
applied  
sciences

Article

Exact and Evolutionary Algorithms for Synchronization of
Public Transportation Timetables Considering Extended
Transfer Zones †

Sergio Nesmachnow * and Claudio Risso

����������
�������

Citation: Nesmachnow, S.; Risso, C.

Exact and Evolutionary Algorithms

for Synchronization of Public

Transportation Timetables

Considering Extended Transfer

Zones. Appl. Sci. 2021, 11, 7138.

https://doi.org/10.3390/app11157138

Academic Editor: Jason K. Levy

Received: 3 July 2021

Accepted: 29 July 2021

Published: 2 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Computer Science Institute, Engineering Faculty, University of the Republic, Montevideo 11200, Uruguay;
crisso@fing.edu.uy
* Correspondence: sergion@fing.edu.uy
† This paper is an extended version of our paper published in III Ibero-American Congress on Smart Cities.

Featured Application: The planning methods presented in this article are specifically applicable
to help decision makers in the processes of the configuration and operation of public intelligent
transportation systems under the novel paradigm of smart cities.

Abstract: This article addresses timetable synchronization in public transportation, an important
problem in modern smart cities, in order to guarantee a proper quality of service to citizens. Two
variants of the bus timetabling synchronization problem considering extended transfer zones are
studied: optimizing offsets and optimizing offsets and headways for each line. An exact mixed
integer programming and an evolutionary algorithm are developed to solve both problem variants.
The algorithms are evaluated on 45 instances of a real case study, the intelligent transportation system
of Montevideo, Uruguay. Experimental results reported significant improvements over the current
timetable implemented by the city administration. The number of successful synchronizations
improved up to 66.6% and 179.9% for the first and second problem variant, respectively. The average
waiting times for transfers improved, especially in tight problem instances (up to 57.8% and 158.3%
for the first and second problem variant, respectively). The proposed planning methods are useful to
help decision makers to configure public transportation systems.

Keywords: timetable synchronization; public transportation planning; mixed integer programming;
evolutionary algorithms; real case study; smart cities

1. Introduction

Public transportation is a key service in smart cities, allowing for efficient and low
pollution mobility for citizens and reducing the dependency on cars and other motorized
transportation modes [1,2]. Designing and operating an efficient public transportation
system requires solving several relevant problems, including the proper design and man-
agement of routes, timetabling, and planning of buses and drivers, to provide a good
quality of service to citizens [3] and also to promote sustainability [4].

The timetable synchronization problem consists of crafting a timetable that optimizes
transfers between lines in a public transportation system. Timetable synchronization has
been recognized as one of the most difficult problems for public transportation planning
and optimization [5]. The problem has been often addressed intuitively, assuming that
experienced operators are able to define headways, i.e., the time between consecutive
departures of buses in a line to provide a proper quality of service. Conversely, this
work proposes combinatorial optimization approaches to state the problem and the use of
optimization techniques to solve real-world instances.

A flexible approach is proposed, entirely applicable to contexts where information
about operating lines, traveling times, and transfer zones is available and when transfers
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between media are fairly regular along some reference time-window. The considered
public transportation system consists of a mesh of routes operated by vehicles with similar
capacities. Given origin-destination matrices for trips, expectations of passengers, technical
features of buses, and operational costs, a historical design problem defines the lines to
be deployed and their routes throughout each city in order to obtain a network with a
proper trade-off between cost and quality of service [3]. Regarding the scope of this work,
lines and routes are assumed fixed and known in advance, and timetable modifications are
explored to allow for better overall efficiency [6].

Two variants of the bus timetabling synchronization problem considering extended
transfer zones for every pair of bus stops in a city are formulated: optimizing the offset
for each line and optimizing the offset and headways for each line. A realistic formulation
is included to model the transfer demands of passengers. Two computational methods,
exact mixed integer programming and the evolutionary algorithm (EA), are developed to
efficiently solve both problem variants. The algorithms are evaluated on 45 instances of a
real-world application case in Montevideo, Uruguay. Problem instances are defined using
real data about lines, headways, and transfer demands, gathered from the intelligent trans-
portation system of Montevideo. Results are compared with the real timetable currently
implemented by the city administration.

The public transportation system of Montevideo is flexible, providing several options
for passengers to reach a destination. Many passengers complete end-to-end trips by
using a sole line, but either due to feasibility or convenience, many users transfer between
lines to fulfill end-to-end trips. Transfers are implemented in the automatic Metropolitan
Transportation System (STM). Users are charged through radio frequency identification
cards, which allow them to pay and easily transfer between lines, even between different
(geographically separated) bus stops.The STM keeps historical ticket sales and travel times
via GPS-integrated controller units on buses. Records include user trip details along any
day and time-stamped and geo-referenced transfers, etc. This dataset is a primordial asset
for authorities, and it is used to adjust the configuration of lines. A relevant adjustment is
the timetable, i.e., the schedule of departures each line must conform to. The STM dataset
indicates that there are time-windows where the load of the system is regular, that is,
with low deviation from mean values of traveling times, number of passengers in each
bus, and the number of transfers between them [7]. By assuming that current headways
are dimensioned to manage the load of the system along a time-window with regularity
and that relatively slow deviations from those values linearly affect surveyed figures, a
formulation is devised to allow tuning the system to increase the number of successful
transfers. Timetable synchronization is a very relevant problem in this case study, since the
bus system in Montevideo is extremely complex. The bus network consists of 145 main bus
lines, and each one of them has multiple variants (e.g., outward and return trips, different
origins/destinations, and shorter versions), so the total number of bus lines considering
all variants is 1383, a remarkably large number when compared to bus networks in other
similar cities [7].

In any case, the proposed models and algorithms are fully portable to other systems, as
long as transfers are allowed and the main goal is optimizing the number of synchronized
trips. The formulation is independent of data particulars, and it can be easily ported to
another system. For instance, transfer zones can be arbitrarily set. They are not bound to
infrastructure deployment, so an instance can, in fact, be determined from existing transfer
stations or a mix of closed and on-street stations. In addition, there is no particular reason
to prevent these models from being used with other means of transportation, such as light
rail transit, metro networks, or arrangements thereof.

This article extends our previous conference article “Exact and metaheuristic approach
for bus timetable synchronization to maximize transfers” [8]. New contents include: (i) an
extended transfer zones model; (ii) the formulation of two problem variants, optimizing
offset and headways (variable within a range); (iii) a new and more realistic objective
function, properly modeling the transfer demands considering variable headways; (iv) the
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proposed exact and evolutionary approaches, adapted to solve both addressed problem
variants; (v) an exhaustive experimental evaluation of the proposed optimization methods
over 45 problem instances for each problem variant.

Regarding previous studies in the literature, this article contributes by considering
an extended transfer zones proposal to model transfers between different (geographically
separated) bus stops of different lines. This formulation is more useful than standard
models to capture the reality of modern intelligent transportation systems that do not
limit transfers to specific locations, instead allowing them to be performed at every pair
of bus stops. The new problem model provides flexibility for passengers who have many
realistic transfer options available and also for the bus system administration to design
proper timetables. The new formulation also considers the explicit demand of transfer
trips for each pair of bus stops that defines a transfer zone, unlike previous formulations
that only considered the number of bus trips synchronized [9–11] or proposals focused
on minimizing waiting times between bus trips [12]. Thus, the proposed formulation
allows for focusing on the quality of service offered to passengers better than existing
approaches. The proposed evolutionary approach is also a contribution, as no previous
application of EAs to solve the problem was found in the review of related works. The
EA is useful for solving large-dimension problem instances, e.g., by considering a large
number of transfer zones in a city scenario. Besides the formulations proposed to model
both problem variants, a relevant contribution of the reported research is related to the
obtained results for the case study in Montevideo: both the exact and EA approaches are
able to compute timetables that are significantly improved over the real timetable applied
by the city administration, considered as a reference baseline for the comparison.

The article is organized as follows. Section 2 introduces the problem, the proposed
model, and the two variants addressed. Section 3 presents a review of related articles.
The exact and evolutionary approaches for bus synchronization are described in Section 5.
Section 6 reports the evaluation of the proposed methods over realistic problem instances
in Montevideo, and the main conclusions are outlined in Section 7.

2. The Bus Synchronization Problem

This section introduces the bus synchronization problem (BSP) model and the formu-
lation of two specific variants of the problem.

Overall Description of the Problem Model

The BSP considers two of the most important purposes of a mass transportation
system: offering an efficient means for the movement of citizens, while maintaining low
costs and fares. The considered model focuses on citizens, offering them an efficient travel
experience and short waiting times for passengers that use two or more buses to perform
consecutive trips.

The concept of a synchronization event is defined as the action of providing passengers
transfers whose waiting times are lower than the maximum time passengers are willing
to wait. The research proposes addressing the BSP on real scenarios, built using real data
about lines, bus stops, traveling times, and passengers performing transfers between lines.
The problem model divides a day into several planning periods, considering the regularity
of travel demands, travel times, and citizens’ behavior. On each planning period, a data
analysis approach can be applied to extract common characteristics and steady information
to build BSP instances.

In the considered problem model, the bus network is represented by a set of bus lines
and a set of relevant locations (the synchronization nodes or transfer zones), where passengers
can transfer from one line to another. Unlike previous formulations of the problem [9,10],
in the proposed model, nodes are not just bus stops but wider transfer zones, formed by
separated bus stops for lines i and j. This way, the model can include several bus stops
for several lines (see a graphical description for two generic lines i and j in Figure 1). The
proposed model explicitly includes the distance between the bus stops for lines i and j,
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di,j
b , drawn in red in Figure 1. For the instances solved in this article, it is assumed that the

walking speed of pedestrians is constant ws = 6 km/h, and the walking time for a distance
d between any pair of bus stops is given by wt = d/ws.

synchronization 
node (transfer zone) 

line j line j 

line i 

line i 

bus stop 
line i 

bus stop 
line j 

db 
ij 

b 

Figure 1. The considered model for the BSP with expanded transfer zones [blue circle].

The proposed problem model is useful for capturing the reality of contemporary
intelligent transportation systems, which do not impose a limitation on the number of
transfers for passengers and in which transfers are not limited to specific locations. Instead,
transfers can be performed at every pair of bus stops, providing flexibility to passengers
when planning a trip. This is the case of the intelligent transportation system in Montevideo,
Uruguay, which is the case study in this article [7]. In this scenario, the corresponding
synchronization problem is more complex, as many realistic transfers options are available
to passengers, which in turn may require them to walk between bus stops.

Unlike traditional formulations, the proposed problem model is not focused on maxi-
mizing the number of passengers headed from origin to destination, mainly because the
main focus is on the user experience when performing transfers, by considering the maxi-
mum time passengers are willing to wait for a transfer. This way, the objective function
of the optimization model considers the demand of transfers in each transfer zone (pair
of bus stops) for all synchronized trips of two bus lines. Previous articles addressing
different variants of the timetable synchronization problem have worked under stronger
assumptions, i.e., only considering trips for lines to synchronize.

Two cases are distinguished in the proposed model. The case with uniform departing
times and the case with non-uniform departing times. These two cases are described next.

In the case with uniform departing times, there are no differences between departing
times in the planning period; thus, r and s (trips of line i and line j, respectively) are not
relevant for defining the time between consecutive departures (which in fact is constant,
i.e., F1

i ). This is a realistic assumption when planning for short and medium periods (e.g.,
in the morning, in the afternoon, in rush hours, etc.). For example, in the case study solved
in this article, i.e., the bus network of Montevideo, Uruguay, this assumption holds: in the
time period 12:00–14:00 on working days, the time between consecutive buses is almost
constant for all lines (the standard deviation of their values is between 0.80% and 1.37%).
However, trips of line i and line j are relevant for defining the number of synchronizations
and the number of synchronized passengers on each trip.

In the case with non-uniform departing times, the trip number r is relevant to deter-
mine synchronizations. The time between consecutive buses is given by Xi

r − Xi
r−1 for

trip r of line i, and the problem formulation must be solved considering the number of
trips that are synchronized. When computing the objective function in this model, the
demand is split uniformly among the f j trips of line j. This assumption is also realistic
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when passengers’ demand has slight variations between consecutive trips. For modeling
purposes, we are simply assuming that the planning period is determined because of its
regularity. Whenever buses’ interarrival times are uniformly distributed along a planning
period, a fairly precise reference weight (i.e., average number of passengers) for each
transfer zone is the ratio of the demand of transfers for the considered lines i and j over
the number of trips of line i in the planning period T. However, due to the fact that the
passengers transferring onto a bus previously alighted from another, they arrive in bursts.
There are more accurate formulations for weights in transfer zones [13]. Defining and
studying an accurate model to handle variable demands are proposed as future work.

3. Related Work

Timetable synchronization was stated as an important problem for public transporta-
tion systems in pioneering research articles by Ceder [3]. Daduna and Voß [14] presented
one of the first proposals for synchronizing schedules on public transportation. The authors
studied several objective functions, including weighted sum approaches with transfers and
maximum waiting time, and proposed metaheuristics for simple problem versions with
uniform frequencies. The approach was evaluated over a case study on Berlin and several
cities in Germany. In the experiments, tabu search outperformed simulated annealing in
randomized instances, and the authors highlighted the trade-off between operation costs
and efficiency.

The transit network timetabling problem was studied by Ceder et al. [15] to optimize
synchronization events at stops shared by several bus lines, by maximizing the number
of simultaneous arrivals. A greedy approach was introduced to define custom timeta-
bles, properly selecting nodes from the bus network. The article focused on maximizing
simultaneous bus arrivals over small problem instances involving few nodes and lines.
A subjective metric was proposed by Fleurent et al. [16] to evaluate synchronizations,
including expert knowledge. The proposed synchronization metric was applied to design
a heuristic to minimize vehicle operation costs in a case study consisting of small prob-
lem instances from Montréal, Canada. Different timetables were found by weighting the
components of the cost function.

Shafahi and Khani [17] presented a mixed integer programming model for optimizing
transfers in a public transportation network with fixed transfer stations. The problem
considered the offset optimization, i.e., setting the departure times of buses, which was
solved by an exact method using CPLEX. A second problem variant was formulated,
accounting for the extra stopping time of buses at transfer stations. A genetic algorithm
was proposed to solve this problem variant over small problem instances involving 14 lines
and just three transfer stations. A real case study was presented: the public transportation
network in the city of Mashhad, Iran. The proposed methods were able to improve up to
14.5% with a business-as-usual (i.e., no explicit optimization) strategy.

A variant of the the synchronization problem including time-windows between travel
times was addressed by Ibarra and Ríos [10]. A multi-start iterated local search (MILS)
was applied to solve eight scenarios from the public transportation of Monterrey, Mexico,
considering from 4 to 40 nodes. In less than 60 seconds, MILS computed accurate timetables
for medium-size instances, regarding both upper bounds and an exact Branch & Bound
algorithm. MILS was also applied by Ibarra et al. [11] to solve the multiperiod BSP, to
optimize multiple trips of a given set of lines. MILS was able to compute results similar
to a variable neighborhood search and a simple population-based algorithm on synthetic
instances with few transfer zones. Results for a sample case study using data for a single
line of Monterrey demonstrated that maximizing synchronizations for a specific node
usually reduces the number of synchronizations for other nodes.

A recent article by Abdolmaleki et al. [18] proposed a model for timetable synchroniza-
tion assuming a fixed headway for each line. The authors identified specific cases of the
problem that are solvable in polynomial time. An approximation algorithm was proposed,
based on the maximum directed cut problem. The proposed method was evaluated in a
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simple network and a large case study in Mashhad, Iran. In turn, a recursive algorithm
that executes in quasi-linear time was proposed to minimize the total transfer waiting time
in a problem variant that relaxes the fixed headway assumption.

An EA was proposed in a previous article [19] for a specific variant of the BSP, which
outperformed real timetables and heuristics. This article extends our previous approach,
solving a different BSP variant to determine optimal values for offset and headways,
maintaining the number of trips of the real timetable, thus not impacting the provided
quality of service.

Regarding the related literature, the approach proposed in this article contributes by
considering the extended transfer zones model accounting for transfers between different
(geographically separated) bus stops of different lines; by considering the explicit demand
of transfer trips for each pair of bus stops that defines a transfer zone to better focus on
the quality of service offered to passengers; and by simultaneously adjusting offsets and
headways for each line.

4. The Proposed Problem Formulations

This section describes the proposed problem formulations for the considered prob-
lem variants.

4.1. Problem Data

The formulation of the studied problem considers:

• The planning period [0, T], expressed in minutes.
• A set of bus lines I = {i1, i2, . . . , in}, whose routes are fixed and known beforehand.
• The total trips needed to perform in order to fulfill the demand for each line i within

the planning period [0, T] is fi. The demand considers both direct trips and transfers.
• A set of synchronization nodes, or transfer zones, B = {b1, b2, . . . , bm}. Each transfer zone

b ∈ B has three elements <i, j, dij
b >: i and j are the lines that may synchronize, and dij

b
is the distance that separates the bus stops for lines i and j in b. Each b considers two
bus stops with transfer demand between lines i and j, as described in Figure 1. The
distance dij

b defines the time that a passenger must walk to transfer from the bus stop
of line i to the bus stop of line j in the considered transfer zone.

• A traveling time function TT : I × B→ Z. TTi
b = TT(i, b) defining the time that buses

in line i need to travel to reach the transfer zone b. The time is measured from the
departure of the line. The traveling time depends of the studied scenario and is
affected by several factors such as the maximum allowed speed, the traffic in the city,
the travel demands, etc.

• A demand function P : I × I × B → Z. Pij
b = P(i, j, b) defines how many passengers

perform a transfer from line i to line j in transfer zone b in [0, T]. As described in the
previous subsection, a hypothesis of uniform demand is assumed. Thus, an effective
number transfers from a trip of line i to a trip of line j is properly defined, taking
into account the time between two consecutive trips of buses in line i. The uniform
demand hypothesis is realistic for short periods, such as in the problem instances
defined and solved for the addressed case study.

• The maximum time Wij
b that passengers are willing to wait for line j, after alighting

from line i and walking to the corresponding stop of line j in a transfer zone b. Two
trips of line i and j are synchronized for transfers if and only if the waiting time of
passengers that transfer from line i to line j is lower than or equal to Wij

b .
• A set of departing times of each trip r of line i, Xi

r, which define the headways of the
line as the time between two consecutive trips Fi

r = (Xi
r − Xi

r−1). Headway values
must be within a range of minimum (hi) and maximum (Hi) headways for that line.
Both extreme values are defined by the city administration or the bus system operator.
The offset of each line is the departing time of the first trip of the line (Xi

1). Without
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losing generality, the model assumes Xi
0 = 0. All trips of each line must start within

the planning period [0, T] (i.e., Xi
fi
≤ T).

Considering the previously defined elements, two variants of the BSP are formulated,
accounting for the optimization of just offsets and both offsets and headways for each line,
respectively. The next subsections describe these two problem variants.

4.2. Problem Variant #1: Offset Optimization

The first problem variant focuses on optimizing the offsets (i.e., the departing time
of the first trip of each line). Subsequent departing times are fixed by the reference value
defined by the city administration (Fi). Thus, the control variables of the problem are
the offset of each line (Xi

1), which defines the whole set of departing times for all trips of
each line. Auxiliary variables are needed to capture the synchronization events in each
transfer zone. Binary variables Zij

rsb take a value 1 when trip r of line i and trip s of line
j are synchronized in node b (i.e., trip r of line i arrives before trip s of line j and allows
passengers to complete the transfer, i.e., walk between the corresponding bus stops and
wait less than the waiting threshold for that transfer, Wij

b ). To guarantee that all lines
perform the required number of trips in the planning period, possible values for the offset
are limited to the interval [0, T (mod Fi)] (see a graphical description in Figure 2).

0

offset
Fi

Xi
1 Xi

2

Fi

Xi
3

. . .
Xi

fi
T

Figure 2. Graphical representation of BSP variant #1. The offset (in blue) is the control variable, and
subsequent departures are separated by a fixed time Fi.

The mathematical model of BSP variant #1 as a mixed integer programming (MIP)
problem is formulated in Equations (1)–(5).

maximize ∑
b∈B

(
fi

∑
r=1

f j

∑
s=1

Zij
rsb) ·

Pij
b × Fi

T
(1)

subject to Zij
rsb ≤ 1 +

(Ai
rb + dij

b + Wij
b )− Aj

sb
M

, ∀b =< i, j, dij
b >∈ B,

1 ≤ r ≤ fi, 1 ≤ s ≤ f j,
(2)

Zij
rsb ≤ 1 +

Aj
sb − (Ai

rb + dij
b )

M
, ∀b =< i, j, dij

b >∈ B,
1 ≤ r ≤ fi, 1 ≤ s ≤ f j,

(3)

with Ai
rb = Xi

1+(r−1)Fi+TTi
b and Aj

sb = X j
1+(s−1)Fj+TT j

b

0 ≤ Xi
1 ≤ min(Hi, T (mod Fi)), ∀i ∈ I (4)

Zij
rsb ∈ {0, 1}, ∀i ∈ I (5)

The optimization problem formulates the maximization of the number of successful
transfers completed in the planning period in every transfer zone (the objective function in

Equation (1)). The expression ∑
fi
r=1 ∑

f j
s=1 Zij

rsb is the total number of successful connections
between trips of each pair of lines i and j in each transfer zone b. Assuming a uniform
demand hypothesis, the number of transfers from a trip of line i to a trip of line j in the
planning period is Pij

b × Fi/T. Equations (2)–(5) define the problem constraints.
Equation (1) states that the optimization will seek to activate synchronization variables

Zij
rsb—as many as possible. Constraints determine that variables Zij

rsb only take the value 1
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if the corresponding transfer is synchronized. In Equations (2) and (3), the arrival time of
trip r of line i to transfer zone b is Ai

rb, and the arrival time of trip s of line j to transfer zone

b is Aj
sb. For an interpretation of constraint (2), consider that the limit time Ai

r + dij
b + Wij

b
defines the maximum time passengers are willing to wait for a transfer between trip r of
line i and trip s of line j at transfer zone b. Whenever the arrival time of trip s of line j
does not surpass that limit, the right-hand side of Equation (2) is greater (or equal) to 1, so
this is the only case when Zij

rsb (the synchronization variable) is allowed to take the value
1. Furthermore, it is also necessary for passengers alighting from trip r of line i to walk
to the transfer point (arriving at time Ai

rb + dij
b ) before trip s of line j arrives (at time Aj

sb).
Otherwise, passengers will not complete the transfer on time. This second condition, when
met, also allows Zij

rsb to be set to 1, as the right term of constraints in Equation (3) is positive.
To date, there is a potential issue when non-synchronized trips lead to negative values on
the right term of Equation (3), which produces unfeasible constraints. The formulation only
needs one value, (Ai

rb + dij
b + Wij

b )− Aj
sb or Aj

sb − (Ai
rb + dij

b ), to be lower than zero, so the

synchronization variable Zij
rsb is deactivated. Thus, it is enough to introduce a constant

value M, large enough to guarantee that both Equations (2) and (3) are always feasible. In a
real solver implementation, considering large values of M might cause numerical stability
problems. Thus, appropriate and relatively low values for M are computed as the maximum
value within the union of sets {(Hi(j) + ( fi(j)− 1)× ∆X j + TT j

b)− (TTi
b + dij

b +Wij
b )} and

{(Hi(i) + ( fi(i)− 1)× ∆Xi + TTi
b + dij

b )− TT j
b} for all transfer zones b inB. These values

of M can be easily calculated during the process of crafting the MIP formulation before
using any solver implementation, since finding M is a polynomial complexity problem.
Equation (4) indicates that the maximum value for the offset of each line is the minimum
between T (mod Fi) and the maximum headway Hi. No constraints are defined over
headways, since a fixed frequency Fi, which satisfies the bounds for headways, is assumed
for all subsequent trips. Finally, Equation (5) defines that decision variables Zij

rsb are within
the domain of binary variables.

Without losing generality, the proposed problem formulation assumes that Fj > Wij
b ,

∀j ∈ I, i.e., headways of bus lines are larger than the waiting time thresholds for users. The
case where Fj ≤Wij

b corresponds to a scenario in which the headway of line j is lower than
the time users are willing to wait; thus, all transfers with line j would be synchronized,
and they would not be part of the problem to solve (i.e., those lines can be removed for the
specific problem instance to solve).

4.3. Problem Variant #2: Headways Optimization

The second problem variant proposes optimizing not only the offsets of each line but
also the headways of each line. Headways are allowed to vary within a fixed range of
the reference value Fi. The interval for variation is defined by Fi(1−α) ≤ Xi

r − Xi
r−1 ≤

Fi(1+α), ∀r ∈ 1, 2, . . . , fi. To work under the assumption of maintaining an appropriate
quality of service for the transportation system, which is assumed to be fairly provided
by the current situation (i.e., using the reference values for the time difference between
consecutive trips of each line), small values of α are considered (see a graphical description
in Figure 3).

0

offset Fi
2

Xi
1 Xi

2

Fi
3

Xi
3

. . .
Xi

fi
T

Figure 3. Graphical representation of BSP variant #2. The offset (Xi
1) and headways (Fi

r) (in blue) are
the control variables, and departures are separated by variable headway values.



Appl. Sci. 2021, 11, 7138 9 of 27

The mathematical model of BSP variant #2 as an MIP problem is formulated in
Equations (6)–(13).

maximize ∑
b∈B

(
fi

∑
r=1

f j

∑
s=1

Zij
rsb) ·

Pij
b × (Xi

r − Xi
r−1)

T
(6)

subject to Zij
rsb ≤ 1 +

(Ai
rb + dij

b + Wij
b )− Aj

sb
M

, ∀b =< i, j, dij
b >∈ B,

1 ≤ r ≤ fi, 1 ≤ s ≤ f j,
(7)

Zij
rsb ≤ 1 +

Aj
sb − (Ai

rb + dij
b )

M
, ∀b =< i, j, dij

b >∈ B,
1 ≤ r ≤ fi, 1 ≤ s ≤ f j,

(8)

with Ai
rb = Xi

r+TTi
b, Aj

sb = X j
s+TT j

b

f j

∑
s=1

Zij
rsb ≤ 1, ∀i, j ∈ I, 1 ≤ r ≤ fi (9)

max(Fi(1−α), hi) ≤ Xi
r − Xi

r−1, ∀r ∈ 2, .., fi (10)

Xi
r − Xi

r−1 ≤ min(Fi(1+α), Hi), ∀r ∈ 2, .., fi (11)

T − Hi ≤ Xi
fi
≤ T, ∀i ∈ I (12)

Zij
rsb ∈ {0, 1}, 0 ≤ Xi

1 ≤ min(Hi, mod(T, Fi)) (13)

In Equations (6)–(13), Xi
r is the time of departure of trip r of line i, and Fi is the

reference value for the time difference between consecutive trips of line i, as defined in
problem variant #1. In turn, α ∈ [0, 1] is the coefficient used for defining the allowed
deviation of times between buses from the reference value Fi. Finally, Xi

fi
is the departing

time of the last trips of the line i.
The objective function is Equation (6), i.e., maximizing the number of successful

transfers completed in every transfer zone in the planning period. In this case, the demand
is split considering the (flexible) time between consecutive buses of line i (i.e., Xi

r − Xi
r−1).

Equations (7)–(13) formulate the problem constraints. Equations (7) and (8) define a
synchronization, as in the previous problem formulation.

Equation (9) guarantees that every trip r of line i synchronizes with, at most, one trip
s of line j. The last point is necessary because headways are part of the control variables
in this case. In the previous model, headways were known in advance, so they could be
pre-filtered in the case where a headway was lower than the maximum time passengers
are willing to wait at some stop. Conversely, in this model, Equation (9) prevents us from
counting such synchronizations more than once. Constraints in Equations (10) and (11)
impose the limits for headways, according to the allowed variation α. Constraints in
Equation (12) guarantee that the last trip is within the specified maximum range. Finally,
Equation (13) defines the domain for decision variables Zij

rsb.
The formulation in Equations (6)–(13) intuitively extends the previous to incorporate

headways as control variables, but it has the drawback of being quadratic in its objective
function due to the product of Zij

rsb(Xi
r − Xi

r−1). However, it is linearized by a change of

variables and additional constraints. Let yij
rsb be as Zij

rsb(Xi
r − Xi

r−1) in (6), so the objective

turns out to be
1
T ∑

b∈B

fi

∑
r=1

f j

∑
s=1

yij
rsb · P

ij
b , which is linear. Moreover, two equations per each yij

rsb

variable must be included: yij
rsb ≤ (Xi

r−Xi
r−1) and yij

rsb ≤ Hi · Z
ij
rsb. Within a maximization

problem, variables yij
rsb will take a value as high as possible. Hi is an upper bound for

(Xi
r−Xi

r−1) because of Equation (11), so whenever Zij
rsb = 1, the second equation results,
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yij
rsb ≤ Hi, and it is the first equation that guarantees y’s value to be (Xi

r−Xi
r−1) at most,

which is then exactly the value that the variable yij
rsb will take. Conversely, when Zij

rsb = 0,

the second equation forces yij
rsb to be 0. This behavior replicates that of Zij

rsb(Xi
r − Xi

r−1)’s
product, so the change of variables is equivalent and linear.

Table 1. Summary of the proposed BSP variants.

Problem Decision Variables Model (Objective, Constraints)

variant #1 Xi
1 (offset) Equations (1)–(5)

variant #2 Xi
1 (offset), Xi

s (headways, within range) Equations (6)–(13)

Table 1 summarizes both problem variants. Variables Xi
1 (i.e., offsets) are the control

variables in both proposed problem variants, while the latter adds new control variables
Xi

r with r > 1. The difference is semantic rather than substantive, and we refer to them as
Xi

r in general. The group of variables Zij
rsb are auxiliary in both proposed problem variants.

They are used to identify synchronizations as an outcome of control variable Xi
r values.

These variables are only meaningful when stated as Boolean variables, a condition that
must be explicitly set in the formulation since it is not achieved otherwise. Finally, problem
variant #2 introduces yij

rsb variables, which are also auxiliary and number as many as those

of Zij
rsb. They are used to obtain to a purely linear alternative formulation for the second

problem variant.
Unlike Zij

rsb variables, the domain of Xi
r and yij

rsb is that of the real numbers, since their
values are a consequence of active constraints in an optimization process. However, when-
ever parameters that define an instance are integers, optimal Xi

1 values Equations (1)–(5)
are to be integers as well, as they are the result of pushing the objective function variables
against integer constraints. The situation is not so for Equations (6)–(13), because α values
greater than 0 generally lead to non-integer bounds in both proposed problem variants.

5. Exact and Evolutionary Computation Methods for the BSP

This section presents the exact and evolutionary computation approaches developed
to address the BSP, considering extended transfer zones.

5.1. Mathematical Programming

The exact method for solving the formulated model was developed by combining
several tools. Each instance in the input dataset was imported into MATLAB matrices, just
as it was for each solution (externally found). In this way, results could be easily analyzed,
debugged, and post-processed. The software version of MATLAB is R2015a-8.5.0.

Some parameters of the models formulated in both proposed problem variants are
to be computed during the MIP construction itself. The most notorious is the value of
the parameter M, which has to be large enough to prevent (2), (3) or (7), (8) from being
unfeasible but not so large to lead to numerical issues. Because of this, we decided not to
use AMPL or other algebraic modeling language to feed the solver. Instead, we developed a
C++ program to read instances in the input dataset and convert them to CPLEX LP-format.

IBM(R) ILOG(R) CPLEX(R) Interactive Optimizer 12.6.3.0 was used as the op-
timization tool. The default GAP tolerance for the MIP solver is 0.01%. This corresponds to
the relative distance between the best integer solution found and the best upper bound
estimated up to that moment: ( f (x)− bestBound)/ f (x), where x is a solution, f (x) is its
objective function value, and bestBound is the lowest upper bound found for the opti-
mum value.
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5.2. Evolutionary Algorithm

The EA was developed using the Malva library (github.com/themalvaproject, ac-
cessed on 15 June 2021) in the C++ programming language. The main implementation
details are described in the next subsections.

Solution Encoding

For both problem variants, candidate solutions are represented using integer vectors.
Next, both representations are explained.

Problem variant #1: offset optimization. For problem variant #1, each integer value in the
solution representation indicates the offset for each bus line, i.e., the time elapsed between
time zero (start of the planning period) and the time when the first trip of the line departs.
A candidate solution of the BSP is represented by a vector X = {X1

1 , X2
1 , . . . Xn

1} (n is the
number of lines in the instance), Xi

0 ∈ Z+, and 0 ≤ Xi
0 ≤ T mod Hi. Figure 4 describes

the solution representation for a problem instance with n bus lines.

X1
1 X2

1 X3
1 · · · Xn−1

1 Xn
1

Figure 4. Solution representation for BSP variant #1.

Problem variant 2: headways optimization. For problem variant #2, integer values in
the solution representation represent, for each bus line, the offset (in minutes) and the
subsequent headway values (also in minutes). A candidate solution of the BSP is repre-
sented by a vector X = {X1

1 , X1
2 , · · · , X1

f1
, X2

1 , X2
2 · · · , X2

f2
, · · · , Xn

1 , · · · , Xn
1 , · · · , Xn

fn
}, where

Xi
0 ∈ Z+ ∪ 0, and Xi

ki
∈ Z+, with ki ∈ {1, · · · , fi}. Figure 5 describes the solution represen-

tation for a problem instance with n bus lines (offset values for each line are marked in
blue font).

X1
1 X1

2 X1
3 · · · X1

f1
X2

1 X2
1 · · · X1

f2
· · · · · · Xn

1 X1
n · · · Xn

fn

line 1 line 2 line n

Figure 5. Solution representation for BSP variant #2.

Evolution model. The EA follows the (µ + λ) evolution model [20]. λ offsprings are gen-
erated from µ parents, and all compete among themselves to select the solutions to include
in the population in a new generation. The (µ + λ) evolution model computed better and
more diverse solutions than a standard generational model in configuration experiments.

Initialization operator. The initialization generates random solutions, selecting integer
values within the corresponding ranges and taking into account the problem constraints.
The random initialization operator is conceived to generate an appropriate diversity for
the evolutionary process.

Selection operator. A tournament method is used for selecting individuals during the
evolutionary search. A tournament size of three individuals was used (just one individual
survives). The tournament operator outperformed the standard proportional selection in
configuration experiments, providing a proper selection pressure for candidate solutions
during the evolutionary process.

Recombination operator. An ad hoc variant of the well-known two-point crossover
operator was designed. Crossover points are randomly selected in [1, n−1], and infor-
mation from both parents is exchanged between the crossover points. The main idea is
to maintain those features of bus lines synchronized in the parent to be used as relevant
information for offspring generation. The recombination probability is pR. A correction
procedure is applied to guarantee the feasibility of the generated solutions by properly
shifting conflicting offset and/or headway values.

Mutation operator. An ad hoc variant of Gaussian mutation is applied. Selected posi-
tion(s) in an individual are changed according to a Gaussian distribution and considering

github.com/themalvaproject
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the limits (minimum and maximum) defined for both offsets and headways of each line.
The mutation probability is pM.

6. Experimental Evaluation

The experimental analysis of the exact and evolutionary methods for the BSP is
reported in this section.

6.1. Methodology

This subsection describes the methodology applied for the experimental evaluation of
the proposed methods to solve the BSP.

6.1.1. Problem Instances

The experimental evaluation considered realistic problem instances, generated using
real information from the case study, i.e., the STM in Montevideo, Uruguay.

Several data sources were considered to gather information to build the BSP instances.
All the information about the bus network (lines, routes, real timetables, bus stops locations,
etc.) was retrieved from the National Open Data Catalog (catalogodatos.gub.uy, accessed
on 15 June 2021). The real information about transfer demands was provided by the city
administration. All the gathered data were analyzed applying urban data analysis [7].
Several elements define the scenario and the problem instances built:

• The starting time was set to 12:00 p.m., and the final time was set to 2:00 p.m., including
one of the two peak hours occurring in a working day for the public transportation
system in Montevideo [21].

• The transfer demand function (P) is generated from real information registered by the
smart cards of the STM.

• The transfer zones are selected from the pairs of bus stops with the largest demand of
registered transfers for the period; all pairs are candidates to be selected in the created
BSP instances; the number of considered transfer zones is 170.

• The bus lines are those connecting the considered transfer zones; a total number of
250 lines are considered.

• The time traveling function (TT) is computed by processing the real GPS data from
the operating vehicles for each line;

• The walking time function is defined by the product of the estimated pedestrian speed
(6 km/h) and the distance between bus stops in each transfer zone; the distance is
computed using geospatial analysis.

• The maximum waiting time (W) is λH; five values of λ are considered (λ ∈ [0.3, 0.5,
0.7, 0.9] to define BSP instances with different tolerance levels.

A total number of 75 BSP instances are defined, of three different dimensions (30,
70, and 110 transfer zones), using the real information of buses operating in the STM of
Montevideo, Uruguay. Problem instances are named as [NP].[NL].[λ].[id]: NP= n the
number of transfer zones, NL= m the number of bus lines, λ the tolerance to define the
maximum waiting time (percentage), and id is a number to differentiate instances with
the same values of the other parameters. Problem instances are publicly available at
www.fing.edu.uy/inco/grupos/cecal/hpc/bus-sync/, accessed on 15 June 2021.

6.1.2. Execution Platform

Experiments were carried out on a Quad-core Xeon E5430 at 2.66GHz, 8 GB RAM,
from the high-performance computing infrastructure of the National Supercomputing
Center (Cluster-UY), Uruguay [22].

6.1.3. Baseline Solution for the Comparison

A significant solution to be used as baseline for the comparison is the real timetable
used in the transportation system of Montevideo. This solution determines the current
level of service regarding both direct trips and transfers. The real timetable does not apply

catalogodatos.gub.uy
www.fing.edu.uy/inco/grupos/cecal/hpc/bus-sync/
www.fing.edu.uy/inco/grupos/cecal/hpc/bus-sync/
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an explicit synchronization approach for transfers. The first trip of each line departs when
the planning period starts, and subsequent trips depart according to the real predefined
headways for each line. The comparison with the real timetable allows determining the
advantages of the explicit optimization approaches proposed for the studied BSP variants.

6.1.4. Statistical Analysis and Metrics

The effectiveness of the proposed EA is assessed via proper statistical analysis. For
every problem instance and experiment, 30 independent executions (i.e., using a different
seed for the random numbers generator) were performed. Then, a three-step analysis is
applied to study the fitness results distributions:

1. Normality check. The Shapiro–Wilk statistical test is applied to determine if the results
distribution is modeled by a normal distribution, i.e., computing the likeliness of the
underlying randomness to be normally distributed.

2. Mean rank comparison (for parametric configuration analysis). The Friedman rank
statistical test is applied to detect/analyze the differences in the distributions of fitness
values across multiple executions.

3. Pairwise comparison of distributions. The Kruskal–Wallis non-parametric test is applied
to determine if the differences between two parameter configurations have statistic
significance.

4. Boxplots are used for results visualization and graphical comparison. Relevant order
statistics are computed and reported: first quartile (Q1), third quartile (Q3), median,
minimum, and maximum values, since the Shapiro–Wilk test confirmed that the
results do not follow a normal distribution. The interquartile range (IQR) is used as a
measure of statistical dispersion, as usual for non-normal distributions.

Several metrics are used for evaluating the exact and the evolutionary approach: (i)
the number of successfully synchronized trips for passengers (i.e., the objective function
defined in Equations (1) and (6)), (ii) the improvements over the real solution, and (iii) the
average waiting for transfers in a transfer zone.

6.1.5. Parameter Setting

Exact Mathematical Programming. The default set of parameters of CPLEX was used
to find exact solutions, except for the timeout parameter, which was set to 7200 seconds.
Variant #2 with α = 0 is equivalent to variant #1, where headways are fixed and equal to Fi.
However, problem formulations are not equal nor are the proposed methods to solve them.
Variant #2 implies significantly more variables than variant #1, so it is worth checking that
algorithms are also able to rapidly find solutions when α = 0. Such instances were solved
within a few seconds, so the timeout limit only applies for α = 0.3. It was verified, though,
that the performance of the more general variant #2 is quite good for very low values of
α, comparable to the performance of the much simpler version #1. Runtimes degrade for
higher values of α, and in fact, the best solutions found for α = 0.3 were not proven to be
optimal according to the defined tolerance for the MIP solver (0.01%). There is room to
explore changes in parameters in order to improve performance, which is appointed as a
future line of work.

Evolutionary algorithm. Since EAs are non-deterministic, parameter configuration
analysis is mandatory to find the proper combination of parameter values to compute the
best results. Studied parameters included population size (ps), recombination probability
(pR), and mutation probability (pM). Experiments were performed on five small problem
instances with different features to avoid bias. Candidate values considered for each
parameter were ps ∈ {15, 25, 50}, pR ∈ {0.5, 0.75, 0.9}, and pM ∈ {0.001, 0.01, 0.1}.

A summary of the results obtained in the analysis of the population size is presented
in Table 2. Results of median and best fitness values are reported for each population size.
The Friedman rank test is applied to analyze the results distribution.
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Table 2. Analysis of the population size.

Average Fitness

ps 30.37.30.1 30.37.50.1 30.37.70.1 30.37.90.1 30.37.100.1

15 251.96 267.15 286.97 295.06 296.51
25 253.78 266.50 288.01 295.45 297.48
50 253.70 271.89 287.39 295.37 297.19

Friedman Rank (p-Value < 10−3)

ps 30.37.30.1 30.37.50.1 30.37.70.1 30.37.90.1 30.37.100.1

15 3 2 3 3 3
25 1 3 1 1 1
50 2 1 2 2 2

Best Fitness

ps 30.37.30.1 30.37.50.1 30.37.70.1 30.37.90.1 30.37.100.1

15 260.71 276.41 291.07 296.69 298.31
25 260.94 275.33 291.72 297.95 298.46
50 262.18 273.62 290.06 296.09 298.22

Friedman Rank (p-Value < 10−3)

ps 30.37.30.1 30.37.50.1 30.37.70.1 30.37.90.1 30.37.100.1

15 3 1 2 2 2
25 2 2 1 1 1
50 1 3 3 3 3

Results in Table 2 demonstrate that the best results were computed using a population
size of 25 individuals. Using a larger population size turned to be counterproductive for
the EA, since suboptimal solutions dominate quickly and results do not improve in the
long term.

Table 3 reports the best fitness values and the Friedman ranks of the nine configura-
tions (C1, . . . , C9) considered in the analysis of the recombination and mutation probabili-
ties. The p-value of the Friedman rank was below 10−3, thus assuring statistical significance
of the results. In turn, the boxplots in Figure 6 graphically compare the median, best, worst,
Q1, and Q3 values obtained for each studied configuration in the problem instance, which
is representative of the results computed for other instances too. According to the reported
metrics, the best results were obtained with configuration C2, i.e., setting PS = 25, pR = 0.5,
and pM = 0.005. Configuration C2 systematically obtained the best Friedman ranking in all
but one of the studied problem instances.

Table 3. Analysis of the recombination and mutation probabilities in the proposed EA.

Fitness

id pR pM 30.37.30.1 30.37.50.1 30.37.70.1 30.37.90.1 30.37.100.1

C1 0.5 0.010 253.18 263.90 285.82 292.03 294.97
C2 0.5 0.005 263.30 274.21 293.15 298.19 298.79
C3 0.5 0.001 253.99 267.70 287.67 295.56 297.06
C4 0.75 0.010 250.67 268.65 286.70 293.12 294.50
C5 0.75 0.005 262.91 276.65 291.69 296.48 298.25
C6 0.75 0.001 250.32 270.05 284.09 292.87 294.89
C7 0.9 0.010 255.12 269.66 289.43 293.91 296.06
C8 0.9 0.005 260.94 275.33 291.72 297.95 298.46
C9 0.9 0.001 256.80 269.87 288.57 296.71 297.45
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Table 3. Cont.

Friedman Rank

id pR pM 30.37.30.1 30.37.50.1 30.37.70.1 30.37.90.1 30.37.100.1 avg.

C1 0.50 0.01 7 9 8 9 7 8.0
C2 0.50 0.005 1 3 1 1 1 1.4
C3 0.50 0.001 6 8 6 5 5 6.0
C4 0.75 0.01 8 7 7 7 9 7.6
C5 0.75 0.005 2 1 3 4 3 2.6
C6 0.75 0.001 9 4 9 8 8 7.6
C7 0.90 0.01 5 6 4 6 6 5.4
C8 0.90 0.005 3 2 2 2 2 2.2
C9 0.90 0.001 4 5 5 3 4 4.2

C1 C2 C3 C4 C5 C6 C7 C8 C9
280

285

290

295

300

Figure 6. Boxplot analysis of parameter configurations for a representative BSP instance.

6.2. Numerical Results

This subsection reports the numerical results of the proposed methods for the BSP
and the comparison with the baseline real timetable for both studied problem variants.

6.2.1. Problem Variant #1: Offset Optimization

Table 4 presents the objective function values achieved by the exact and the EA
for the studied BSP instances for variant #1 (offset optimization). The real timetable is
reported as baseline for the comparison. Column ‘EA vs. exact’ compares the results of
both proposed approaches (a negative percentage value means a smaller function value
for the EA solution). Relative improvements over the real timetable (in percentage values)
are also reported. Column ‘EA vs. real’ reports the relative improvement over the real
timetable for the EA solution, and column ‘exact vs. real’ reports the relative improvement
over the real timetable for the exact solution.

Results in Table 4 demonstrate that both exact and EA significantly outperform the
baseline real solution in all problem instances. EA improved the real solution up to 66,3%
in instance 40.37.30.1, and the exact method improved over the real solution up to 66.6%
in instance 70.63.30.2. When comparing the EA and the exact solutions, the evolutionary
approach demonstrated to be highly efficient at solving the problem: it computed the
optimal solution in 54 out of the 75 problem instances studied. In all other instances, the
distance to the optimum was below 1%. Overall, improvements over the real timetable
were 24.5% (on average) for EA and 24.6% (on average) for the exact solution.
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Table 4. Summary of results: exact and EA for BSP variant #1.

Scenario EA Exact Real EA vs. Exact EA vs. Real Exact vs. Real

30.37.100.1 265.76 265.76 245.33 0.00% 8.3% 8.3%
30.37.30.1 171.12 171.12 102.88 0.00% 66.3% 66.3%
30.37.50.1 203.52 203.58 165.28 −0.03% 23.1% 23.2%
30.37.70.1 252.22 252.22 219.60 0.00% 14.9% 14.9%
30.37.90.1 260.68 260.68 245.33 0.00% 6.3% 6.3%

30.40.100.0 205.68 205.68 187.57 0.00% 9.7% 9.7%
30.40.100.4 223.17 223.17 204.49 0.00% 9.1% 9.1%
30.40.30.0 131.76 132.13 82.83 −0.28% 59.1% 59.5%
30.40.30.4 143.98 143.98 98.36 0.00% 46.4% 46.4%
30.40.50.0 162.15 162.17 122.31 −0.01% 32.6% 32.6%
30.40.50.4 169.66 169.66 123.83 0.00% 37.0% 37.0%
30.40.70.0 195.54 195.54 166.10 0.00% 17.7% 17.7%
30.40.70.4 208.99 208.99 179.18 0.00% 16.6% 16.6%
30.40.90.0 205.68 205.68 187.57 0.00% 9.7% 9.7%
30.40.90.4 223.12 223.12 202.69 0.00% 10.1% 10.1%

30.41.100.2 247.59 247.59 224.50 0.00% 10.3% 10.3%
30.41.30.2 154.11 154.20 95.89 −0.06% 60.7% 60.8%
30.41.50.2 186.95 187.35 145.39 −0.21% 28.6% 28.9%
30.41.70.2 236.50 236.50 195.47 0.00% 21.0% 21.0%
30.41.90.2 247.59 247.59 224.05 0.00% 10.5% 10.5%

30.42.100.3 231.13 231.13 211.67 0.00% 9.2% 9.2%
30.42.30.3 138.83 138.83 93.27 0.00% 48.8% 48.8%
30.42.50.3 168.64 168.64 142.38 0.00% 18.4% 18.4%
30.42.70.3 212.78 212.78 187.80 0.00% 13.3% 13.3%
30.42.90.3 230.98 230.98 211.12 0.00% 9.4% 9.4%

70.60.100.1 540.41 540.41 492.20 0.00% 9.8% 9.8%
70.60.30.1 332.11 333.02 211.56 −0.27% 57.0% 57.4%
70.60.50.1 404.30 406.61 310.96 −0.57% 30.0% 30.8%
70.60.70.1 509.60 509.60 435.28 0.00% 17.1% 17.1%
70.60.90.1 539.53 539.53 491.70 0.00% 9.7% 9.7%

70.62.100.3 522.34 522.34 479.58 0.00% 8.9% 8.9%
70.62.30.3 306.14 309.02 207.12 −0.93% 47.8% 49.2%
70.62.50.3 388.99 389.69 321.41 −0.18% 21.0% 21.2%
70.62.70.3 486.82 486.82 417.53 0.00% 16.6% 16.6%
70.62.90.3 521.82 521.82 478.46 0.00% 9.1% 9.1%

70.63.100.2 525.90 525.90 478.87 0.00% 9.8% 9.8%
70.63.30.2 332.06 334.45 200.77 −0.55% 65.7% 66.6%
70.63.50.2 405.90 405.90 316.53 0.00% 28.2% 28.2%
70.63.70.2 497.84 497.84 427.21 0.00% 16.5% 16.5%
70.63.90.2 525.90 525.90 477.09 0.00% 10.2% 10.2%

70.67.100.0 487.42 487.42 440.27 0.00% 10.7% 10.7%
70.67.30.0 304.60 304.85 203.81 −0.08% 49.5% 49.6%
70.67.50.0 374.91 374.98 289.39 −0.02% 29.6% 29.6%
70.67.70.0 459.73 459.93 386.96 −0.04% 18.8% 18.9%
70.67.90.0 487.42 487.42 440.27 0.00% 10.7% 10.7%

70.69.100.4 505.15 505.15 456.10 0.00% 10.8% 10.8%
70.69.30.4 322.57 322.57 209.04 0.00% 54.3% 54.3%
70.69.50.4 385.63 385.63 295.16 0.00% 30.7% 30.7%
70.69.70.4 475.36 475.36 408.63 0.00% 16.3% 16.3%
70.69.90.4 504.20 504.20 454.31 0.00% 11.0% 11.0%
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Table 4. Cont.

Scenario EA Exact Real EA vs. Exact EA vs. Real Exact vs. Real

110.76.100.2 777.19 777.19 706.18 0.00% 10.1% 10.1%
110.76.30.2 487.71 489.13 298.20 −0.29% 63.6% 64.0%
110.76.50.2 591.50 591.50 465.58 0.00% 27.0% 27.0%
110.76.70.2 731.20 731.20 631.71 0.00% 15.7% 15.7%
110.76.90.2 777.06 777.06 703.90 0.00% 10.4% 10.4%
110.78.100.0 806.58 806.58 728.94 0.00% 10.7% 10.7%
110.78.100.1 826.45 826.45 752.16 0.00% 9.9% 9.9%
110.78.100.3 803.13 803.13 731.61 0.00% 9.8% 9.8%
110.78.30.0 487.92 490.34 315.02 −0.49% 54.9% 55.7%
110.78.30.1 507.28 511.37 311.43 −0.80% 62.9% 64.2%
110.78.30.3 499.39 499.39 307.45 0.00% 62.4% 62.4%
110.78.50.0 606.89 610.36 461.39 −0.57% 31.5% 32.3%
110.78.50.1 623.89 623.89 467.20 0.00% 33.5% 33.5%
110.78.50.3 605.72 609.60 472.20 −0.64% 28.3% 29.1%
110.78.70.0 753.93 754.26 648.61 −0.04% 16.2% 16.3%
110.78.70.1 775.14 775.14 659.51 0.00% 17.5% 17.5%
110.78.70.3 753.11 753.76 635.61 −0.09% 18.5% 18.6%
110.78.90.0 805.77 805.77 727.38 0.00% 10.8% 10.8%
110.78.90.1 824.47 824.47 751.09 0.00% 9.8% 9.8%
110.78.90.3 802.42 802.42 729.99 0.00% 9.9% 9.9%
110.83.100.4 779.09 779.09 713.79 0.00% 9.1% 9.1%
110.83.30.4 501.43 501.43 305.51 0.00% 64.1% 64.1%
110.83.50.4 593.89 593.89 464.88 0.00% 27.8% 27.8%
110.83.70.4 730.68 730.68 635.29 0.00% 15.0% 15.0%
110.83.90.4 778.09 778.09 711.49 0.00% 9.4% 9.4%

The average improvements of both exact and EA over the baseline solutions, grouped
by tolerance and scenario size, are reported in Table 5. Regarding tolerance levels, improve-
ments of EA and the exact algorithm over the real timetable were up to 57.56% and 57.96%,
respectively, in scenarios with λ = 30, which pose the tighter bounds for user waiting times.
In less restrictive scenarios, both studied methods improved over 9.74% in regard to the
real timetable. Regarding the scenario dimension, both methods computed robust solutions
that improve between 23.88% (EA, for scenarios with 30 transfer zones) and 25.72% (exact,
for scenarios with 110 transfer zones).

Table 5. Exact and EA improvements over the baseline real solutions, grouped by tolerance and
problem dimension (number of transfer zones).

EA Over Real Exact Over Real EA vs. Exact

λ ∆ Instances λ ∆ Instances λ ∆ Instances

30 57.56% 15 30 57.96% 15 30 −0.25% 15
50 28.49% 15 50 28.68% 15 50 −0.15% 15
70 16.79% 15 70 16.80% 15 70 −0.01% 15
90 9.79% 15 90 9.79% 15 90 0.00% 15

100 9.74% 15 100 9.74% 15 100 0.00% 15

EA Over Real Exact Over Real EA vs. Exact

N ∆ Instances N ∆ Instances N ∆ Instances

30 23.88% 25 30 23.92% 25 30 −0.02% 25
70 23.99% 25 70 24.15% 25 70 −0.11% 25

110 25.55% 25 110 25.72% 25 110 −0.12% 25

The reported improvements on the objective function values grouped by tolerance
and problem dimension indicate that for all sizes, the improvements over the real timetable
increase as user tolerance decreases. This is a relevant result, which demonstrates that
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the optimization methods properly scale when the complexity of the problem increases,
providing solutions with a better quality of service. Improvements also slightly increase
for larger instance dimensions.

6.2.2. Problem Variant #2: Offset and Headways Optimization

Problem variant #2 imposes a significantly harder challenge for the studied optimiza-
tion algorithms. Control variables, originally spanning a sole variable per line (offsets),
also incorporate several more variables per line (headways). In addition, as mentioned
in Section 4.3, in the exact model, the number of variables increases not only because of
control variables (i.e., offsets and headways) but also because of auxiliary variables (i.e.,
synchronizations and the objective’s contributions), half of which are Boolean. In turn, for
the EA, the number of variables increased more than 20 times, and a correction procedure
is needed to repair non-feasible solutions generated by the evolutionary operators. Both
facts result in a larger and more complex search space for optimization.

Table 6 reports the results of the exact algorithm for BSP variant #2. Each scenario
has an associated row in the table. Columns #vars, #varsCtl, and #varsBool, respectively,
correspond to the total number of variables, the number of control variables (all of which
are real variables), and the number of Boolean variables. The column named best-sol reports
the value of the objective function for the best solution found before timeout. Column
GAP corresponds to the estimated worst-case gap to the optimum, that is, the relative gap
between the reported solution and the lowest upper bound for the optimum estimated up
to that moment. Finally, column time to solution shows the time required for the solver to
find that solution.

Table 6. Summary of results of the exact algorithm for BSP variant #2.

Scenario #vars #varsCtl #varsBool Best-Sol GAP Time to Solution

30.40.100.0 7762 410 3676 240.48 15.01% 6533
30.40.30.0 7762 410 3676 231.80 15.36% 7015
30.40.50.0 7762 410 3676 236.45 12.78% 6952
30.40.70.0 7762 410 3676 239.78 13.84% 6487
30.40.90.0 7762 410 3676 240.31 13.58% 6502

30.40.100.4 8086 418 3834 261.02 11.26% 1914
30.40.30.4 8086 418 3834 246.10 16.24% 6822
30.40.50.4 8086 418 3834 251.91 14.88% 328
30.40.70.4 8086 418 3834 258.56 12.69% 640
30.40.90.4 8086 418 3834 261.22 11.48% 272

30.42.100.3 9053 481 4286 266.78 13.77% 6544
30.42.30.3 9053 481 4286 250.58 14.47% 6912
30.42.50.3 9053 481 4286 261.86 12.01% 6606
30.42.70.3 9053 481 4286 265.36 12.92% 319
30.42.90.3 9053 481 4286 266.51 14.40% 196

30.37.100.1 9107 435 4336 301.73 16.91% 6456
30.37.30.1 9107 435 4336 283.66 19.13% 6562
30.37.50.1 9107 435 4336 294.14 18.31% 7061
30.37.70.1 9107 435 4336 300.95 16.84% 6692
30.37.90.1 9107 435 4336 299.54 15.92% 6553

30.41.100.2 9435 467 4484 279.61 19.24% 4747
30.41.30.2 9435 467 4484 256.80 26.11% 375
30.41.50.2 9435 467 4484 271.55 20.20% 7157
30.41.70.2 9435 467 4484 278.92 18.63% 267
30.41.90.2 9435 467 4484 277.95 19.53% 2493
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Table 6. Cont.

Scenario #vars #varsCtl #varsBool Best-Sol GAP Time to Solution

70.67.100.0 18466 692 8887 560.70 17.97% 1972
70.67.30.0 18466 692 8887 504.97 27.64% 7153
70.67.50.0 18466 692 8887 533.73 21.65% 7194
70.67.70.0 18466 692 8887 542.97 22.29% 4448
70.67.90.0 18466 692 8887 553.31 19.78% 7134

70.69.100.4 19408 720 9344 579.77 17.29% 6601
70.69.30.4 19408 720 9344 509.99 29.70% 4178
70.69.50.4 19408 720 9344 534.51 25.21% 3671
70.69.70.4 19408 720 9344 566.38 19.77% 4382
70.69.90.4 19408 720 9344 581.45 17.21% 6980

70.60.100.1 19469 659 9405 609.27 21.51% 7087
70.60.30.1 19469 659 9405 539.19 33.65% 7189
70.60.50.1 19469 659 9405 570.25 27.76% 7119
70.60.70.1 19469 659 9405 602.28 21.85% 7062
70.60.90.1 19469 659 9405 614.67 20.26% 7098

70.62.100.3 19608 648 9480 605.51 16.38% 7084
70.62.30.3 19608 648 9480 535.45 27.84% 7120
70.62.50.3 19608 648 9480 573.81 21.20% 7148
70.62.70.3 19608 648 9480 592.85 18.51% 7033
70.62.90.3 19608 648 9480 602.33 16.96% 7139

70.63.100.2 19667 653 9507 598.86 20.99% 7049
70.63.30.2 19667 653 9507 514.17 37.05% 7152
70.63.50.2 19667 653 9507 554.54 28.91% 7192
70.63.70.2 19667 653 9507 594.11 21.18% 7160
70.63.90.2 19667 653 9507 594.78 21.66% 6979

110.78.100.0 29561 763 14399 891.64 25.00% 7194
110.78.30.0 29561 763 14399 804.94 35.38% 7154
110.78.50.0 29561 763 14399 811.56 34.99% 7177
110.78.70.0 29561 763 14399 896.75 22.85% 7155
110.78.90.0 29561 763 14399 902.26 23.58% 7175
110.78.100.1 29861 799 14531 936.73 21.63% 7164
110.78.30.1 29861 799 14531 791.59 40.92% 7159
110.78.50.1 29861 799 14531 848.34 32.66% 7142
110.78.70.1 29861 799 14531 916.96 23.12% 7166
110.78.90.1 29861 799 14531 920.41 23.52% 7163
110.78.100.3 30376 810 14783 924.06 21.21% 7159
110.78.30.3 30376 810 14783 807.20 35.26% 7174
110.78.50.3 30376 810 14783 857.82 28.76% 7152
110.78.70.3 30376 810 14783 904.65 23.12% 7180
110.78.90.3 30376 810 14783 920.32 21.23% 7142
110.76.100.2 30558 772 14893 886.30 21.99% 7158
110.76.30.2 30558 772 14893 752.96 40.05% 7172
110.76.50.2 30558 772 14893 789.53 34.76% 7116
110.76.70.2 30558 772 14893 852.75 25.33% 7174
110.76.90.2 30558 772 14893 870.84 24.08% 7176
110.83.100.4 30762 858 14952 887.73 20.74% 7139
110.83.30.4 30762 858 14952 744.44 40.45% 7181
110.83.50.4 30762 858 14952 816.41 29.22% 7112
110.83.70.4 30762 858 14952 852.20 24.63% 7054
110.83.90.4 30762 858 14952 887.83 20.57% 7154

Since no instance was solved to optimality when α = 0.3, the overall runtime was
7200 s for all instances. For example, in instance 30.40.50.4, the best solution was found
in 328 seconds, and it was not improved in the remaining 6872 seconds. The rest of the
processing was spent to improve the gap to the lower bound. GAPs reported in Table 6 are
always best-gaps, i.e., the lowest gap, the last reported in logs before timeout.
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The remarkable facts of the results in Table 6 are: (i) control variables only represent
between 2.5% and 5.3% of all variables, meaning that most resources in the exact approach
are put into the auxiliary variables needed to reach the linear mixed integer programming
formulation; (ii) the total number of variables is highly correlated with both the number of
lines and bus stops; and (iii) although gap and time to solution are both correlated with the
number of control and total variables, those correlations are higher for the total number
of variables. The last two observations arise from computing Pearson’s linear correlation
coefficient over the whole set of instances used as a dataset: number of bus stops, number
of lines, #vars, #varsCtl, GAP, and time to solution, as in Table 6.

The most notorious difference between variant #1 and variant #2 comes from the
value of α, not from the higher number of variables. The number and type of variables
in Equations (6)–(13) are not affected by α, but CPLEX time-to-optimal is in the order of
the second for α = 0 (no headway tolerance at all). Conversely, when α = 0.3, none of
the solutions is proven optimal within the 2 h timeout period, and only in 7 out of the 75
instances could the best solution be found before 20 min. Thus, the increased size and
complexity of the search space coming from higher values of α have a much higher impact
in the performance than the number of variables.

The objective function values achieved by exact and EA for the studied problem
instances in BSP variant #2 are reported in Table 7. The real timetable is reported as baseline
for the comparison, and columns ‘EA vs. exact’, ‘EA vs. real’, and ‘exact vs. real’ summarize
the comparison, as in Table 4.

Table 7. Summary of results: exact and EA for BSP variant #2.

Scenario EA Exact Real EA vs. Exact EA vs. Real Exact vs. Real

30.37.100.1 298.79 301.73 245.33 −0.98% 21.8% 23.0%
30.37.30.1 282.68 283.66 102.88 −0.35% 155.9% 175.7%
30.37.50.1 294.14 294.14 165.28 0.00% 66.6% 78.0%
30.37.70.1 300.95 300.95 219.60 0.00% 33.5% 37.0%
30.37.90.1 298.19 299.54 245.33 −0.45% 21.5% 22.1%

30.40.100.0 240.48 240.48 187.57 0.00% 26.8% 28.2%
30.40.100.4 261.02 261.02 204.49 0.00% 26.8% 27.6%
30.40.30.0 223.96 231.80 82.83 −3.38% 152.8% 179.9%
30.40.30.4 234.73 246.10 98.36 −4.62% 133.2% 150.2%
30.40.50.0 233.81 236.45 122.31 −1.12% 80.1% 93.3%
30.40.50.4 247.48 251.91 123.83 −1.76% 92.7% 103.4%
30.40.70.0 239.44 239.78 166.10 −0.14% 40.2% 44.4%
30.40.70.4 258.56 258.56 179.18 0.00% 41.1% 44.3%
30.40.90.0 240.31 240.31 187.57 0.00% 25.7% 28.1%
30.40.90.4 261.22 261.22 202.69 0.00% 27.6% 28.9%

30.41.100.2 279.61 279.61 224.50 0.00% 23.2% 24.5%
30.41.30.2 256.52 256.80 95.89 −0.11% 150.6% 167.8%
30.41.50.2 265.18 271.55 145.39 −2.35% 76.2% 86.8%
30.41.70.2 283.15 278.92 195.47 1.52% 37.7% 42.7%
30.41.90.2 275.52 277.95 224.05 −0.87% 23.0% 24.1%

30.42.100.3 263.26 266.78 211.67 −1.32% 24.4% 26.0%
30.42.30.3 242.43 250.58 93.27 −3.25% 148.0% 168.7%
30.42.50.3 254.03 261.86 142.38 −2.99% 74.1% 83.9%
30.42.70.3 265.36 265.36 187.80 0.00% 37.6% 41.3%
30.42.90.3 266.51 266.51 211.12 0.00% 24.6% 26.2%
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Table 7. Cont.

Scenario EA Exact Real EA vs. Exact EA vs. Real Exact vs. Real

70.60.100.1 609.27 609.27 492.20 0.00% 22.9% 23.8%
70.60.30.1 539.19 539.19 211.56 0.00% 135.9% 154.9%
70.60.50.1 570.25 570.25 310.96 0.00% 70.8% 83.4%
70.60.70.1 602.28 602.28 435.28 0.00% 32.9% 38.4%
70.60.90.1 614.67 614.67 491.70 0.00% 21.4% 25.0%

70.62.100.3 605.51 605.51 479.58 0.00% 24.6% 26.3%
70.62.30.3 527.03 535.45 207.12 −1.57% 135.6% 158.5%
70.62.50.3 563.79 573.81 321.41 −1.75% 64.0% 78.5%
70.62.70.3 592.85 592.85 417.53 0.00% 34.3% 42.0%
70.62.90.3 602.33 602.33 478.46 0.00% 23.4% 25.9%

70.63.100.2 598.86 598.86 478.87 0.00% 23.8% 25.1%
70.63.30.2 514.17 514.17 200.77 0.00% 148.7% 156.1%
70.63.50.2 542.788 554.54 316.53 −2.12% 62.9% 75.2%
70.63.70.2 594.11 594.11 427.21 0.00% 37.0% 39.1%
70.63.90.2 594.7 594.78 477.09 0.00% 22.7% 24.7%

70.67.100.0 560.70 560.70 440.27 0.00% 26.2% 27.4%
70.67.30.0 489.28 504.97 203.81 −3.11% 130.4% 147.8%
70.67.50.0 518.43 533.73 289.39 −2.87% 69.1% 84.4%
70.67.70.0 542.97 542.97 386.96 0.00% 39.1% 40.3%
70.67.90.0 552.94 553.31 440.27 −0.07% 25.6% 25.7%

70.69.100.4 579.77 579.77 456.10 0.00% 26.4% 27.1%
70.69.30.4 483.19 509.99 209.04 −5.26% 122.1% 144.0%
70.69.50.4 534.51 534.51 295.16 0.00% 69.7% 81.1%
70.69.70.4 566.38 566.38 408.63 0.00% 35.1% 38.6%
70.69.90.4 581.45 581.45 454.31 0.00% 26.0% 28.0%

110.76.100.2 886.30 886.30 706.18 0.00% 25.5% 25.5%
110.76.30.2 712.33 752.96 298.20 −5.40% 138.9% 152.5%
110.76.50.2 766.31 789.53 465.58 −2.94% 64.6% 69.6%
110.76.70.2 824.29 852.75 631.71 −3.34% 30.5% 35.0%
110.76.90.2 867.47 870.84 703.90 −0.39% 23.2% 23.7%
110.78.100.0 891.64 891.64 728.94 0.00% 22.3% 22.3%
110.78.100.1 936.73 936.73 752.16 0.00% 24.5% 24.5%
110.78.100.3 919.12 924.06 731.61 −0.53% 25.6% 26.3%
110.78.30.0 745.54 804.94 315.02 −7.38% 136.7% 155.5%
110.78.30.1 761.42 791.59 311.43 −3.81% 144.5% 154.2%
110.78.30.3 744.56 807.20 307.45 −7.76% 142.2% 162.5%
110.78.50.0 800.06 811.56 461.39 −1.42% 73.4% 75.9%
110.78.50.1 798.96 848.34 467.20 −5.82% 71.0% 81.6%
110.78.50.3 840.01 857.82 472.20 −2.08% 77.9% 81.7%
110.78.70.0 887.16 896.75 648.61 −1.07% 36.8% 38.3%
110.78.70.1 919.96 916.96 659.51 −0.33% 39.5% 39.0%
110.78.70.3 870.30 904.65 635.61 −3.80% 36.9% 42.3%
110.78.90.0 898.51 902.26 727.38 −0.42% 23.5% 24.0%
110.78.90.1 919.59 920.41 751.09 −0.09% 42.4% 22.5%
110.78.90.3 920.32 920.32 729.99 0.00% 26.1% 26.1%
110.83.100.4 887.73 887.73 713.79 0.00% 24.4% 24.4%
110.83.30.4 715.95 744.44 305.51 −3.83% 134.3% 143.7%
110.83.50.4 861.29 816.41 464.88 −6.75% 63.8% 75.6%
110.83.70.4 829.03 852.20 635.29 −2.72% 30.5% 34.1%
110.83.90.4 879.41 887.83 711.49 −0.95% 23.6% 24.8%

Results in Table 7 demonstrate that both exact and EA significantly outperform the
baseline real solution in all BSP instances. EA improved over the real solution up to 155.9%
in instance 30.37.30.1, and the exact method improved over the real solution up to 179.9%
in instance 30.40.30.0. The comparative analysis of EA and the exact solutions indicates
that the evolutionary approach demonstrated to be highly efficient at solving the problem:
on average, the distance to the exact solution was below 1.32%. Overall, EA improved
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63.4% (on average) over the real timetable, and the exact method improved 66.2% (on
average) over the real timetable.

The average improvements of exact and EA over the baseline real solution, grouped by
tolerance and instance size for BSP variant #2, are reported in Table 8. Regarding tolerance
levels, EA improved up to 150.95%, and the exact method improved up to 158.13% over
the real timetable. The best improvements were computed for λ = 30, which pose the
tighter bounds for user waiting times. In less restrictive scenarios, improvements over the
real timetable were over 25.23% for both methods. Regarding scenario dimension, both
methods computed robust solutions that improve between 58.50% (EA, instances with 110
transfer zones) and 70.25% (exact, instances with 30 transfer zones) over the real solution.

Table 8. Exact and EA improvements over baseline real solution, grouped by tolerance and problem
dimension, for BSP variant #2.

EA Over Real Exact Over Real EA vs. Exact

λ ∆ Instances λ ∆ Instances λ ∆ Instances

30 150.95% 15 30 158.13% 15 30 −3.32% 15
50 78.06% 15 50 82.16% 15 50 −2.26% 15
70 38.95% 15 70 39.79% 15 70 −0.61% 15
90 25.05% 15 90 25.32% 15 90 −0.22% 15

100 25.23% 15 100 25.47% 15 100 −0.19% 15

EA Over Real Exact Over Real EA vs. Exact

N ∆ Instances N ∆ Instances N ∆ Instances

30 68.28% 25 30 70.25% 25 30 −0.89% 25
70 63.37% 25 70 64.84% 25 70 −0.67% 25

110 58.50% 25 110 63.43% 25 110 −2.41% 25

The reported improvements on the objective function values grouped by tolerance
and problem dimension demonstrate that for all BSP instances, the improvements over
the real timetable increase as user tolerance decreases. Similar to problem variant #1, the
optimization algorithms properly scale with the complexity of the problem, computing
better solutions for tighter instances.

The proposed EA computed the same solution as the exact method in 33 problem
instances (10 with 30 transfer zones, 18 with 70 transfer zones, and 5 with 110 transfer
zones). Furthermore, in another 14 instances, the difference was below 1%, and in two
problem instances, the EA computed a better solution than the exact method.

6.2.3. Quality of Service Results

Table 9 reports the average objective values (normalized by the number of transfer
zones) for all scenarios, grouped by tolerance. Results show that both EA and the exact
methods significantly improve over the baseline real solution. For BSP variant #1, the
largest difference is 1.72 (4.68 – 2.97) between the exact approach and the real solution,
when low user tolerance is considered (λ = 30). Similar to the results reported in Table 5,
the graphic demonstrates that improvements of the optimization methods are better in
tighter BSP instances. For BSP variant #2, the best improvement of the exact method was
4.45, and the best improvement of EA was 4.45, both when λ = 30. Results are graphically
presented in Figure 7 for BSP variant #1.
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Table 9. Average objective values (normalized by the number of transfer zones), grouped by tolerance,
for both problem variants.

Problem Variant #1
λ EA Exact Real EA/Real Exact/Real EA−Real Exact−Real

30 4.67 4.68 2.97 1.57 1.58 1.70 1.72
50 5.68 5.69 4.43 1.28 1.28 1.25 1.26
70 7.04 7.04 6.03 1.17 1.17 1.01 1.01
90 7.47 7.47 6.81 1.10 1.10 0.66 0.66
100 7.36 7.36 6.61 1.11 1.11 0.75 0.75

Problem Variant #2
λ EA Exact Real EA/Real Exact/Real EA−Real Exact−Real

30 7.42 7.66 2.97 2.50 2.58 4.45 4.70
50 7.88 8.06 4.43 1.78 1.82 3.45 3.63
70 8.38 8.43 6.03 1.39 1.40 2.35 2.40
90 8.51 8.52 6.81 1.25 1.25 1.70 1.72
100 8.57 8.59 6.61 1.30 1.30 1.96 1.98
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Figure 7. Comparison of normalized objective function values, grouped by tolerance, for BSP
variant #1.

Three quality of service metrics (r, ls, and ln) are considered in the results reported
for the computed solutions in Table 10, grouped by dimension (NP) and tolerance (λ).
Metric r is the ratio between the average waiting time computed by the proposed timetable
schedules and the threshold value that passengers are willing to wait for a transfer in each
transfer zone (Wij

b ). The r metric evaluates the number of successful synchronized trips,
which are represented by r ≤ 1.0, whereas unsuccessful synchronizations are represented
by r > 1.0. Metric r also allows evaluating how far from acceptable (i.e., synchronized) the
trips of two lines are, considering the deviation from the ratio defined by the threshold value
passengers are willing to wait (1.0). In turn, metric ls is the average number of successfully
synchronized lines, whereas metric ln is the average number of not synchronized lines. All
metrics are reported for each instance class regarding dimension and tolerance.
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Table 10. Average synchronizations for the studied methods.

Problem Variant #1
m λ Real EA Exact

r ls/ln r ls/ln r ls/ln

30 100 0.45 22/0 0.44 22/0 0.44 22/0
30 90 0.47 21/1 0.46 22/0 0.47 22/0
30 70 0.59 19/3 0.54 21/1 0.53 22/0
30 50 0.85 12/10 0.76 16/6 0.75 18/4
30 30 1.33 3/19 1.15 10/12 1.12 11/11

70 100 0.46 39/0 0.44 39/0 0.44 39/0
70 90 0.47 39/0 0.46 39/0 0.47 39/0
70 70 0.59 33/6 0.54 39/0 0.52 39/0
70 50 0.85 24/14 0.74 30/9 0.73 32/6
70 30 1.35 5/33 1.14 18/21 1.14 20/19

110 100 0.48 49/0 0.45 49/0 0.45 49/0
110 90 0.49 47/2 0.48 49/0 0.46 49/0
110 70 0.61 40/9 0.57 43/6 0.53 49/0
110 50 0.87 28/20 0.74 33/16 0.72 40/9
110 30 1.38 7/42 1.14 21/28 1.10 24/23

Problem Variant #2
m λ Real EA Exact

r ls/ln r ls/ln r ls/ln

30 100 0.45 22/0 0.44 22/0 0.44 22/0
30 90 0.47 22/0 0.46 22/0 0.47 22/0
30 70 0.59 22/0 0.54 22/0 0.53 22/0
30 50 0.85 16/6 0.76 19/3 0.75 19/3
30 30 1.33 3/19 1.15 5/16 1.12 7/15

70 100 0.46 39/0 0.44 39/0 0.44 39/0
70 90 0.47 39/0 0.46 39/0 0.47 39/0
70 70 0.59 38/1 0.54 39/0 0.52 39/0
70 50 0.85 28/10 0.74 35/3 0.73 35/4
70 30 1.35 5/33 1.14 18/21 1.14 20/19

110 100 0.48 49/0 0.45 49/0 0.45 49/0
110 90 0.49 49/0 0.48 49/0 0.46 49/0
110 70 0.61 46/2 0.57 48/1 0.53 49/0
110 50 0.87 34/14 0.74 41/8 0.72 44/5
110 30 1.38 7/42 1.14 21/28 1.10 22/27

Results in Table 10 indicate that both studied optimization methods significantly
improved the quality of service when compared with the real solution. Both the exact
method and the EA computed lower values of the waiting time metric for all instance
classes. The best improvements of the studied methods over the baseline real solution
occurred for problem instances with NP = 70/110 and λ = 30, where both exact and EA
computed solutions with a higher number of synchronized lines. In turn, the largest
number of synchronized lines were computed by the exact method in problem instances
with NP = 110 and λ = 30. Furthermore, better waiting time values were obtained by both
exact and EA in problem instances with lower waiting time tolerance from users, with
respect to the baseline real solution.

A comparison of waiting time values for transfers of all lines (normalized by Wb) is
presented in the histograms in Figure 8. Results correspond to scenario 70.63.30.2, which
is representative of the results computed for other studied BSP instances. Normalized
average waiting time results are reported for the baseline real solution, the EA solution
for BSP variant #1 (α = 0.0), and the exact solution for BSP variant #2 (α = 0.3). Values
of the normalized average waiting time over 1.0 mean that for a number of lines in the
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reported scenario, the optimization methods were not able to find a combination of offset
and headway values that allows lowering the waiting time for transfers under Wb. This
occurs as a direct consequence of the inter-related design of bus lines and the behavior
of passengers in each scenario, since when adjusting offsets and headways to achieve
successful transfers between line i and line j in transfer zone b (i.e., for those transfers
avg(wait) < Wb), those lines are not synchronized (at least for some trips) with other lines
on other transfer zones b∗ (i.e., for those transfers, avg(wait) > Wb∗). The histograms
in Figure 8 report both successful synchronizations (avg(wait) < Wb, on the left side of
each histogram) and non-successful synchronizations (avg(wait) > Wb, on the right side of
each histogram).

Results reported in the histograms in Figure 8 demonstrate that the exact solution
effectively reduces the waiting time for a significant percentage of lines in the studied
instance. The exact solution has more lines with an average waiting time lower or equal to
1 (i.e., 23 in the exact solution vs. only 6 in the real solution). Furthermore, five lines in the
exact solution have an average waiting time less than 0.5 of Wb, whereas there is none in
the real solution. Regarding larger waiting times, only 3 lines in the exact solution have
more than 1.5 of the maximum value for a successful synchronization, whereas in 13 lines
of the real solution, passengers must wait 1.5 more than expected to perform a multi-leg
trip. The comparative results demonstrate that the solution found by the exact method
synchronizes a larger number of lines, thus improving the QoS. Solutions computed by
the proposed EA have a similar behavior regarding waiting times, as reported in Table 10.
Similar results were obtained for other studied BSP instances, and even better results were
achieved in the most restrictive instances (λ = 30).

avg(wait)<Wb avg(wait)>Wb
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(a) Baseline real timetable.
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(b) EA, BSP variant #1 (α=0.0).
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(c) Exact solution, BSP variant #2 (α=0.3).

Figure 8. Comparative results of waiting times for the real solution, EA for BSP variant #2 (α = 0.0),
and exact solution for BSP variant #2 (α = 0.3) in scenario 70.63.100.2.
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Finally, regarding execution time, both the exact and evolutionary approaches were
able to compute accurate solutions in very short execution times. For problem variant #1,
the execution times were less than 10 seconds. For problem variant #2, the time limit of the
exact method was two hours, and the EA found the best solutions in less than five minutes.

7. Concluding Remarks

This article studied the bus timetabling synchronization problem. The problem model
extends existing ones by defining extended transfer zones for every pair of bus stops. In
turn, an improved model was included to account for the transfer demands of passengers,
and two variants of the problem were addressed: optimizing the offset for each line, and
optimizing the offset and headways for each line. For the second problem variant, the
optimization domain was restricted to a certain deviation on the real headways defined for
the case study to provide a proper quality of service to users.

An exact MILP approach and an EA were proposed to solve the problem. Both
methods were evaluated for a real case study for the public transportation system in
Montevideo, Uruguay. A total number of 75 scenarios were defined using real data about
lines, headways, and transfer demands, gathered from the intelligent transportation system
of Montevideo. Results were compared with the real timetable currently implemented by
the city administration.

The empirical evaluation indicated that both proposed methods are able to compute
solutions that are significantly improved over the real current timetable in Montevideo.
The exact method computed the optimal solution for all instances in problem variant #1, im-
proving successful synchronizations up to 66.6% (24.6% on average) over the real timetable.
The EA was highly efficient for this problem variant, too, improving the synchronizations
up to 66.3% (24.5% on average) over the current timetable. Problem variant #2 poses a
significantly harder challenge for optimization, as the number of variables significantly
increases for each considered scenario. Despite this, the exact method was able to com-
pute an accurate solution, which provides significant improvements on the number of
successfully synchronized trips over the real timetable. Improvements up to 179.9% (66.2%
on average) for the exact methods and up to 174.8% (66.2% on average) for the EA. The
proposed optimization methods also improved relevant quality of service metrics, such
as the average waiting times for transfers, especially in tight problem instances, which
reduced up to 57.8% for BSP variant #1 and up to 158.3% for BSP variant #2.

Both methods were efficient regarding computing times. The exact method provided
accurate objective function values within less than a second for problem variant #1. In turn,
the proposed EA is useful for solving larger problem instances of problem variant #2 in
reduced execution times.

Future lines of research are related to addressing other BSP variants, e.g., explicitly
focusing on the perceived waiting times for users, and modeling the real demand for direct
trips from real data on ticket sales provided by the transportation system. Multi-objective
versions of the problem can be devised, too, by including the explicit optimization of
other relevant functions, such as the operation cost of the bus fleet and other quality of
service metrics.
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