that fall in these categories.

3.1. AE-Based Community Detection Strategies

Autoencoders (AEs) are very common in community detection because of their abil-
ity to to represent efficiently nonlinear real-world networks. The deep neural network
based auto-encoders are used to learn data codings (representations of data sets) in an
unsupervised manner. They are a tool used for dimensionality reduction. They manage to
implement a proper pre-processing of the adjacency matrix, in order to improve the spatial
proximity [21–25]. The embeddings provided have nonlinear properties and thus the auto-
encoder is suitable for mapping data points into the low-dimensional space, as required in
community detection.

In [26], a new approach to combine the models of modularity and normalized-cut
via an auto-encoder was proposed. The modularity approach aims at maximizing the
modularity measure, that is, the number of edges in the original graph divided by the
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expected number of edges in a random graph that has no specific community structure.
In the normalized-cut approach, the aim is to cut the minimum number of edges and have
the vertices of the same partition possess a high similarity and the vertices between different
partitions possess low similarity. A unified objective function is used to reconstruct the
combination matrix composed of the modularity and the Markov matrix. The auto-encoder
is used to produce a mapping to the low-dimensional space, which can reconstruct the
joint matrix.

A multi-layer auto-encoder is introduced by cascading a number of auto-encoders.
In this regard, the network is trained on a “per layer” basis. The multi-layer autoencoder
provides powerful encoding with both topological and content information, which is very
efficient for network community detection. Experiments were conducted using the NMI as
a comparison metric. The experimental results have shown that this combination indeed
improves community detection, compared to approaches that use topological or content
information alone. The computational time complexity of the proposed scheme is O(N),
which is linear to the number of graph nodes.

In [27], DeCom, a model is proposed that leverages the idea of autoencoder pipelines
used to extract overlapping communities in large-scale networks. The DeCom strategy is
composed of three phases: The first phase is the seed selection phase, where the features
of the network’s vertices are learned in a stepwise greedy approach. The auto-encoder
tries to learn the values associated with the vertices by mapping the data degree matrix
to a matrix with fewer dimensions. In the second phase, the topology is learned; the
goal here is to get multiple communities in a completely unsupervised manner, where
each community is defined by the seed. The communities are expanded from each seed
using a random walk with the seed as the starting point. Thus, each community includes
the seed and nodes closed to the seed (thus, highly influential). By multiple iterations,
the influence keeps spreading linearly, with label information, to the neighboring nodes.
In the third phase, the formed clusters are refined using modularity optimization, that is,
by finding better representations by reconstruction of the network structure. Compared
to similar works [28–31], the DeCom strategy updates the values of vertices in multiple
iterations to minimize the reconstruction error. This results in better graph coverage (% of
vertices assigned to clusters). In addition, compared to well known LPA (label propagation
algorithms) like COPRA, this reconstruction minimization error recovers the vertices which
are lost in LPAs due to not obtaining a label. The cost of initializing n vertices in an l-
layered auto-encodes is O(l(n)). The seed selection time is linear to the number of edges
z, O(z), and it takes O(n log(n)) to sort the degrees in ascending order of their influence.
The formation of k communities with n′ nodes is O(n + z) and the modularity optimization
O(k log(n′)) for modularity optimization.

Different from other AE schemes, Cavallari et al. [32] proposed ComE, a Community
Embedding framework that jointly solves community embedding, community detection,
and node embedding and suggests that community embedding is not only useful for
community-level applications such as graph visualization, but it can support community
detection and node classification. The community embedding problem is treated as a
multivariate Gaussian distribution, and it is employed to reinforce the community detection.
The Gaussian mixture formulation can not only detect the communities, but it can also
determine their embedding distributions. For a community with its embedding expressed
as a multivariate distribution in the low dimensional space, the member nodes can be forced
to scatter near the embeddings mean vector. Such nodes have similar node embedding
vectors without necessarily being directly linked. Thus, node embedding produces better
inputs for the community detection that follows. The community detection time complexity
for ComE is O(|V|+ |E|), where V, E are the node and edge numbers.

The NetRA model [33] is another network embedding strategy. Here, a generative
adversarial training process is employed as a complementary regularizer. The advantages
of this process are as follows: (1) The regularizer is helpful in detecting useful information
about the data, and (2) the selected training implementation achieves a robust discrete-
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space learning that overcomes the possible over-fitting on walks with sparse samples.
The NetRa approach includes a random walk generator and the network embedding model
with adversarially regularized auto-encoders. The random walks are sequences of nodes,
and they are sampled in random by using the neighboring nodes of the last visited vertex.
For training, after the random walks are executed, they pass through encoding layers to get
the vector representations of vertices. These vector representations are then transformed
back into n dimensions. The generator output and the encoder latent representation are
used as inputs to the discriminator to obtain the adversarial loss. Moreover, the generator,
through a training phase, transforms the Gaussian noise into the latent space, with a good
approximation to the true data. After training, the network vertex representations are
obtained by inputing the random walks to the encoder function. On a network with n
nodes and m edges, the NetRa time complexity for learning is O(n) and a computational
cost of O(n2) is added for embedding. To the best of our knowledge, a few recent works
integrate community embedding in deep learning. Node embedding methods alone may
preserve the directly connected nodes or nodes with similar embedding vectors, but, in
order to have knowledge of the community structure, a community detection scheme is
also required. This combination produces larger costs, so more work needs to be done in
this area.

Xu et al. [34] presented the Community Detection Method via Ensemble Clustering
(CDMEC). This framework combines transfer learning and a stacked auto-encoder to
produce a feature representation of complex networks in low dimension. In addition, it
aggregated multiple inputs via an ensemble clustering framework. This framework initially
uses the results produced in the basic clustering in order to construct a consistent matrix,
and then it uses the non-negative matrix factorization clustering to detect clusters resulting
from the constructed consistent matrix. The time complexity is O(k× L), where k and L are
the number of iterations and layers of the autoencoder, respectively. The main advantage
of the CDMEC is that the combination of the deep stacked autoencoder and transfer
learning can result in obtaining a low-dimensional feature representation. Compared
to strategies which are based on capturing the geometric structure of data using group
distances [35], the CDMEC scheme manages to get low-dimensional representations in
a more efficient way. Moreover, to reveal more comprehensive similarity relationships
between the nodes of a network topology, the CDMEC introduced similarity matrices
based to different functions.

The Variational Graph Autoencoder (VGAE) [36–38] is an interesting method that
captures the high-order features of a community structure. The VGAE has allowed models
to achieve state-of-the-art performance for node clustering. In [36], a dual optimization
procedure is introduced to guide the optimization process and encourage learning of
the primary objective. The main objective here is to deal with the problem of extracting
non-optimal communities, as a result of the loss optimization efforts through the stochastic
gradient descent [37]. The proposed encoder is linearized and, in this way, the learning
parameters are reduced. The time complexity of the proposed scheme is dictated by O(N2),
where N is the number of network nodes.

A number of approaches focus on reducing and sharing the trainable parameters,
in order to improve the efficiency of deep learning models. Several approaches can be men-
tioned here: Dai et al. [39] developed a method of trainable parameters reduction by sharing
these trainable parameters. This method overcomes the timing and resource limitations and
provides a good accuracy. In addition, Aich et al. [40] proposed a method for reducing the
trainable parameters by employing weight sharing over multiple scales in convolutional
networks. In a more recent but different autoencoder based approach [41], the DACDRP
(Deep Autoencoder-based Community Detection using the Reduction of trainable param-
eters by complex network Partitioning) strategy was introduced. The method was built
based on partitioning complex networks into chunks, in order to reduce the necessary
training parameters of the deep learning model. These chunks shared the same training pa-
rameters. The method ensures high connectivity among these chunks and introduces a new
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similarity constraint function that improves and the overall effectiveness. The DACDRP
strategy was implemented on different levels of partitioning: DACDRP-L0, DACDRP-L1,
and DACDRP-L2. An extra add-on of the proposed scheme is that it is fully parallelizable
and thus it guarantees higher efficiency. Both CPU and GPU devices have been used for
the implementation. Generally, for complex networks of size n, the model time complexity
is of order of n2, which is reduced by network splitting and parallelism.

The Adaptive Graph Encoder (AGE) is another filter-related graph embedding model
for community detection. Cui et al. [42] proposed a two-part model for auto-encoder
based community detection. The model consists of a Laplacian smoothing filter and an
adaptive encoder. The smoothing filter is playing the role of a low-pass filter to de-noise the
components of the feature matrix X, which have very high frequencies. The smoothness of
a graph signal x is calculated by the Rayleigh quotient over the graph Laplacian L and x.
This matrix is the input of the adaptive encoder, which is trained via a supervised method.

Table 1 summarizes the auto-encoder based techniques presented in this section,
in terms of the year of publication, the specific strategy being used for community, the over-
all time complexity whenever available, and the main experimental results found.

Table 1. Auto-encoder based community detection strategies.

Paper Year Strategy Complexity Basic Experimental Results

[26] 2018 Combines the models of modularity and
normalized-cut via an auto-encoder O(N)

Outperforms classic community detection
schemes like the Louvian [43] or CNM [44]
method or similar approaches that use only
content or topological information.

[27] 2019

Two-phased approach; (1) the auto-encoder
layered approach is used to initialize candi-
date seed nodes, (2) Refinement of the seed
nodes and clusters in the last encoder layer.

O(n log(n))
The selection of seed nodes reduces the num-
ber of iterations. The strategy scales up lin-
early produces better quality of clusters.

[32] 2017
Community Embedding framework that
jointly solves community embedding, com-
munity detection and node embedding.

O(|V|+ |E|)

Tested on real world datasets, it improves
graph visualization and outperforms other
schemes in application tasks, like community
detection and node classification.

[33] 2018 Generative adversarial training process as a
complementary regularizer O(n)

Effectiveness on a variety of tasks, includ-
ing network reconstruction, link prediction,
and multi-label classification.

[34] 2020
Combines transfer learning and a stacked
auto-encoder to produce a feature represen-
tation of complex networks in low dimension.

O(k× L)

Experiments on artificial and real networks
show that it is superior to the existing meth-
ods and has great potential in solving the
community detection problems

[36] 2020 A dual optimization procedure, which aims at
guiding the optimization process. O(N2)

The performance gain is marginal as far as
community detection is concerned, and the
number of learnable parameters, is reduced;
thus, faster convergence and training speed
are achieved.

[41] 2020
Based on partitioning complex networks and
on techniques for reduction and sharing of
trainable parameters.

Not inferred
Improves training speed and effi-
ciency, which increases in deeper level
of partitioning.

[42] 2020 A Laplacian smoothing filter combined to an
adaptive encoder. Not inferred

Experiments on four datasets have shown
that the scheme outperforms other graph em-
bedding methods considerably on node clus-
tering and link prediction tasks.

Comments on the AE Based Community Detection Schemes

After the study of the most recent AE-based community detection methods, we made
the following observations:
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1. The two kinds of information considered in community detection produce limited
and inefficient models. Auto-encoders provide a solution: The topology and node
content information can be considered as objective functions to be combined in a
linear form. However, this linearity is not certain in real world networks, and this
makes the models limited. In addition, we can produce a network representation
by combining the two types of information but, the optimization decision on the
appropriate ration of the two types of information makes the model inefficient. Finally,
the high-dimensional feature space of the input data can lead to the production of
very complex neural network architectures and can increase the number of trainable
parameters, which may reach millions. The auto-encoder is a good method to over-
come the efficiency problems of linear optimization and to combine the two types
of information.

2. Auto-encoders are the dominant method for mapping data points into the lower
dimensional spaces: The disadvantage of the network high-dimensionality is the
very large computational costs that the community detection methods suffer. Thus,
a method of converting high-dimensional graphs into a space with fewer dimensions,
in which the important information regarding the network structure and the node
features are still maintained, is required. The graphs are generally represented by
adjacency matrices, which store the node connection information but not the proximity
information for non-directly connected nodes. The dominant solution to this accuracy
problem is the auto-encoder (AE).

3. Sparsity of network samples: Network sampling techniques like random walk sam-
pling can be used to to derive vertex sequences as training datasets. However, the sam-
pled data represent only a small portion of all the vertex sequences. Alternatively, these
structures can be encoded in a continuous code space. The idea is to adaptively find
the optimal representation by adding a sparse constraint to the auto-encoder for this
purpose (sparse auto-encoders). An example is the work of Fei et al. [45], which em-
ploys a similarity matrix to reveal the indirect connections between nodes and a sparse
auto-encoder to lower the dimensions and extract the complex network structures.

4. Community Overlapping: The majority of the strategies described do not deal with
overlapped communities. This can be a subject of future concern. An example of
auto-encoder based community detection scheme is [27].

5. Complexity: The high dimensionality of the feature space of the input data normally
increases the number of trainable parameters and makes the models rather complex.
Most of the schemes achieve linear time complexity by employing division policies
over the network and/or data space to efficiently handle the large data amounts (for
examples, see [26,41]).

3.2. CNN and GNN Based Approaches

The Convolutional Neural Networks (CNNs) and their extensions, the Graph Neural
Networks (GNNs), are also used in community detection, and they are a powerful tool
used to extract the spatial localization. CNNs can only operate on regular Euclidean
structured data like images (2D grids) while their extension, GNNs, can be used in cases
where the numbers of nodes connections vary [46], and the nodes are not ordered (irregular
on non-Euclidean structured data). Thus, the latter approach seems to be more favorable
recently. The majority of CNN/GNN community detection methods are semi-supervised
or supervised. However, there are approaches that combine them with auto-encoders,
to implement unsupervised approaches ([24] is an example). In the remainder of this
subsection, we present the most recent CNN and GNN approaches to community detection.

3.2.1. CNN-Based Community Detection

The CNNs are an attractive solution for community detection because they combine
the convolution application to pooling. A pooling layer is a layer added after the convolu-
tional layer and its objective is to reduce the data dimensionality. A quite recent idea for
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CNN based models is the introduction of Markov Random Fields (MRF). MRF have been
used in other applications like image processing. A first attempt was made in [47], where
a network MRF (NetMRF) model was presented, to encode the modular properties of an
irregular network in the energy function to describe communities. The MRF was converted
to a convolutional layer, which was incorporated into CNN. The drawback of NetMRF
is that it does not consider information on nodes and requires a substantial amount of
computation for learning the model. On the contrary, the MRFasGCN [48] exploits both
network topology and node semantic information in an end-to-end deep network archi-
tecture. The approach is based on adding an MRF model as a new convolutional layer:
the MRF model and its inference is first transformed to a convolutional layer and then
added as the third (and last) layer of the basic two-layer convolutional network architecture.
The third convolutional layer refines the result by performing the MRF. The final output is
obtained by subtracting the refined result from first two layers. The total computational
time complexity for all the layers is O(emhk2), where e, m, and k are the numbers of edges,
attributes, and communities, respectively, while h is the number of hidden units of the
first layer. The above methods are semi-supervised. He et al. [49] extended the idea of
combining Markov Random Fields (MRF) with CCN [48] and developed an approach for
unsupervised community detection, by adding an auto-encoder. The MRFasGCN is cast
as an encoder and the node community membership is found in the hidden layer of the
encoder. A dual decoder is used to separately reconstruct the network structures and node
attributes in an unsupervised fashion to obtain reliable community detection.

Two new approaches can be found in [50,51]. Sperli’s approach [50] is based on deep
learning approaches and on the topological properties of social networks. Specifically, it
leverages a particular CNN that has been modified so that it can deal with large dimensions
and high sparsity of adjacency matrices. Two convolutional steps are used, and each one
is composed of a convolution and a max-pooling layer for topology learning of the input
network, plus a full connection layer. Because the pooling layer organizes the input in
some defined areas and stores an aggregate value for each area, the computational time
complexity is reduced. In [51], a scheme based on learning ground-truth communities for
community detection over large networks is introduced. The proposed scheme uses an
edge-to-image (E2I) model that can map the edge network structure to an image structure.
Two type of edges are defined and classified: edges of the same community and edges that
lie in different communities. This classification facilitates breadth search over the network
to get localized community images.

Generally, the CNN and its variants have been widely adopted in network embed-
ding [52–55]. For example, Xu et al. [52] re-formatted the complex network topology
adjacent matrix into an image and designed a CNN model to extract and classify relevant
features. Hanocka et al. used MeshCNN to analyze 3D shapes directly, in order to leverage
their intrinsic connections. Inspired by these works, Wu et al. [24] introduced a CNN + AE
(Convolutional Neuran Network + Autoencoder) approach to implement unsupervised
community detection. The introduction of an autoencoder guarantees of a more efficient
extraction of the spatial features of social networks and improves the community detection.
In addition, the combined model can become the basis for dynamic community detection.

3.2.2. GNN-Based Community Detection

GNNs technically combine graph mining and deep learning and thus they are capable
of modeling and detecting the underlying relationships in graph-based data. An interesting
approach of GNN based schemes employ attention networks to capture the importance of
the neighboring nodes to a target node. A representative work is the DAEGC algorithm
(Deep Attentional Embedded Graph Clustering) [56], which develops a graph attentional
autoencoder to learn latent representation and rank the importance of attributed nodes
within a neighbor. More specifically, DAEGC uses attributed graphs to explore the infor-
mation found in graphs. The framework consists of two parts: (1) an attention network
auto-encoder that captures the affect of the neighboring nodes to a specific (target) node
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and, in this way, it compactly encodes the topology structure of a network, and (2) a self
training clustering module that performs clustering based on the learned representation,
and, in return, manipulates the latent representation according to the current clustering
result. A deep architecture is built by stacked layers of encoders.

Shchur and Günnemann [57] addressed the issue of overlapping communities, that
is, communities with members in common. They introduce a GNN based model for over-
lapping community detection and four datasets for overlapping community detection,
which are used as benchmarks. They combine the GNNs with the Bernoulli–Poisson
model that is able to produce a variety of community topologies (e.g., nested, hierarchical),
and lead to dense overlaps between communities. The computational time complexity is
O(N + M), where N is the number of nodes and M is the number of edges of the network.
In addition, the authors pre-processed four real-world datasets, to satisfy the criterion of
possessing reliable information on node attributes and ground-truth overlapping commu-
nities: Chemistry, Computer Science, Medicine, and Engineering (networks, constructed
from the Microsoft Academic Graph). A two level GNN model was used, with batch
normalization after the first graph convolution layer. In addition, in this model, the weight
matrices undergo a regularization process.

Levie et al. [58] introduced a spectral domain convolutional architecture for deep
learning on graphs. The basis of the model is a class of parametric rational complex
functions (Cayley polynomials), which efficiently compute spectral filters on graphs. The
main advantage of these filters compared to other schemes that use such filters [59] is
their ability to detect narrow frequency bands of importance during training. The model
produces localized in space filters, and its time complexity is linear to the input data for
sparsely connected graphs. The Cayley polynomials are real-valued functions with one
real, some complex coefficients, and a spectral zoom parameter which can be tuned to
zoom in to different parts of the spectrum. In this way, different frequency band filters
can be obtained. The Cayley filters use basic matrix operations such as powers, additions,
multiplications by scalars, and inversions, so the application of the filter does not require
expensive eigendecomposition of the Laplacian operator. For a sparse graph with n edges,
the application of a Cayley filter on a signal requires O((K + 1)rn) operations, where K is
the number of times that vertices exchange information with their neighbors, and r is the
number of filter coefficients.

In [60], a strategy that incorporates an AE to a GNN is proposed. A delivery operator
is used to transfer the representations learned by auto-encoder to the corresponding layer.
In addition, a dual self-supervised mechanism is used as guidance for the whole model
updates. The proposed model is composed of a K-Nearest Neighbor (KNN) graph, a Deep
Neural Network and a GNN network layer, and a dual self-supervised model. For a KNN
network with N samples and a dimension of d, the proposed model finds, per sample,
the top K similar neighbors and set edges to connect it these neighbors. The KNN graph is
the input to the auto-encoder and the GNN. Each layer of the autoencoder is connected
to the corresponding layer of GNN, so that the auto-encoder based representation can
be integrated into the structure-aware representation. The overall time complexity of the
proposed scheme is O(Nd2d2

1 . . . ...d2
L + |E||E |dd1 . . . dL + NK + N log N), which is linear

to the number of nodes. In this quantity, E is the number of edges, and d is the number
of samples.

The Multi-View Attribute Graph Convolution Networks (MAGCN) [61] is based on
two-pathway encoders that map graph embedding features and learn view-consistency
information. The first pathway (Multi-view attribute graph convolution encoders) imple-
ments graph attention networks for multiple features, in order to reduce redundancies
and learn the embedding features of the multiple view data. The second pathway (Consis-
tent embedding encoders) further implements embedding encoders used to capture the
geometry relationships and consistency of probability distribution among the information
views. In this manner, the multi-view attributes are located in a clustered embedded space.
Generally, the multi-view GNNs have the following limitations: (1) They cannot allocate
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learnable different weights to different nodes in neighborhood, and (2) The similarity is
not explicitly considered for the consistency relationship among different views [62,63].
The multi-view attribute graph convolution encoder equipped with attention mechanism
for learning graph embedding from multi-view graph data provides the solution for learn-
able weight allocation to different nodes. In addition, the embedding encoders incorporate
the geometric relationship and the probability distribution consistency among multi-view
graph data, thus facilitating the clustering task.

The Dual-Regularized Graph Convolutional Networks (DRGCN) [64] is the first work
that studies the node-level class-imbalanced graph embedding problem using GNNs.
The DRGCN strategy has been developed to handle multi-class imbalanced graphs. It
imposes two regulation types to handle the representation learning (Class-Imbalanced
Convolution Learning). Two more ideas are implemented: (a) a class-conditioned training
process, which facilitates separating the labeled nodes, and (b) a process that makes the
unlabeled nodes follow the same latent distribution to the labeled nodes. More specifically,
the Class-Imbalanced Convolution Learning is a two-layer graph convolutional network,
which is used for learning the node-level representation on the input graph. The two-order
relationships between neighboring nodes are modeled in a sequential manner. The Class-
Conditioned Adversarial Regularization is used to enhance the separation of different
classes by imposing conditional training on all labeled nodes. Finally, the Latent Distribu-
tion Alignment Regularization is a a distribution alignment training of both labeled and
unlabeled node representations under the assumption that the imbalanced classes in the
unlabeled space will match the imbalanced classes in the labeled space.

3.2.3. Comments on the GNN/CNN Based Community Detection Schemes

After the study of the most recent CNN/GNN-based community detection methods,
we made the following observations:

1. The CNN/GNN approaches consider both data structure and node features: The
recent deep clustering strategies combine feature extraction and dimensionality reduc-
tion in a model which enables deep neural networks to learn suitable representations
based on the criteria of the clustering module being used. These strategies usually
focus their attention on the data features and not on the structure of the data taken into
account during representation learning. This structure reveals the similarity among
samples, and therefore is rather useful on representation learning. The emerging
CNN/GNN approaches encode the graph structure and node features for the repre-
sentation. The structural information is very important in data representation learning.

2. The CNN/GNN based community detection strategies are basically semi-supervised
or supervised learning strategies: Typically, the real networks are unique in the sense
that the training data of one network cannot be properly used in a network with a differ-
ent structure. When communities are located, the only data that can be used for analysis
is the same network’s data. Schemes that apply semi-supervised learning strategies
can be employed so that a network’s node label information can be used to predict
community features for the remaining non-labeled nodes of the same network. These
strategies are sometimes very expensive. In this regard, there are CNN/GNN strategies
that exploit the strength of auto-encoders to develop automatic feature learning [24,49].

3. Many real-world networks are characterized, at a large scale, by skewed class dis-
tributions: This is because different network parts may evolve without restrictions.
For example, different nodes may be topologically connected with multiple other
nodes, so the node class assignment largely depends on its connected nodes. Repre-
sentation learning through accurately identified boundaries for each class cannot be
easily achieved because each class is highly affected by the neighboring classes in the
graph. The problem of imbalanced class distributions is hardly addressed in most of
the papers, which assume or purposefully provide balanced label distributions for
each class. A solution is given in [22], where a two-layered graph network is used to
extract node representations trained on imbalanced class labels.
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4. Performance degrades as graph convolutional layers are added: As the depth of the
convolutional network is increased, performance declines, so does the quality of the
neighbor propagation. This is due to the fact that the addition of many convolutional
layers is similar to multiple Laplacian smoothing procedures. This in fact smooths
the node features and the nodes from different clusters become indistinguishable
(in the sense that their attribute values converge and they become equal). The pro-
posed strategies try to keep the number of layers to relatively small numbers (up to
three, some examples are [48,49,57,60]). The ladder-shaped architecture proposed
by [65] et al. is another idea to overcome this issue.

5. Real-world graphs are formed by a combination of too many latent factors (for
example, the same likes, hobbies, professions, etc.). Removing these factors from
a graph is a difficult procedure: to learn the node representations free from such
factors may need extraction of subsets of a neighborhood, in a quite complex net-
work. Moreover, there are factors that may connect two people which are somehow
overlapping (a football fan and a fan of a specific football club). Without completely
distinguishing them (or making them independent), redundant representations will
appear. Therefore, special attention should be given to implement techniques that
support representation learning that discovers independent latent factors in a graph
network. Ref. [66] is such an example.

6. Convolutional networks are integrated with undirected graph models: Such graph-
ical models are the Markov Random Fields [48,49]. The convolutional networks
generally do not consider community properties and thus the embeddings they con-
struct are not community oriented. On the other hand, the undirected graph models,
do not take into account the node information and the model learning requires com-
plex computations. In this regard, the convolutional networks and graphical models
like MRF are complementary and form a good combination for CNN/GNN based
community detection.

7. Overlapping and complexity analysis: Most of the strategies do not consider the fact
that communities may overlap; an exception is [57]. Moreover, many strategies do
not provide comprehensive complexity analysis, as can be seen in Table 2. For those
who do, we can observe linear complexity in terms of the number of nodes, edges,
and samples being used.

3.3. GAN Based Approaches

Typically, the generative adversarial networks (GANs) are employing two competing
deep neural networks: a generator and a discriminator. The latter discriminates if an input
sample comes from the prior data distribution or from the generator and the former is
trained to generate the samples in such a way that the discriminator is convinced that the
samples come from a prior data distribution [67]. The result of this scheme is high training
precision. Recently, the GANs have been used to community detection problems and have
presented high efficiency.

In [67], the authors presented an adversarially regularized framework for graph
embedding. The proposed strategy used the graph convolutional network as an encoder,
allowing the embedding of the topology and node information into a vector representation.
This representation is used to reconstruct the input graph. Two variants of the adversarial
models were derived, the adversarially regularized graph auto-encoder (ARGA), as well as
the adversarially regularized variational graph auto-encoder (ARVGA), to efficiently learn
the graph embedding. The architecture of the ARGA consists of (i) a graph convolutional
auto-encoder, which reconstructs a given graph from a latent representation. The latent
representation has been produced by the encoder that is input with the graph structure
(adjacency matrix) and the node content matrix, and (ii) an adversarial network which
is trained to discriminate if a sample is generated from the embedding or from a prior
distribution (regularization). The ARVGA architecture is the same as ARGA, but it employs
a variational graph autoencoder instead of a graph convolutional auto-encoder (in part i).
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The convolution time complexity is O(|E|md), where E represents an encoding of edges
between the nodes, d is the dimension of the latent variable, and m is the sample entities
from the latent matrix or prior distribution.

Table 2. CNN/GNN based community detection strategies.

Paper Year Strategy Complexity Basic Experimental Results

[48] 2019

CNN-Based: The MRF model and its in-
ference are transformed to a convolutional
layer, and it is added as the third (and last)
layer of the basic two-layer convolutional
network architecture.

O(emhk2)

Superior performance over state-of-the-art
methods in terms of accuracy, normalized
mutual information (NMI) and runtime—
in addition, high scalability on several
large benchmark problems.

[49] 2021

CNN-Based with AE: MRFasGCN [48] is cast
as an encoder and then the node community
membership is determined in the hidden layer
of the encoder.

Not inferred

Improved performance in terms of ac-
curacy, normalized mutual information
(NMI) and runtime—in addition, high scal-
ability on several large benchmark prob-
lems.

[50] 2019

CNN-Based: Uses two convolutional steps,
each composed by a convolution and a max-
pooling layer for topology learning of the in-
put network, plus a full connection layer to
refine the results.

Not inferred

Improved efficiency of execution time (in
terms of the density variation of sparse ma-
trix), especially for larger node numbers
and improved accuracy of predictions.

[51] 2020
CNN-Based: Uses an edge-to-image model
that can map the edge network structure to an
image structure.

Not inferred

Increases the accuracy of community
structure evaluation for both computer-
generated networks and large-scale real-
world networks.

[24] 2020

CNN-Based with AE: Based on three pro-
cedures, namely a matrix reconstruction
method, a spatial feature extraction method
(via an auto-encoder) and a community
detection strategy.

Not inferred
Offers higher modularity thus it can effi-
ciently detect high quality communities in
social networks.

[56] 2019

GNN-Based: Uses an attention network to
capture the importance of the neighboring
nodes to a target node, to achieve a compact
representation, on which a decoder is trained
to reconstruct the graph structure.

Not inferred

Better performance compared to other
strategies in terms of Accuracy (ACC),
Normalized Mutual Information (NMI),
and Adjusted Rand Index (ARI).

[57] 2019
GNN-Based: Overlapping community de-
tection, combines GNN with Bernoulli–
Poisson model.

O(M + N)

It better recovers communities in graphs
with known ground-truth communi-
ties, compared to other state-of-the-
art schemes.

[58] 2019

GNN-Based: A spectral graph GNN architec-
ture, based on complex rational Cayley filters,
which can detect narrow frequency bands of
importance during training.

O[(K + 1)rn]

Experiments have shown improved perfor-
mance compared to spectral domain con-
volutional approaches in terms, of image
classification, accuracy, vertex classifica-
tion, and matrix completion tasks.

[60] 2020

GNN-Based: a delivery operator to transfer
the representations learned by auto-encoder to
the corresponding layer, combined with a dual
self-supervised mechanism to use as guidance
for the whole model updates.

Linear to the
number of
nodes N and
the number of
samples, d

Better clustering accuracy and better clus-
tering quality compared to other state-of-
the-art schemes

[61] 2020
GNN-Based: Based on two-pathway en-
coders that map graph embedding features
and learn view-consistency information.

Not inferred

Better performance compared to other
strategies in terms of Accuracy (ACC),
Normalized Mutual Information (NMI),
and Adjusted Rand Index (ARI).

[64] 2020

Method that imposes two regulation types to
handle the representation learning, a class-
conditioned training process, and a process
that makes the unlabeled nodes follow the
same latent distribution to the labeled nodes.

Not inferred Effectiveness in handling graph data with
not balanced distributions of classes.
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CommunityGAN [68] is a community detection scheme that jointly solves overlapping
community detection and graph representation learning. The CommunityGAN strategy
learns network embeddings like AGM (Affiliation Graph Model) through a specifically
designed GAN. The affiliation graph model is a framework that can model dense over-
lapped communities. As in [67], two models are trained: a generator that tries to produce a
vertex subset to compose a motif (clique) and a discriminator which tries to deduce if the
vertex subset is a real or unreal motif. The two models are combined by participating in a
game where the generator tries to fool the discriminator by approximating a conditional
probability value (the preference distribution of motifs covering an edge over all the re-
maining motifs), in order to produce the vertex subsets which are closer to the real motifs
covering a specific edge. Accordingly, the discriminator distinguishes the ground-truth
motifs from the ones produced by the generator. Given the distribution samples and the
samples produced by the generator, the discriminator tries to maximize the probability of
correct classification of these samples. The AGM is a non-negative affiliation weight matrix:
when a vertex is assigned to a community, there is a non-negative strength value for this
assignment. The big strength of CommunityGan is that, by combining the AGM with GAN,
it can detect overlapped communities and learn graph representations. Because random
walk is involved in the design of the AGM, the overall time complexity is not easy to infer.
Although the model is not the fastest, the authors claim that its training is considered
acceptable. Another approach for overlapped communities is the Seed Expansion with
generative Adversarial Learning (SEAL) [69]. It contains an adversarial network, where
the discriminator predicts if a community is real or unreal while the the generator tries
to fool the discriminator by generating communities that fit the characteristics of real
ones. The generator models seed expansion as a sequential decision process and learns
heuristics from data. Another novelty is the use of a locator that forms a closed loop with
the generator to get iterative improvements. If a generated community includes irrelevant
nodes (free-rider effect), the locator would have difficulties in locating the seed node and
returns a low reward, while, for a good community, the generator would receive a high
reward as the seed node is easily located.

Wang et al. [70] provided GraphGAN, which is also a graph representation learning
framework where the generator and the discriminator play a minimax game, and this
competition leads to an iterative performance improvement. Moreover, the limitations of
the softmax function (does not consider graph structure and proximity information and its
computation involves all the graph vertices, which is inefficient and time consuming) are
overcome by a new implementation of the generator, the Graph softmax, which defines
a new method of computing connectivity distribution. This method satisfies the normal-
ization, graph structure awareness, and computational efficiency. The proposed online
generating strategy, which is more computationally efficient and consistent to the definition
of graph softmax, employs a random walk from a root node, during which, if the generator
decides to visit the currently visited node’s v parent (reverse on the path) for the first time,
v becomes the generated vertex. The complexity of the GraphGan is O(V(V + E)), where
V is the set of nodes, and E is the set of edges.

JANE [71] is a framework that jointly distinguishes the real and fake combinations of
the embeddings, topology information, and node features. JANE is composed of pluggable
components, Embedding module, Generator module, and Discriminator module. Com-
pared to typical GANs, the JANE framework includes an embedding module to produce
network embeddings instead of generating new data (attribute network). Furthermore,
the fake attribute network is not based only on the Gaussian distribution, as in GANs,
but its generation is based on combining the embedding results of real attribute networks
with the samples generated from Gaussian distribution. The Discriminator module is input
with the real and fake topology and node features and embeddings and jointly distin-
guishes the real and fake combinations. The fake inputs are produced by the generator,
based on the samples taken from a Gaussian distribution. Table 3 summarizes the most
important features of the GAN-based strategies.
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Table 3. GAN-based community detection strategies.

Paper Year Strategy Complexity Basic Experimental Results

[67] 2020

Two combined modules: a graph convolutional
auto-encoder, which reconstructs a given graph
from a latent representation and an adversarial
network which is trained to discriminate if a
sample is generated from the embedding.

O(|E|md)

Good average node clustering perfor-
mance Accuracy (ACC), Normalized Mu-
tual Information (NMI), and Adjusted
Rand Index (ARI) and good link pre-
diction with different prior distribu-
tions compared to a large number of
competitive schemes.

[68] 2019

Combines AGM and GAN in a unified frame-
work, which achieves good GAN performance
and direct vertex-community membership rep-
resentation in AGM. The Graph AGM gen-
erates the most likely motifs with graph
structure awareness.

Not easy to infer
due to random
walk involved
in the design of
the AGM.

Experiments on synthetic data and real-
world tasks show its improved perfor-
mance over other state-of-the-art scheme
for different clique sizes and good qual-
ity of overlapped communities in terms of
NMI and F1-score metrics.

[69] 2020

Strategy that learns heuristics for community
detection from training data with generative ad-
versarial networks. The discriminator predicts
if a community is real or fake and the generator
tries to fool the discriminator by generating com-
munities that fit the characteristics of real ones.

Not inferred
Good performance in terms of evaluation
metrics for community detection like the
bi-matching F1 and Jaccard scores.

[70] 2019

GraphGAN, a unified framework that designs
models via adversarial training in a minimax
game. The graph softmax implements the the
generator, to resolve the limitations of traditional
softmax function and satisfy the properties of
normalization, graph structure awareness and
computational efficiency.

O(V(V + E))

Achieves important gains in graph recon-
struction, link prediction, node classifica-
tion, and visualization over state-of-the-
art schemes.

[71] 2021

A Jointly Adversarial Network Embedding
(JANE) framework with pluggable components
to benefit the embedding methods from the ad-
versarial mechanism. JANE distinguishes the
real and fake combinations of the embeddings,
topology information and node features.

Not inferred Superiority on link prediction and node
clustering in terms of F1 score.

Comments on the GAN-Based Community Detection Schemes

After the study of the most recent GAN-based community detection schemes, the fol-
lowing observations can be made:

1. Regularizations: Deep learning strategies (AE- or GNN- based) focus on preserving
the structure relationship and generally ignore the latent data distribution of the
representation. Using GANs, the new data generated have the same distribution as
real data, and this is a powerful tool for analyzing network data. For example, in [67],
some form of regularization is introduced to the latent codes, thereby forcing them to
follow some prior data distribution.

2. Dense Overlapping Issues: In real-world datasets, vertices can simultaneously be-
long to numerous communities and clustering algorithms cannot handle such dense
overlapping. A weakness in performing overlapping community detection and net-
work embedding simultaneously has been reported (see also our comments in the
presentation of AE and CNN/GNN-based schemes). An idea is to combine the
effective GANS with affiliation graph models (AGM), which can model densely
overlapping community structures. Thus, the performance of GANs and the di-
rect vertex-community membership representation of AGMs join forces to solve the
dense overlapping issues [68]. In addition, the scheme presented in [69] is working
on overlaps.

3. Undistinguished real and not real embedding combinations: Most of the GANs
compare the generated fake data, which are produced based on Gaussian distribution
sampling to the real data. In adversarial learning approaches, the Gaussian distribu-
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tions cannot be rectified with real data so the results are not really beneficial for the
network embeddings. Approaches like JANE [71] can be used to separate real and
fake combinations of embeddings, topology information, and node features. Because
of the combined topology information and node features, the Gaussian distribution
is capable of capturing the semantic variations in latent space. Thus, the overall
embedding results become more useful and the performance of network analysis is
highly improved.

4. Future Trends

The strategies we have presented are the most recent developments in community
detection strategies over the last two years. From our study, we have spotted several issues
that need to be further elaborated, and improved solutions must be provided. In this
section, we provide some of these issues that may lead the way for future trends.

1. Large scale of modern networks: The analysis of modern social networks becomes
rather cumbersome, as their size and number keeps growing larger and larger. Older
methods tried to employ some level of parallelism, but these suffered from low
speedups. Generally, there is still a growing need for algorithms that do not fail
to scale with the increasing number of users and the growing complexity of their
relationships. Moreover, the existing schemes that were presented in this work
generally have not been tested on graphs with billions of vertices or nodes using more
powerful machines.

2. Dynamic Community Detection: Dynamic community detection requires that the
changes in user relationships and in the overall network topology should also be
considered. This means that models that extract spatio-temporal features of the social
networks have to be developed. Generally, the irregular topologies, the frequent
changes of relationships among users, and the network updates pose certain burdens
on the processing of synchronous social networks, and more computational efforts
are now required to accommodate these changes.

3. Better use of computational resources: Certain computations performed necessarily
require the consumption of large quantities of computational resources. For example,
in [45], the authors admit that the similarity matrix is obtained through processing
of the adjacency matrix, and the calculations involved require large memory con-
sumption and powerful experimental equipment. Thus, strategies that consume large
amounts of resources or even exhaust the existing ones should be equipped with some
type of decomposition strategy, which also may be accompanied with a well-designed
parallelism scheme.

4. Community overlapping: As mentioned during the description of the most recent
schemes in Section 2, most of the strategies presented do consider the situation of
community overlaps (some exceptions have been mentioned in the text). In the future,
most of these works should be expanded so that this very important issue is taken
into account.

5. Meaningful semantic representations of communities: The community detection
problem is a well-studied problem, and the first papers were published back in the
beginning of this century. However, the datasets being used as inputs to construct
communities contain rather discrete information like well-used words, symbols, forms
of categorization for professions or other attributes or short phrases. Better datasets
should be developed and used in deep learning strategies to extract and even predict
communities. Generally, the vast amounts of information produced by the social
networks should be used in a better and more informative way, in order to produce
a more meaningful semantic representation of communities. In addition, the better
interpretation of specific communities (medical, sport, politic, etc.) is closely related
to this direction.

6. Natural Language Processing (NPL embeddings): A recent trend is to compute node
embeddings by using the second order random walks [72]. These embeddings aim at
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keeping similar nodes close in their representations. Simplicial complexes represent
a promising way for representing embeddings, but still the community extraction
remains a challenge to be dealt with [73]. Other future trends include the ego networks,
the streaming community detection (graph streams), and the temporal graphs.

7. More straightforward comparisons are needed: During our study, we have noticed
that there is a lack of straightforward comparisons among the presented strategies.
Perhaps, tools like the NetworKit [74] can be helpful in this regard. NetworKit is a
growing open-source toolkit for large-scale network analysis and already contains
novel algorithms from recently published research.

5. Conclusions

This survey provides a comprehensive literature review on the most recent advances
in the field of community detection. The papers presented have been published within
the last two years and the deep learning strategies employed. We aimed at organizing
these works into categories, based on the tool being used. Thus, we derived the following
taxonomy: AE-based, CNN/GNN-based, and GAN-based community detection. For each
category, we discussed each work in detail, focusing on the architecture of each model and
on the specific method being employed. We also presented some tables, where a synopsis
of each work is given along with the computational analysis (whenever it was provided by
the authors) and the main experimental results. At the end of each category of papers, we
provided some general observations derived from our study. Finally, we provided some
general future trends in the field of community detection. Many researchers are still active
on the topic, and we expect that numerous papers will be published within the next few
years, so we believe that these future trends may provide some ideas or opportunities for
contribution in the field of community detection.
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