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Abstract: Spare parts management is a critical issue in the industrial field, alongside planning
maintenance and logistics activities. For accurate classification in particular, the decision-makers can
determine the optimal inventory management strategy. However, problems such as criteria selection,
rules explanatory, and learning ability arise when managing thousands of spare parts for modern
industry. This paper presents a deep convolutional neural network based on graph (G-DCNN)
which will realize multi-criteria classification through image identification based on an explainable
hierarchical structure. In the first phase, a hierarchical classification structure is established according
to the causal relationship of multiple criteria; in the second phase, nodes are colored according
to their criteria level status so that the traditional numerical information can be visible through
graph style; in the third phase, the colored structures are transferred into images and processed by
structure-modified convolutional neural network, to complete the classification. Finally, the proposed
method is applied in a real-world case study to validate its effectiveness, feasibility, and generality.
This classification study supplies a good decision support to improve the monitor-focus on critical
component and control inventory which will benefit the collaborative maintenance.

Keywords: spare parts; classification; deep learning; collaborative maintenance

1. Introduction

The transportation industry plays an essential role in national economics, while vehi-
cles may suffer downtime from spare parts being out of stock. For spare parts classification
management, decision-makers should select optimal inventory strategies in terms of cost
and reliability. One third of the maintenance support cost of an industrial system may
be spent on stocking ample spare parts for timely maintenance [1]. It is especially chal-
lenging to manage tens of thousands of spare parts necessary for modern industry. Thus,
classification has been an important technique in the spare parts management that can
support decision-makers in strategizing to allocate inventory with optimal cost and high
reliability [2,3].

Spare parts classification has been extensively investigated by scholars [4-6]. Differ-
ent service backgrounds bring about significant differences in the criteria selection and
algorithms adopted by decision-makers. Among the traditional spare parts classification
methods, both ABC and VED analyses are simple and basic methods in which spare
parts are arranged according to only one criterion. The ABC method was first proposed
by Gelder and Van Looy [7] and Tanwari et al. [8] to divide spare parts into categories
(A, B, and C) using total annual cost and inventory criteria. VED analysis is a simple
qualitative approach to decision-making based on spare parts “criticality” as defined by
experienced experts. In practice, however, they do not entirely reflect the management
requirements for spare parts because a single criterion is too subjective. As proposed in
1988 [9], a good-structured spare parts classification should be a value assessment system
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that requires the combination of maintenance engineers, material managers, quality control
personnel, and other relevant experts. Therefore, Kraljic [10] first proposed a second-order
matrix of supply risk and criticality in view of multi-criteria, and other scholars have also
applied this principle to develop new multi-criteria classification methods such as AHP
(Analytic Hierarchy Process) and similar hierarchical-based analysis. Braglia [11] proposed
the Multi-Attribute Spare parts Tree Analysis (MASTA) method, which uses a decision tree
and AHP to assign calculations to various criteria. Cakir and Canbolat [12] combined AHP
with fuzzy logic to capture the uncertainty in an evaluation indicator and export priority
values from a judging set via fuzzy optimization. Zeng et al. [13] proposed an algorithm
that integrates AHP, fuzzy evaluation, and gray association analysis to translate qualitative
descriptions into quantitative data for spare parts classification in a limited and uncertain
environment. Golam Kabir [14] also employed fuzzy AHP to determine the relative weights
of attributes/criteria in a given inventory. Ng [15] used an optimized approach to solve
the weights of each criterion in a classification system—assuming that each criterion for
all spare parts falls into a descending order—and finally translated the score of each spare
part into a uniform scale score. Based on the Ng model, Hadi-Vencheh et al. [16] calculated
the weight of each spare parts in a system using a nonlinear optimization algorithm as the
basis for the subsequent calculation of the total score. Though effective in some regards,
AHP-based methods are still not well-suited to real-world spare parts classification due to
the subjective matrix assignments and limited learning ability.

In order to overcome the defects in multi-criteria models regarding to weight assign-
ment and reclassification learning ability, scholars have attempted to optimize heuristic
intelligent algorithms such as Data Envelopment Analysis (DEA), Support Vector Machine
(SVM), Artificial Neural Network (ANN), Genetic Algorithm (GA), Particle Swarm Opti-
mization (PSO), gray theory, fuzzy logic, and combinations thereof. Yu [17] compared SVM,
backpropagation (BP), K-Nearest Neighbors (KNN) and other methods to find that artificial
intelligence-based methods are relatively more accurate. Partovi [18] also utilized BP and
GA learning methods in ANNSs for reliable, accurate inventory classification. Cai [19]
adopted an SVM based on a Kraljic three-dimensional (3D) model for enhanced quality-
oriented material classification accuracy. Liu [20] integrated a fuzzy neural network and
decision tree for spare parts classification in terms of actual demand in a steel enterprise
with multiple attributes. Guo [21] constructed a novel kNN model wherein the k value can
be optimized automatically to enhance the efficiency and accuracy of classification. Models
based on intelligent or heuristic algorithms can process high-latitude and nonlinear sample
data, but lack the rules explanatory in a degree.

Thus, for the existing spare parts classification methods, there may be some persistent
problems summarized from the following three aspects:

(1) Visualization: Neither multi-criteria nor traditional ANN models can provide decision-
makers with intuitive, visually interpretable data.

(2) Rules explanatory: Data-driven artificial intelligent algorithms proceed in a “black
box”, where rules are not explained and results are relatively uninterpretable, despite
their certain learning ability.

(3) Learning ability: While there are understandable variable-selection and structure-
construction processes in rule-based methods, their learning ability and generalization
are relatively poor.

Therefore, a novel approach based on hierarchical classification and the Convolutional
Neural Network (CNN) will be developed in this study to resolve the above problems. The
proposed model combines the advantages of both hierarchical structure and CNN.

Hierarchical classification serves to construct a criteria structure based on the causal
relationship of multi-criteria, which makes for an explanatory rule-setting process. More-
over, the multiple criteria are distributed on the subspace by reducing the hierarchy in
order to reduce the restriction of the model on the number of criteria. As described by Hu
and Wang [22], the hierarchical structure shows the causal relationship between criteria
and makes it possible to consider as many variables as demanded. Bacchetti [23] created
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a hierarchical multi-criteria spare parts classification method and verified it in an Italian
household appliances manufacturing company. With the constructed structure, the cri-
teria can be colored for specific data features, which transfers the classification into an
image-identification problem.

The CNN is a deep learning method [24-26] for image identification and classification,
and several networks based on CNN have been explored in the past years, such as LeNet,
AlexNet, VGG (Visual Geometry Group)-Net, ResNet and DenseNet. Wang [27] proposed a
CNN-based symbolic hierarchical cluster method for operation trend prediction problems,
where the CNN structure is used to classify trends. Ren [28] used AlexNet to classify
different disturbances in a 3D-printing heating map process. All developed networks
from CNN have their own excellent specifics. The core of ResNet model is to establish
skip connection between the front layer and the back layer, which is helpful in relieving
the gradient problem by residual fitting in the back propagation of training process [29].
DenseNet is mainly distinctive in the dense connection and feature reuse that improve
the calculation capacity [30]. However, AlexNet is a deep CNN structure which can solve
gradient problem better with the Relu function. Additionally, both dropout and GPUs
(Graphics Processing Units) technology are adopted to improve the calculation capacity
when considering the overfitting problem [31].

This paper is organized as follows: Section 2 introduces the deep CNN principle,
which is the basis of the proposed algorithm. The proposed G-DCNN method and its
stepwise operation process are presented in Section 3. Section 4 reports the case study
conducted to validate the proposed method, as well as a comparison between the proposed
method and other similar methods. Section 5 gives a summary, concluding remarks, and a
brief statement regarding future research directions.

2. Preliminaries

The deep CNN used in this study is called AlexNet, which has a structure first
proposed in 2012 by Alex Krizhevsky. The overall structure of the AlexNet network is
similar to that of LeNet. Both networks are convolved first and then fully connected,
though the details are rather different.

2.1. Convolution Layer

Convolution operation is the most important link in the CNN structure. Local fea-
tures with different dimensions are obtained using different convolutional kernels. The
convolution layer has three parts: convolutional calculation, residual calculation, and
gradient calculation.

2.1.1. Convolutional Calculation of the Convolution Layer

Assuming that the ith layer is the convolutional layer and the (i + 1)th layer is the
subsampling layer, the jth feature map of the ith layer can be calculated as follows:

x; =fl ) x}‘l *kﬁﬂ—b} (1)
iEMj

where M is the feature map, k is the convolutional kernel, b is the bias, and * is the
convolutional operation.

2.1.2. Residual Calculation of the Convolution Layer

Subsampling layers are always placed after the convolutional layer. A one-to-one
non-overlapping sampling method is adopted. The residual of jth feature map of the ith
layer can be expressed as follows:

=87 (7 () () ®
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where ¢ is the residual, B is equal to the “weight” defined at a downsampling layer map, f(-)
is the output activation function, u is the output of the certain layer, o is the element-wise
multiplication, and up(-) is an upsampling operation.

2.1.3. Gradient Calculation of the Convolution Layer

Gradient descent calculation can provide the minimum loss function and model
parameter values. The derivation of the bias b is:
oE ;

5 = (), @

m,v

where E is the error and (1, v) is the position of the output convolution map. The derivation

process of the kernel k is:
oF _ i i—1
okl 2 (%), (7). @

m,v

where p is the patch, which is multiplied elementwise by the kernels during convolution.

2.2. Subsampling Layer

The subsampling layer (also called the “pooling layer”) is operated similarly to the
convolutional layer. However, the convolution kernels of the subsampling layer only take
the maximum value or average value of the corresponding position; the subsampling layer
does not take any modification due to BP into consideration either.

2.2.1. Convolution Calculation of the Subsampling Layer

Assuming that the Ith layer is the subsampling layer, the (I — 1)th layer is the convo-
lution layer, and the sampling size is 2 * 2, the convolution process can be described as
follows:

x§ = f(ﬁédown (xjfl) + b]l) ©)

where down(-) represents the sum of the 2 * 2 size of the previous convolutional layer. The
results are multiplied by the weight w and the activation function is applied after adding
the bias.

2.2.2. Residual Calculation of the Subsampling Layer
The residual calculation formula used here is constructed in MatLab.

(5; =f (ug) o conv2 ((5]l-+l,rot180(k§-+l),’full’> (6)

where r0t180 represents rotating the kernel to make the convolution function perform cross-
correlation, 'conv2’ is the convolution operation, and ' full’ is the full convolution process.

2.2.3. Gradient Calculation of the Subsampling Layer

The bias b derivation process of the subsampling layer is the same as the convolution
layer. The weight 8 derivation process is:

88; = Z((S]l odown (xj.*l) ) o )

u,0

2.3. AlexNet Structure

For original AlexNet structure, as shown in Figure 1, there are a total of eight layers
including five convolutions and three fully connected layers in this network. It is obvious
that the AlexNet structure proceeds in both the upper and the down layer with 2GPUs at
the same time, which improves the computing efficiency greatly [32].
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Figure 1. The original AlexNet structure (extracted from [32]).

The first layer is the input layer wherein RGB images with pixels of 224 x 224 x 3 are
preprocessed into 227 x 227 x 3. In this layer, 96 convolution kernels 11 * 11 * 3 in size are
used to extract the features. With the stride movement of four pixels, FeatureMap generates
55 x 55 x 96. FeatureMap is input into the first ReLu activation function and then processed
via max-pooling with a pooling unit of size 3 * 3 to obtain pixel sets of 27 x 27 x 96. Local
response normalization is adopted in this layer with the output 27 x 27 x 96, and the data
is divided into two groups as 27 x 27 x 48 because of two GPUs.

Next, for the second layer, the input has been two sets of 27 x 27 x 48. For each set,
128 convolution kernels 5 * 5 x 48 bring about the output of 27 x 27 x 128. There are the
same calculation processes in this layer as the first layer, including ReLu function and local
response normalization, finally with the output of two sets 13 x 13 x 128.

The third layer is fully connected to the two GPUs in second layer. However, only
convolution and ReLu are processed in this layer with 384 convolution kernels 3 x 3 x 256,
with the FeatureMap of 13 x 13 x 384 and 13 x 13 x 192 for each GPU.

Same process happen in the fourth layer with the output of 13 x 13 x 192.

In the fifth layer, the input data are two sets of 13 x 13 x 192 with 128 convolution
kernels of size 3 * 3 x 192. The scale of the pooling operation is 3 * 3, the step size of the
operation is 2, and then the output of 6 x 6 x 256 is obtained.

The sixth layer is a fully connected layer with the input of 6 x 6 x 256. There are a
total of 4096 filters with size of 6 * 6 x 256 that can perform convolution operations. Since
the size of convolution kernel is same as the size of input, there is only one value after
convolution operation. Therefore, the size of the convolution pixel layer is 4096 x 1 x 1.
Namely, there are 4096 neurons. The 4096 neurons are processed by ReLu function and
output 4096 values.

There are same fully connected, ReLu function and Dropout process in the seventh
layer with the 4096 input. Finally, the 4096 data are fully connected to the 1000 neurons in
the eighth layer. The probability of the 4096 data moving toward the 1000 categories can
be calculated accordingly. The category corresponding to the largest probability value is
selected as the category of the initial input image.

Unlike the SVM method, which has an uncalibrated computation process and scores
for all classes that are not easily interpretable, the Softmax classifier allows the user to
compute “probabilities” for all labels. For example, given an image, the SVM classifier
might give scores [12.5, 0.6, —23.0] for the classes “cat”, “dog”, and “ship”. The Softmax
classifier can instead compute the probabilities of the three labels as [0.9, 0.09, 0.01], which
allows the confidence in each class to be interpreted

3. Proposed G-DCNN Method Based on Modified AlexNet
3.1. Modified AlexNet Structure for Classification

Transfer learning is an important machine-learning tool for applying knowledge
learned in a domain to different but related domains or issues [33]. Thus, transfer learning
thought is used in this study to modify the original AlexNet structure for spare parts
classification task. During transfer learning, only the dense layers are restructured and
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retrained to identify features that are specific to the spare parts classification. The modified
structure and dimensions of crucial layers are shown in Figure 2.

11*11 [Max poolin, 5%5
5%
S=4 3%3 same,
g §=2
55%55%96 27x27x96 27%x27%256

227x227x3

343
same
—_

- @
Softmax
4

13x13x384  13x13x384 13x13x256 6X6x%256 9216 4096 4096

Figure 2. Modified AlexNet structure.

Specially, the input dataset are the spare parts hierarchical structure images with
the preprocessed resolution of 227 x 227 pixels. Additionally, since the spare parts are
usually classified into four classes (A, B, C and D), we mainly modify the final softmax
layer and change the 1000 neurons to four, which is the same size as the number of the
target categories, as shown in Figure 3.

Fully connected
layer

Softmax layer Classification

O§ 7= output
\ P

\
i P/ A
Feature learning )/ /\,‘ B
-
: ED C
N D
[ — | W&

Figure 3. Modified softmax layer and classification.

The spare part’s hierarchical structure images are processed by convolutional layers
and pooling layers which can recognize the graphic features through trained weighted
matrices. During the process, the filters expand overall dimensions of the input data
through the creation of multiple feature maps. Additionally, max-pooling approach is used
to down-sample the input information and extract the features. Each extracted feature from
the convolutional layers is assigned weights with respect to each classification category.
Then, the fully connected layers use the weight matrices to compute the confidence level of
the input belonging to each category.

3.2. Proposed G-DCNN Model Based on Modified AlexNet

The proposed G-DCNN model can be divided into two main phases: constructing the
hierarchical structure and classification using the modified AlexNet structure.

Feature selection is always the basis of a classification problem. In terms of feature
selection for hierarchical classification, the expert knowledge base is necessary to obtain
the most closely related criteria to the target. Traditional methods provide only limited
selections of characteristic criteria that cannot accurately represent the samples. Therefore,
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it is necessary to layer the multiple criteria according to the relationship in a particular task
and to determine the final target from each layer with as little feature space as possible.
The hierarchical structure effectively exploits qualitative and quantitative information and
solves complex decision-making problems with multiple criteria. As shown in Figure 4,
the selected criteria are built into layers here according to their causal relationships.

— 1 |

Sinte 00O

Criteria selection Hierarchical structure

Figure 4. The hierarchical classification structure.

The structure has clearly explainable rules and provides a workable basis for the
subsequent image conversion and classification. Then, all the involved criteria are colored
according to their level status. The multi-criteria hierarchical structure can be converted
into an image database, then the modified AlexNet structure can be used to obtain further
classification results. As shown in Figure 5, the G-DCNN model is operated in a step-
wise process:

(1) Select the criteria related to the target.

(2) Construct the hierarchical structure according to the causal relationships among criteria.

(3) Grade the actual data into different levels.

(4) Color the nodes according to the criteria level status.

(5) Converse the hierarchical structure diagrams into images.

(6) Initialize the parameters of the neural network.

(7) Input the built spare parts level structure graphs.

(8) Resize the input images to 227 x 227 to suit the modified neural network.

(9) Label the images and build the dataset artificially.

(10) Complete the parameters initialization and function activation.

(11) Divide the input images into training (70%) sets and testing (30%) sets.

(12) Train the modified AlexNet structure with the training sets and check the results;

(13) Determine whether to proceed testing step; otherwise, adjust parameters and return
to the training step.

(14) During the testing procedure, the accuracy can be used to determine whether to save
the model and otherwise, return to initialization step and proceed the whole learning
process again.

(15) Save the model and end the classification process.
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Adjust the
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Figure 5. General process of the proposed approach.

Fullfill the accuracy
requirements

4. Case Study

In this section, the proposed G-DCNN model is applied and validated with a real-
world case study.

4.1. Problem Description

Ships are a typical long-cycle equipment system with an average life span of 30-50 years.
Throughout the life cycle, they are subject to regular repairs and maintenance requiring
extensive spare parts storage and supply. A regular ship has more than 10 systems consist-
ing of 4000+ components as shown in Figure 6. Some of the components are critical to the
reliable operation but highly expensive to keep in stock at all times. It is also common for
the ship to carry a large number of spare parts that may not be replaced for years.

Main Dicsel Spare part 1 @ oo (Sparepant)) ... ... Spare part K
System

‘p ,Hc 2| lr . | ——
=== |
I
[Eevssipormd - pome]
[ [ | I
[

Propulsion and iSysmnl ! ’ System 2‘ SystemX|
Maneuvering |

T | 7

Job
EnginceringF

acilities

System

Bitter water
System Frcash walcr
Syslcm

Figure 6. Complex ship system and spare parts.

There are a total of 73 ships served on the trading routes in this case study company,
which demand vast types and huge quantities of spare parts to ensure reliable operation
over the equipment’s whole life cycle. Therefore, it is essential and challenging for the
shipping company to make strategic purchasing and stocking decisions according to the
spare parts classes.
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4.2. Hierarchical Structure of Ship Spare Ship Parts Classification

There are three main categories of classification criteria most commonly used in cases
such as: (1) the inherent properties of the spare parts (criticality and cost); (2) consumption
characteristics including failure rate and inventory turnover; (3) supply chain character-
istics (lead time and supply reliability). Fourteen criteria are selected for this case study
under advisement of the spare parts manager to determine the final class of spare parts: X;
(average lead time), X, (number of suppliers), X3 (system monitoring level), Xy (criticality),
X5 (annual consumption), X (average unit cost), X7 (safety inventory), Xg (supply reliabil-
ity), Xg (demand predictability), Xio (out-of-stock risk), X;; (out-of-stock cost), X1, (annual
consumption cost), X3 (inventory holding cost), X14 (in-stock cost). Table 1 provides
further description of the 14 criteria.

Table 1. Multiple spare parts classification criteria.

Criteria Name Description

X1 Average lead time The time between order replacement and arrival of the demanded spare parts.
X3 Number of the suppliers The number of suppliers that can supply some kind of spare parts.

X3 System monitoring level Assessed by the maintenance manager who has long experience on the ships.
Xy Criticality Assessed by the maintenance manager who has long experience on the ships.
X5 Annual consumption Calculated from the historical data of past spare parts usage.

Xe Average unit cost The spare price.

Xy Safety inventory A buffer stock prepared to prevent the uncertain factors of future demand.
Xg Supply reliability The suppliers’ fulfillment to orders.

Xo Demand predictability The predictability of the spare parts demand.

X10 Out-of-stock risk The possibility of unavailable spare parts.

X11 Out-of-stock cost The penalty cost caused by out-of- stock of the spare parts.

X12 Annual consumption cost Calculated by average unit cost multiply annual consumption.

Xi3 Inventory holding cost The cost to hold the safety inventory.

X14 In-stock cost Calculated by annual consumption cost plus inventory holding cost.

All the 14 criteria are collected based on expert knowledge and the literature in view of
inventory, supply, and technology information. There are seven input variables in this case,
as shown in Table 1, wherein X; (average lead time), X, (number of suppliers), X5 (annual
consumption), X¢ (average unit cost), and Xy (safety inventory) are quantitative values
gained from the actual dataset while X3 (system monitoring level) and Xy (criticality) are
qualitative values assessed by the spare parts manager based on their personal experience.
The hierarchical structure of spare parts classification in the ship system is constructed here
according to both causal relationship and expert knowledge. As shown in Figure 7, the
relationship of multiple criteria can be explained clearly.

For criteria, they can be scaled into different levels according to the data feature space.
The original structure and distribution of criteria data for the spare parts are shown in
Table 2.

In the hierarchical structure, the variable relationship is constructed into layers and
a final level emerges that is determined by the inventory cost and out-of-stock cost. The
target output of hierarchical structure falls into four classes: A, B, C and D. The spare parts
in class A are always highly expensive to keep in stock but are seldom needed. These
out-of-stock spare parts will bring about the system heavy losses. Thus, the corresponding
component is focused on closely monitoring and prognosis. The spare parts in class B are
also highly expensive to keep in stock but not as much as class A, and the replacement of
spare parts in class B happens more frequent. It is often strategic to decide the inventory
amount of B spare parts and guarantee supplies. The spare parts in class C are always those
that are used as part of normal consumption of scheduled maintenance that are ordered in
regularly. They are neither expensive nor difficult to obtain when necessary. Spare parts in
class D can be the daily consumption items that have little influence on the operation.



Appl. Sci. 2021, 11, 7088 10 of 20

@ Class

In-stock cost Out-of-stock cost

Out-of-stock
Annual risk
consumption cost

Inventory holding

Demand System

predictability monitoring level

Average lead time ° e Number of the suppliers

Figure 7. Hierarchical structure of the ship spare parts classification.

Safety inventory Average unit cost Annual consumption

Table 2. The structure and distribution of the spare parts.

Code X7 X6 Xl Xz X5 e X12 X13 X14
50502-08H-095 2 68.00 6 3 0.50 . 34.00 136.00 170.00
50502-08H-117 4 11,250.00 25 1 0.00 . 0.00 45,000.00  45,000.00
50502-08H-129 8 8.00 6 5 0.00 .. 0.00 64.00 64.00
50502-08H-130 60 3.00 7 5 25.00 . 75.00 180.00 255.00
50502-08H-178 7 365.00 6 3 0.25 . 91.25 2555.00 2646.25
50502-08H-191 82 3.00 5 5 0.25 .. 0.75 246.00 246.75
50502-08H-201 60 3.32 5 5 87.50 . 290.50 199.20 489.70
50502-08H-237 12 52.00 5 5 1.25 . 65.00 624.00 689.00
50502-08H-249 28 3.21 5 5 35.50 .. 113.96 89.88 203.84
50501-11H-184 12 65.00 5 5 4.75 . 308.75 780.00 1088.75
50501-11H-196 24 8.07 5 5 9.00 e 72.63 193.68 266.31
50501-11H-206 24 9.50 5 5 2.50 - 23.75 228.00 251.75
50501-11H-219 21 6.16 5 5 12.25 . 75.46 129.36 204.82
50501-11H-243 12 219.58 5 5 16.50 e 3623.07 2634.96 6258.03
50501-11H-255 10 16.28 5 5 17.50 - 284.90 162.80 447.70
50501-11H-267 5 27.43 5 5 1.00 . 27.43 137.15 164.58
50501-11H-279 3 1317.33 7 3 0.50 . 658.67 3951.99 4610.66
50610-03H-092 15 9.92 6 5 8.75 . 86.80 148.80 235.60
50801-02H-111 46 3.00 6 5 6.00 . 18.00 138.00 156.00
50801-02H-028 2 50.00 6 5 0.25 e 12.50 100.00 112.50

4.3. Hierarchical Classification Structure Image Conversion

To convert the spare parts classification into an image classification problem, 15 to-
tal variables involved in the hierarchical structure are represented by different colors
according to their level status. Table 3 describes the color assignments corresponding to
specific criteria.

An example of spare part No. 144 (Oil temperature control valve) is given in Table 4
and Figure 8. All of its criteria are colored according to their actual status, the part appears
to fall into class B.
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Table 3. Level and color assignment of variables.

Citeria Scale Level Color Assignment
0<X; <3 Short O
Xy 3<X <7 Medium @)
(Day) 7 <X <10 Long O
X1 >10 Extreme long ‘
0<X <2 Low )
Xz 2<X; <6 Medium '
X, > 6 High O
1 Low ‘
X 2 Medium @)
3 High ()
1 Low '
X 2 Medium @)
3 High ()
0<X5<0.25 Extreme low ‘
s 0.25 < X5 < 0.75 Low @)
(Piece) 0.75 < X5 < 10 Medium Q
10 < X5 < 50 High O
X5 > 50 Extreme high ()
0<Xg <25 Extreme low .
X 25 < X4 < 200 Low @)
(Yuan) 200 < Xg < 1000 Medium @)
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Table 3. Cont.

Citeria Scale Level Color Assignment
1 Low .
X10 2 Medium .
3 High ()
1 Low .
X1 2 Medium '
3 High (]
1 Low .
X12 2 Medium .
3 High ()
1 Low .
X13 2 Medium '
3 High (]
1 Low .
X14 2 Medium .
3 High ()
A @
Y B O
C @)
D (@)

Y

Figure 8. The hierarchical structure of spare part No. 144.
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Table 4. The original data information of spare part No. 144.

Criteria Xy Xg X1 X3 Xa X5 Xg Xg Xq X10 X11 X12 X13 X14 Y
value 1 1304.76 7828.56 1304.76 9133.32
grade Extreme low high medlum med ium medlu m medlum medl um med ium medlum medlum medl um high high high

~ @ O 00000000 e e e o

4.4. Supervised Learning Analysis Based on Proposed Method

After the variables are assigned with different colors, the hierarchical structure could
be updated and saved as images. In the first phrase, the learning process is conducted
under a supervised environment, and the model is designed to be trained by two different
datasets to determine how the sample quantity affects the results.

4.4.1. Classification Results Analysis with Few-Shot Samples

In the primary learning process, 189 labeled spare parts from the auxiliary system
are selected: four from class A, 26 from class B, 43 from class C, and 116 from class D. The
dataset is divided into training and testing sets.

All the spare parts data are transferred into colored hierarchical structure and saved
as images. Subsequently, all the images are processed in the modified AlexNet model as
discussed in Section 3.2. The modified AlexNet structure has five convolution layers and
three fully connected layers. Every image is 227 x 227 in size; the ReLU activations ensure
that no outputs after the convolution or fully connected layers have overfitting problems.
Once the output is calculated and output by the last fully connected layer, a Softmax layer
determines the final category of the image. The final classification results in this case split
the images into four different classes: A, B, C, and D.

For the 189 images in this step, the first random 100 images are trained using the
modified AlexNet, as shown in Figure 9. Some of the classification results are shown in
Figure 8. It is indicated that the four results are D, B, C, D respectively. It is obvious that
the listed four spare parts images are all classified with an accuracy of 100%. Additionally,
for the overall training result, the average accuracy of the modified model reaches 99.8%,
which can fully satisfy the practical demand.

(a) D, 100% (b) B, 100%
|
{
AND AND AND AND I’lb
Y "
—(C)C-& (d) b, 100%

AND AND AND

>
v e 4 EJ o 9 o 4

Figure 9. Partial training results of initial dataset. (a,d) indicate these two spare parts are 100%

classified into class D; (b) shows this spare part is 100% classified into class B; (c) shows this spare
part is 100% classified into class C.
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Then, the constructed model is also used to test the remaining 89 images, and the
commonly used indicator recall ratio » and precision ratio p are adopted to evaluate
its performance:

TP

"TTPYEN ®)
TP

P=Tp+rp ©)

where TP is a true positive classified correctly as positive, FN is a false negative misclassi-
fied as false, and FP is a false positive misclassified as positive. The test accuracy of each
category is determined here as follows:

TP+ TN
TP+ FP+TN+FN

Accuracy = (10)

where TN is a true negative classified correctly as negative.
The classified results for TP, FP, TN, and FN are shown in Table 5, and the results of
and p for the testing are shown in Table 6.

Table 5. The classified results for TP, FP, TN, and FN.

Class TP FP TN EN Accuracy

A 1 1 0 0 50%

B 13 1 0 1 86.7%
C 21 1 0 1 87.5%
D 47 1 0 0 97.9%

Table 6. The results of r and p for the testing.
Class A B C D
r 100% 92.9% 95.5% 100%
50% 92.9% 95.5% 97.9%

For practical application in the spare parts classification, as shown in Table 5, there is
one sample in class A that is classified as false positive. It is the true spare part No. 23 that
is easily classified to be A because both its unit price and annual inventory cost are high.
However, in the actual management, this item is classified into B class since it is in high
monitoring and the supply reliability is high.

As shown in Table 5, the overall accuracy for B, C and D is 86.7%, 87.5% and 97.9%,
respectively. However, the accuracy for class A is merely 50%, since there are only two
samples in the testing set. However, when the results are analyzed with precision and
recall, it indicates the modified AlexNet structure appears to perform well. Especially for
class A, the recall rate is 100%, although the precision ratio is only 50%. It is obvious that p
and r metrics contradict each other. One of the main reasons is that class A has the fewest
number of training samples, which may cause an under-fitting problem in the machine
learning models. Thus, for the unbalanced dataset of class A, we explore the F-measure
value to assess its performance:

F1= 2P

N p+r (11)

For class A, the F1 value is 0.667, which can still prove the effectiveness of the model.
The characteristic of the result is consistent with the fact that category A are always the
most critical, expensive, and highly reliable spare parts; accordingly, these parts have
limited stock, which complicates the training results in this test.
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4.4.2. Re-Classified Results Analysis with Additional Samples

As mentioned above, few-shot problems emerged in the training process. Meanwhile,
to consider and research the model learning ability, the samples are extended to 804 spare
parts of the whole ship to cover a sufficient number of class A parts to verify the model.
For the data distribution, there are 70 spare parts from class A, 122 spare parts from class
B, 174 spare parts from class C, and 438 spare parts from class D. The whole spare parts
are divided into two different datasets; the first 450 parts are regarded as the training set
and the remaining parts as the test set. The overall training accuracy is 97% in this case. A
portion of the training results are shown in Figure 10.

(a) C, 100% (b) B, 100%

oY e &

]

(c) A, 100%

o ¢ o ¢ 9 9 o 4"

Figure 10. Partial training results of additional samples. (a) shows this spare part is 100% classified
into class C; (b,d) indicate these two spare parts are 100% classified into class B; (c) shows this spare
part is 100% classified into class A.

The training results are acceptable. An additional test model is built using the remain-
ing spare parts dataset. The classification results for TP, FP, TN, and FN are shown in
Table 7.

Table 7. Re-classified results for TP, FP, TN, and FN.

Class TP FP TN EN Accuracy
A 39 0 0 1 97.5%
B 75 0 0 0 100%
C 115 0 0 0 100%
D 220 0 0 0 100%

The accuracy of class A has been improved to 97.5% after these additional samples
are added, while class B, C, and D maintained 100% accuracy. The G-DCNN algorithm
appears to yield ideal classification results when it is applied to labeled samples.

4.5. Semi-Supervised Learning Analysis Based on Proposed Method

However, it is difficult to achieve the exact level descriptions of spare parts in practice.
A semi-supervised learning analysis technique is developed based on the proposed method
to verify the generality of the rules. The final color boxes of the structure are removed from
the level judgment in the hierarchy to produce un-labeled samples, as shown in Figure 11.
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The remaining variables are still used to test the effectiveness of the modified AlexNet
algorithm in this case.

Figure 11. Un-labeled structure.

A total of 324 images are selected from all the 804 spare parts of the whole ship with a
random ratio of labeled samples for further verification. A portion of the training results
are shown in Figure 12. The overall training accuracy is 95.2% in this case, which is still
acceptable. Then, the selected spare parts are used to test, and the test results for TP, FP,
TN, and FN in the semi-supervised learning process are shown in Table 5.

(a) B, 98.4% (b) D, 100%
I
AND .lND
// AND \7{, AND \o AND AND
| I\ "I &
) AND
\ \I
(c) c, 100% (d) D. 100%
: |
AND \? AND
. AND AND 1 AND -
AND

o o o o9 ®

AND

Figure 12. Partial training results of the un-labeled structure classification. (a) shows this spare part
is 98.4% classified into class B; (b,d) indicate these two spare parts are 100% classified into class D; (c)
shows this spare part is 100% classified into class C.As shown in Table 8, all four spare part levels have
acceptable accuracy. For class A, the testing accuracy is 89.7% (higher than 50% in the supervised
learning process) with the few-shot samples. This is slightly lower than the 97.5% achieved in the
supervised learning process with additional samples, but still confirms that the proposed method is
effective. The r and p results of this semi-supervised process are shown in Figure 13.
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Table 8. Semi-supervised learning results.

TP FP TN EN Accuracy
A 26 3 0 0 89.7%
B 42 0 0 2 95.5%
C 70 0 0 0 100%
D 179 2 0 0 98.9%
102%

Accuracy

100%
98%
96%
94%
92% mr
90% mp
88%
86%
84%
A B C D

Spare Part Level

Figure 13. Results of r and p for semi-supervised learning.

Figure 13 shows that with an increasing number of class A spare parts, the precision
ratio increases to a very high level. Even without the final color box for the level judgment,
the spare parts of different levels still have high ¥ and p. Compared to supervised learning,
the non-supervised learning shows lower precision for certain spare parts but the error
is still within an acceptable range. The non-supervised results, in other words, do also
demonstrate the effectiveness of the proposed method.

4.6. Comparative Study

We further compared the proposed method to other traditional classification methods
including SVM, BP Neural Network (BPNN), and K-Nearest Neighbor (KNN) using the
same dataset and accuracy indicator.

The SVM parameter with the cost coefficient and kernel function coefficient is 1 and
1/ N feature initially, where 71 gop,re is the number of the features. The BPNN has one input
layer, one hidden layer, and one output layer. The numbers of input neurons, hidden
neurons, and the output neurons are N x D, 1K, and N X 4 respectively, wherein N
represents the number of the images and D is the characteristics of the image. There are
10 neighbors in the KNN. Table 6 shows detailed information gathered in this comparative
analysis, where the modified AlexNet structure shows the best average accuracy.

Table 9 shows that the average accuracy of the modified AlexNet structure for spare
part classes A, B, C, and D is 0.90, 0.95, 1.0, and 0.99 respectively; the proposed method
outperforms all other methods tested here in terms of average accuracy. The SVM algorithm
produced relatively close results at 0.88, 0.90, 0.84, and 0.98 for classes A, B, C, and D,
respectively. As discussed above, class A had the fewest samples while class C and D had
more samples. However, the performance of the modified AlexNet structure is consistent
for all four classes. This suggests that the proposed approach is effective regardless of the
number of available datasets.
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Table 9. Comparative analysis of average accuracy.

P FP TN EN Accuracy
Method A B C D A B C D A B C D A B C D A B C D
AlexNet 26 42 70 179 3 0 0 2 0 0 0 0 0 2 0 0 09 09 1 099
SVM 26 4 59 177 3 0 0 4 0 0 0 0 0 0 11 0 088 090 084 098
BPNN 25 39 62 167 3 0 0 9 0 0 0 0 1 5 8 5 086 089 089 092
KNN 25 40 66 171 3 0 0 8 0 0 0 0 1 4 4 2 086 091 094 094

Neither SVM nor KNN is an effective tool for practical spare parts management
because of their “black boxes”; they cannot offer understandable explanations to decision-
makers regarding the rule’s assignment of criteria. The proposed method, conversely,
makes the extracted criteria and hierarchical structure explicable and modifiable according
to the expert knowledge or feedback based on the results. In the learning phase, the
proposed method changes the traditional classification problem into an image classification
problem which is helpful to the data visualization. It also outranks other methods tested
here in terms of its accuracy and calculation speed.

5. Conclusions

For accurate spare parts classification, advanced condition monitoring technology
should be developed and applied to the critical components, which will benefit a reliable
maintenance logistics system. Moreover, this image identification method will also be
considered to use for operation dashboard monitoring and fault diagnosis.

The graph-based deep convolutional neural network (G-DCNN) method developed
in this study transforms the traditional classification problem into an image identification
problem, realizing the visible and accurate classification of spare parts. The hierarchical
classification structure is constructed to take unlimited criteria into consideration, which
will be adjusted according to the practical demand. Additionally, the causal relationship
between the criteria can be explained well through the hierarchical structure. Due to
the transfer learning thought, AlexNet is modified to solve the spare parts classification
problem by its excellent image identification ability. Both ReLu function and Dropout
are adopted to eliminate overfitting problems under the condition of a two-GPU deep
network. Through the case study results analysis, we can see a well performed model
by cross validation and comparison. In particular, the influence of dataset amount to the
learning model is obvious by A-class spare parts.

However, there are some problems unelaborated in this study that will be continued
in the future. Regarding to the hierarchical structure, we intend to propose a quantitative
approach that can deal with the causal relationship and status level division. With respect
to the AlexNet application in spare parts classification, we may try to simplify its structure
for more convenience in understanding and calculation in the future.
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