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Abstract: Existing SPARQL query engines and triple stores are continuously improved to handle
more massive datasets. Several approaches have been developed in this context proposing the storage
and querying of RDF data in a distributed fashion, mainly using the MapReduce Programming
Model and Hadoop-based ecosystems. New trends in Big Data technologies have also emerged (e.g.,
Apache Spark, Apache Flink); they use distributed in-memory processing and promise to deliver
higher data processing performance. In this paper, we present a formal interpretation of some PACT
transformations implemented in the Apache Flink DataSet API. We use this formalization to provide
a mapping to translate a SPARQL query to a Flink program. The mapping was implemented in a
prototype used to determine the correctness and performance of the solution. The source code of the
project is available in Github under the MIT license.

Keywords: massive static RDF data; SPARQL; PACT Programming Model; Apache Flink

1. Introduction

The amount and size of datasets represented in the Resource Description Framework
(RDF) [1] language are increasing; this leads to challenging the limits of existing triple stores
and SPARQL query evaluation technologies, requiring more efficient query evaluation
techniques. Several proposals have been documented in state of the art use of Big Data
technologies for storing and querying RDF data [2–6]. Some of these proposals have
focused on executing SPARQL queries on the MapReduce Programming Model [7] and its
implementation, Hadoop [8]. However, more recent Big Data technologies have emerged
(e.g., Apache Spark [9], Apache Flink [10], Google DataFlow [11]). They use distributed
in-memory processing and promise to deliver higher data processing performance than
traditional MapReduce platforms [12]. These technologies are widely used in research
projects and all kinds of companies (e.g., Google, Twitter, and Netflix, or even by small
start-ups).

To analyze whether or not we can use these technologies to provide query evaluation
over large RDF datasets, we will work with Apache Flink, an open-source platform for
distributed stream and batch data processing. One of the essential components of the
Flink framework is the Flink optimizer called Nephele [13]. Nephele is based on the Paral-
lelization Contracts (PACTs) Programming Model [14] which is in turn a generalization of
the well-known MapReduce Programming Model. The output of the Flink optimizer is a
compiled and optimized PACT program which is a Directed Acyclic Graphs (DAG)-based
dataflow program. At a high level, Flink programs are regular programs written in Java,

Appl. Sci. 2021, 11, 7033. https://doi.org/10.3390/app11157033 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5214-4127
https://orcid.org/0000-0002-6488-8649
https://orcid.org/0000-0002-2858-0276
https://orcid.org/0000-0002-0236-4284
https://orcid.org/0000-0002-9260-0753
https://doi.org/10.3390/app11157033
https://doi.org/10.3390/app11157033
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11157033
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11157033?type=check_update&version=2


Appl. Sci. 2021, 11, 7033 2 of 24

Scala, or Python. Flink programs are mapped to dataflow programs, which implement
multiple transformations (e.g., filter, map, join, group) on distributed collections, which are
initially created from other sources (e.g., by reading from files). Results are returned via
sinks, which may, for example, write the data to (distributed) files, or the standard output
(e.g., to the command line terminal).

In [14], the set of initial PACTs operations (i.e., map, reduce, cross, cogroup, match) is
formally described from the point of view of distributed data processing. Hence, the main
challenge that we need to address is how to transform SPARQL queries into Flink programs
that use the DataSet API’s Transformations? This paper presents an approach for SPARQL
query evaluation over massive static RDF datasets through the Apache Flink framework.
To summarize, the main contributions of this paper are the following:

1. A formal definition of the Apache Flink’s subset transformations.
2. A formal mapping to translate a SPARQL query to Flink program based on the DataSet

API transformation.
3. An open-source implementation, called SPARQL2Flink, available on Github under

the MIT license, which transforms a SPARQL query into a Flink program. We assume
that to deal with an RDF dataset encoding a SPARQL query is more accessible than
writing a program using the Apache Flink DataSet API.

This research is a preliminary work towards making scalable queries processable in
a framework like Apache Flink. We chose Apache Flink among several other Big Data
tools based on comparative studies such as [12,15–22]. Flink provides a streaming data
processing that incorporates (i) a distributed dataflow runtime that exploits pipelined
streaming execution for batch and stream workloads, (ii) exactly-once state consistency
through lightweight checkpointing, (iii) native iterative processing, and (iv) sophisticated
window semantics, supporting out-of-order processing. The results reported in this paper
focus on the processing of SPARQL queries over static RDF data through Apache Flink
DataSet API. However, it is essential to note that this work is part of a general project that
aims to process hybrid queries over massive static RDF data and append-only RDF streams.
For example, the applications derived from the Internet of Things (IoT) that need to store,
process, and analyze data in real or near real-time. In the Semantic Web context, so far,
there have been some technologies trying to provide this capability [23–26]. Further work
is needed to optimize the resulting Flink programs to ensure that queries can be run over
large RDF datasets as described in our motivation.

The remainder of the paper is organized as follows: In Section 2, we present a brief
overview of RDF, SPARQL, PACT Programming Model, and Apache Flink. In Section 3,
we describe a formal interpretation of PACT transformations implemented in the Apache
Flink DataSet API and the semantic correspondence between SPARQL Algebra operators
and Apache Flink’s subset transformations. In Section 4, we present an implementation of
the transformations described in Section 3, as a Java library. In Section 5, we present the
evaluation of the performance of SPARQL2Flink using an adaptation of the Berlin SPARQL
Benchmark [27]. In Section 6, we present related work on the SPARQL query processing
of massive static RDF data which use MapReduce-based technologies. Finally, Section 7
presents conclusions and interesting issues for future work.

2. Background
2.1. Resource Description Framework

Resource Description Framework (RDF) [1] is a W3C recommendation for the rep-
resentation of data on the Semantic Web. There are different serialization formats for
RDF documents (e.g., RDF/XML, N-Triples, N3, Turtle). In the following, some essential
elements of the RDF terminology are defined in an analogous way as Perez et al. do in [1,28].

Definition 1 (RDF Terms and Triples). Assume there are pairwise disjoint infinite sets I, B,
and L (IRIs, blank nodes, and literals). A tuple (s, p, o) ∈ (I ∪ B)× I × (I ∪ B ∪ L) is called
an RDF triple. In this tuple, s is called the subject, p the predicate, and o the object. We denote
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T (the set of RDF terms) as the union of IRIs, blank nodes, and literals, i.e., T = I ∪ B ∪ L. IRI
(Internationalized Resource Identifier) is a generalization of URI (Uniform Resource Identifier).
URIs represent common global identifiers for resources across the Web.

Definition 2 (RDF Graph). An RDF graph is a set of RDF triples. If G is an RDF graph,
term(G) is the set of elements of T appearing in the triples of G, and blank(G) is the set of blank
nodes appearing in G, i.e., blank(G) = term(G) ∩ B.

Definition 3 (RDF Dataset). An RDF dataset DS is a set DS = {g0, (µ1, g1), (µ2, g2) . . . ,
(µn, gn)} where g0 and gi are RDF graphs, and each corresponding µi is a distinct IRI. g0 is called
the default graph, while each of the others is called named graph.

2.2. SPARQL Protocol and RDF Query Language

SPARQL [29] is the W3C recommendation to query RDF. There are four query types:
SELECT, ASK, DESCRIBE, and CONSTRUCT. In this paper, we focus on SELECT queries.
The basic SELECT query consists of three parts separated by the keywords PREFIX, SELECT,
and WHERE. The PREFIX part enables to declare prefixes to be used in IRIs to make
them shorter; the SELECT part identifies the variables to appear in the query result; the
WHERE part provides the Basic Graph Pattern (BGP) to match against the input data
graph. A definition of terminology comprising the concepts of Triple and Basic Graph Pattern,
Mappings, Basic Graph Patterns and Mappings, Subgraph Matching, Value Constraint, Built-in
condition, Graph pattern expression, Graph Pattern Evaluation, and SELECT Result Form is
done by Perez et al. in [28,30]. We encourage the reader to refer to these papers before
going ahead.

2.3. PACT Programming Model

PACT Programming Model [14] is considered as a generalization of MapReduce [7].
The PACT Programming Model operates on a key/value data model and is based on
so-called Parallelization Contracts (PACTs). A PACT consists of a system-provided second-
order function (called Input Contract) and a user-defined first-order function (UDF) which
processes custom data types. The PACT Programming Model provides an initial set of
five Input Contracts that include two Single-Input Contracts: map and reduce as known
from MapReduce which apply to user-defined functions with a single input, and three
additional Multi-Input Contracts: cross, cogroup, and match which apply to user-defined
functions for multiple inputs. As in the previous subsection, we encourage the reader to
refer to the work of Battre at al. [14] for a complete review of the definitions concerning to
the concepts of Simple-Input Contract, mapping function, map, reduce, Multi-Input Contract,
cross, cogroup, and match.

2.4. Apache Flink

The Stratosphere [31] research project aims at building a big data analysis platform,
which will make it possible to analyze massive amounts of data in a manageable and
declarative way. In 2014 Stratosphere was open-sourced by the name Flink as an Apache
Incubator project. It graduated to Apache Top Level project in the same year. Apache
Flink [10] is an open-source framework for distributed stream and batch data processing.
The main components of Apache Flink architecture are the core, the APIs (e.g., DataSet,
DataStream, Table & SQL), and the libraries (e.g., Gelly). The core is a streaming dataflow
engine that provides data distribution, communication, and fault tolerance, for distributed
computations over data streams. The DataSet API allows processing finite datasets (batch
processing), the DataStream API processes potentially unbounded data streams (stream
processing), and the Table & SQL API allows the composition of queries from relational
operators. The SQL support is based on Apache Calcite [32], which implements the SQL
standard. The libraries are built upon those APIs. Apache Flink also provides an optimizer,
called Nephele [13]. Nephele optimizer is based on the PACT Programming Model [14] and
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transforms a PACT program into a Job Graph [33]. Additionally, Apache Flink provides
several PACT transformations for data transformation (e.g., filter, map, join, group).

3. Mapping SPARQL Queries to an Apache Flink Program

In this section, we present our first two contributions: the formal description of the
Apache Flink’s subset transformations and the semantic correspondence between SPARQL
Algebra operators and Apache Flink’s set transformations.

3.1. PACT Data Model

We describe the PACT Data Model in a way similar to the one in [34], which is centered
around the concepts of datasets and records. We assume a possibly unbounded universal
multi-set of records T . In this way, a dataset T ′ = {r1, . . . , rn} is a bounded collection of
records. Consequently, each dataset T ′ is a subset of the possibly unbounded universal
multi-set T , i.e., T ′ ⊆ T . A record r = [k1 : v1, . . . , kn : vn] is an unordered list of key-value
pairs. The semantics of the keys and values, including their type is left to the user-defined
functions that manipulate them [34]. We employ the record keys to define some PACT
transformations. It is possible to use numbers as the record keys; in the special case where
the keys of a record r is the set {1, 2, . . . , n} for some n ∈ N, we say r is a tuple. For the sake
of simplicity, we write r = [v1, . . . , vn] instead of tuple r = [1 : v1, . . . , n : vn]. Two records
r1 = [k1,1 : v1,1, . . . , k1,n : v1,n] and r2 = [k2,1 : v2,1, . . . , k2,m : v2,m] are equal (r1 ≡ r2) iff
n = m and ∀i∈{1,...,n}, ∃j∈{1,...,m}. k1,i = k2,j ∧ r1[k1,i] = r2[k2,j]

3.2. Formalization of Apache Flink Transformations

In this section, we propose a formal interpretation of the PACT transformations
implemented in the Apache Flink DataSet API. That interpretation will be used to establish
a correspondence with the SPARQL Algebra operators. This correspondence is necessary
before establishing an encoding to translate SPARQL queries to Flink programs in order to
exploit the capabilities of Apache Flink for RDF data processing.

In order to define the PACT transformations, we need to define some auxiliary notions.
First, we define the record projection, that builds a new record, which is made up of the key-
value pairs associated with some specific keys. Second, we define the record value projection
that allows obtaining the values associated with some specific keys. Next, we define the
single dataset partition that creates groups of records where the values associated with some
keys are the same. Finally, we define the multiple dataset partition as a generalization of the
single dataset partition. The single dataset and the multiple dataset partitions are crucial to
establish the definition of the reduce and the cogroup transformations due to the fact that
they apply some specific user functions over groups of records.

Record projection is defined as follows:

Definition 4 (Record Projection). Let r = [k1 : v1, . . . , kn : vn] ∈ T ′ be a record and
{i1, . . . , im} ⊆ keys(r) be a set of keys, we define the projection of r over {i1, . . . , im} (denoted as
r(i1, . . . , im)) as follows:

r(i1, . . . , im) = {(i′, v) | (i′, v) ∈ r ∧ i′ ∈ {i1, . . . , im}}

In this way, by means of a record projection, a new record is obtained only with the
key-value pairs associated to some key in the set I = {i1, . . . , im}.

Record value projection is defined as follows:

Definition 5 (Record Value Projection). Let r = [k1 : v1, . . . , kn : vn] ∈ T ′ be a record and
[i1, . . . , im] be a tuple of keys such that {i1, . . . , im} ⊆ keys(r), we define the value projection of
r over [i1, . . . , im] (denoted as r[i1, . . . , im]) as follows:

r[i1, . . . , im] = [v1, v2, . . . , vm]
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where ∀j∈{1,...,m}. (ij : vj) ∈ r.

It is worth specifying that the record value projection takes a record and produces
a tuple of values. In this way, in this operation, the key order in the tuple [i1, . . . , im] is
considered for the result construction. Likewise, the result of the record value projection
could contain repeated elements. Let r1 and r2 be tuples of values, we say that r1 and r2 are
equivalent (r1 ≡ r2) if both r1 and r2 contain exactly the same elements.

The notion of single dataset partition as follows:

Definition 6 (Single Dataset Partition). Let T ′ ⊆ T be a dataset and given a non-emtpy set of
keys K, we define a single dataset partition of T over keys K as:

partition(T ′, K) = {T1, T2, . . . , Tm}

where {T1, T2, . . . , Tm} is a set partition of T ′ such that:

∀r′ ,r′′∈T ′ . r′(K) ≡ r′′(K)↔ ∃i. r′ ∈ Ti ∧ r′′ ∈ Ti

Intuitively, the single dataset partition creates groups of records where the values
associated to some keys (set K) are the same.

Analogous to the single dataset partition, we define the multiple dataset partition
below. It is possible to realize that the multiple dataset partition is a generalization of the
single dataset partition.

Definition 7 (Multiple Dataset Partition). Let T ′, T ′′ ⊆ T be two datasets and given two
non-emtpy set of keys K1 and K2, we define a multiple dataset partition of T ′ and T ′′ over keys
K1, K2 as:

multPartition(T ′, T ′′, K1, K2) = {T1, T2, . . . , Tm}

where {T1, T2, . . . , Tm} is a set partition of T ′ ∪ T ′′ such that:(
∀r′ ,r′′∈T ′ . r′[K1] ≡ r′′[K1]↔ ∃i. r′ ∈ Ti ∧ r′′ ∈ Ti

)
∧(

∀r′ ,r′′∈T ′′ . r′[K2] ≡ r′′[K2]↔ ∃i. r′ ∈ Ti ∧ r′′ ∈ Ti
)
∧(

∀r′∈T ′ ,r′′∈T ′′ . r′[K1] ≡ r′′[K2]↔ ∃i. r′ ∈ Ti ∧ r′′ ∈ Ti
)

After defining the auxiliary notions, we will define the map, reduce, filter, project, match,
outer match, cogroup, and union PACT transformations.

Definition 8 (Map Transformation). Let T ′ ⊆ T be a dataset and given a function f ranging
over T ′, i.e., f : T ′ → T , we define a map transformation as follows:

map(T ′, f ) = {[k′1 : v′1, . . . , k′m : v′m] |
∃(k1 :v1,...,kn :vn)∈T ′ . f ([k1 : v1, . . . , kn : vn]) =

[k′1 : v′1, . . . , k′m : v′m]}

Correspondingly, the map transformation takes each record r = [k1 : v1, . . . , kn : vn]
of a dataset T ′ and produces a new record r′ = [k′1 : v′1, . . . , k′m : v′m] by means of a user
function f . Records produced by function f can differ with respect to the original records.
First, the number of key-value pairs can be different, i.e., n 6= m. Second, the keys k′1, . . . , k′m
do not have to match with the keys k1, . . . , kn. Last, the datatype associated to each value
can differ.

Accordingly, we define the reduce transformation as follows:
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Definition 9 (Reduce Transformation). Let T ′ ⊆ T be a dataset and given a non-emtpy set of
keys K and a function f ranging over the power set of T ′, i.e., f : P(T ′)→ T , we define a reduce
transformation as follows:

reduce(T ′, f , K) = {r | ∃T ′′∈partition(T ′ ,K). f (T ′′) = r}

In this way, the reduce transformation takes a dataset T ′ and groups records by means
of the single dataset partition. In each group, the records have the same values for the keys
in set K. Then, it applies user function f over each group and produces a new record.

Definition 10 (Filter Transformation). Let T ′ ⊆ T be a dataset and given a function f ranging
over T ′ to boolean values, i.e., f : T ′ → {true, false}, we define a filter transformation as follows:

f ilter(T ′, f ) = {r | f (r) = true}

The filter transformation evaluates predicate f with every record of a dataset T ′ and
it selects only those records with which f returns true.

Definition 11 (Project Transformation). Let T ′ ⊆ T be a dataset and given a set of keys
K = {k′1, . . . , k′m}, we define a project transformation as follows:

project(T ′, K) = {r′ | ∃r∈T ′ . r′ = r(K)}

While filter transformation allows selecting some specific records according to some
criteria, which are expressed in the semantics of a function f , the project transformation
enables us to obtain some specific fields from the records of a dataset T ′. For this purpose,
we apply a record projection operation—to each record in T ′ with respect to a set of keys
K. It is worth highlighting that the result of a project transformation is a multi-set due to
several records having the same values in the keys of set K.

Previous PACT transformations take as a parameter a dataset T ′ and produce as a
result a new dataset according to specific semantics. Nevertheless, a lot of data sources
are available, and it is necessary to process and combine multiple datasets eventually.
In consequence, some PACT transformations are taking two or more datasets as param-
eters [14]. Following, we present a formal interpretation of the essential multi-datasets
transformations, including matching, grouping, and union.

Definition 12 (Match Transformation). Let T1, T2 ⊆ T be datasets, given a function f ranging
over T1 and T2, i.e., f : T1 × T2 → T and given sets of keys K1 and K2, we define a match
transformation as follows:

match(T1, T2, f , K1, K2) = {r | ∃r1∈T1, r2∈T2 . f (r1, r2) = r ∧ r1[K1] ≡ r2[K2]}

Thus, match transformation takes each pair of records (r1, r2) built from datasets
T1 and T2, and applies user function f with those pairs for which the values in r1 with
respect to keys in K1 coincide with the values in r2 with respect to keys in K2. For this
purpose, it checks this correspondence through a record value projection. Intuitively,
the match transformation enables us to group and process pairs of records related to some
specific criterion.

In some cases, it is necessary to match and process a record in a dataset even if a
corresponding record does not exist in the other dataset. The outer match transformation
extends the match transformation to enable such a matching. Outer match transformation
is defined as follows:
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Definition 13 (Outer Match Transformation). Let T1, T2 ⊆ T be datasets, given a function f
ranging over T1 and T2, i.e., f : T1 × T2 → T and given sets of keys K1 and K2, we define a outer
match transformation as follows:

outerMatch(T1, T2, f , K1, K2) =

match(T1, T2, f , K1, K2) ∪ {r | ∃r1∈T1 . ¬(∃r2∈T2 . r1[K1] ≡ r2[K2]) ∧ f (r1, [ ]) = r}

In this manner, the outer match transformation is similar to the match transformation,
but it allows us to apply the user function f with a record r1, although it does not exist a
record r2 that matches with record r1 with respect to keys K1 and K2.

In addition to the match and outer match transformations, the cogroup transformation
enables us to group records in two datasets. Those records must coincide with respect to a
set of keys. The cogroup transformation is defined as follows:

Definition 14 (CoGroup Transformation). Let T1, T2 ⊆ T be datasets, given a function f
ranging over P(T )→ T and given sets of keys K1 and K2, we define a cogroup transformation
as follows:

cogroup(T1, T2, f , K1, K2) = {r | ∃T ′∈ multPartition(T1,T2,K1,K2)
. f (T ′) = r}

Intuitively, cogroup transformation processes groups with the records on datasets T1
and T2 for which the values of the keys in K1 and K2 are equal. Then, it applies a user
function f over each one of those groups.

Finally, the union transformation creates a new dataset with every record in two
datasets T1 and T2. It is defined as follows:

Definition 15 (Union Transformation). Let T1, T2 ⊆ T be datasets, we define a union trans-
formation as follows:

union(T1, T2) = {r | r ∈ T1 ∨ r ∈ T2}

It is essential to highlight that records in dataset T1 and T2 can differ in the number of
pairs key-value and the type of values.

3.3. Correspondence between SPARQL Algebra Operators and Apache Flink Transformations

In this section, we propose a semantic correspondence between SPARQL algebra
operators and the PACT transformations implemented in the Apache Flink DataSet API.
We use the formalization of PACT transformations presented in the previous section to
provide an intuitive and correct mapping of the semantics elements of SPARQL queries.
It is important to remember that in this formalization a record is an unordered list of n
key-value pairs. However, as described in Section 2.1, an RDF dataset is a set of triples
which is composed of three elements < s, p, o >. Hence, for this particular case, a record
will be understood as an unordered list of three key-value pairs. Besides, we assume that
each field of a record r can be accessed using indexes 0, 1, and 2. Likewise, we assume
that RDF triple pattern are triples [s, p, o] where s, p, o can be variables or values. Finally,
the result of the application of each PACT transformation is intended to be a solution
mapping, i.e., sets of key-value pairs with RDF variables as keys that will be represented as
records with n key-value pairs.

Following, we present the definition of our encoding of SPARQL queries as PACT
transformations. First, we define the encoding of the graph pattern evaluation as follows:
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Definition 16 (Graph Pattern PACT Encoding). Let P be a graph pattern and D be an RDF
dataset, the PACT encoding of the evaluation of P over D, denoted by ||P||D , is defined recursively
as follows:

1. If P is a triple pattern [s, p, o] then:

||P||D = map( f ilter(D, f1), f2)

where function f1 is defined as follows:

f1(r) = eval(s, r[0]) ∧ eval(p, r[1]) ∧ eval(o, r[2])

eval(a, b) =


true if a ∈ Var

a = b otherwise

and function f2 is defined as follows:

f2(r) =



[ s : r[0], p : r[1], o : r[2] ] if s, p, o ∈ Var
[ s : r[0], p : r[1] ] if s, p ∈ Var ∧ o 6∈ Var
[ s : r[0], o : r[2] ] if s, o ∈ Var ∧ p 6∈ Var
[ p : r[1], o : r[2] ] if p, o ∈ Var ∧ s 6∈ Var
[ s : r[0] ] if s ∈ Var ∧ p, o 6∈ Var
[ p : r[1] ] if p ∈ Var ∧ s, o 6∈ Var
[ o : r[2] ] if o ∈ Var ∧ s, p 6∈ Var
[ ] otherwise

2. If P is (P1 AND P2) then:

||P||D = match(||P1||D , ||P2||D , f, K, K)

where K = vars(P1) ∩ vars(P2) and function f is defined as follows:

f (r1, r2) = r1 ∪ r2

3. If P is (P1 OPT P2) then:

||P||D = outerMatch(||P1||D , ||P2||D , f, K, K)

where K = vars(P1) ∩ vars(P2) and function f is defined as follows:

f (r1, r2) = r1 ∪ r2

4. If P is (P1 UNION P2) then:

||P||D = union(||P1||D , ||P2||D)

5. If P is (P′ FILTER R) then:

||P||D = f ilter(||P′||D , f)

where function f is defined as follows:

f(t) = exp(R, t)

exp(R, t) =


t[x] op c if c1
t[x] op t[y] if c2
exp(R1, t) op exp(R2, t) if c3
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where R is a boolean expression and

c1 = R is (x op c) f or x ∈ Var, op ∈ {=, 6=,<,≤,>,≥}
c2 = R is (x op y) f or x, y ∈ Var, op ∈ {=, 6=,<,≤,>,≥}

c3 = R is (R1 op R2) f or op ∈ {∧,∨}

In this way, the graph pattern PACT evaluation is encoded according to the recursive
definition of a graph pattern P. More precisely, we have that:

• If P is a triple pattern, then records of dataset D are filtered (by means of function f1)
to obtain only the records that are compatible with respect to the variables and values
in [s, p, o]. Then, the filtered records are mapped (by means function f2) to obtain
solution mappings that relate each variable to each possible value.

• If P is a join (left join) (it uses the SPARQL operators AND (OPT)), then a match
(outermatch) transformation is performed between the recursive evaluation of sub-
graphs P1 and P2 with respect to a set K conformed by the variables in P1 and P2.

• If P is a union graph pattern, then there is a union transformation between the
recursive evaluation of subgraphs P1 and P2.

• Finally, if P is a filter graph pattern, then a f ilter transformation is performed over the
recursive evaluation of subgraph P′ where the user function f is built according to the
structure of the filter expression R.

Additionally to the graph pattern evaluation, we present an encoding of the evaluation
of SELECT and DISTINCT SELECT queries as well as the ORDER-BY and LIMIT modifiers.
The selection encoding is defined as follows:

Definition 17 (Selection PACT Encoding). Let D be an RDF dataset, P be a graph pattern, K
be a finite set of variables, and Q = 〈P, K〉 be a selection query over D, the PACT Encoding of the
evaluation of Q over D is defined as follows:

||Q||D = project(||P||D , K)

Correspondingly, the selection query is encoded as a project transformation over the
evaluation of the graph pattern P associated with the query with respect to a set of keys K
conformed by the variables in the SELECT part of the query. We make a subtle variation in
defining the distinct selection as follows:

Definition 18 (Distinct Selection PACT Encoding). Let D be an RDF dataset, P be a graph
pattern, K be a finite set of variables, and Q∗ = 〈P, K〉 be a distinct selection query over D,
the PACT Encoding of the evaluation of Q∗ over D is defined as follows:

||Q∗||D = reduce(project(||P||D , K), f, K)

where function f is defined as follows:

f({t1, . . . , tn}) = t1

The definition of the distinct selection PACT encoding is similar to the general selection
query encoding. The main difference corresponds to a reduction step (reduce transforma-
tion) in which, the duplicate records, i.e., records with the same value in the keys of set K
(the distinct keys) are reduced to only one occurrence by means of the function f that takes
as a parameter a set of records for which the value in the keys in K is the same and returns
the first of them (actually, it could return any of them).

The encoding of the evaluation of a order-by query is defined as follows:
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Definition 19 (Order By PACT Encoding). Let D be an RDF dataset, P be a graph pattern,
k be a variable, and Q∗ = 〈P, k, f lag〉 be an order by query over D, the PACT Encoding of the
evaluation of Q∗ over D is defined as follows:

||Q∗||D = order(||P||D , k)

where function order is defined as follows:

order(M, k) = M′

where M = {t1, . . . , tn} and M′ = {t′1, . . . , t′n} is a permutation of M such that t′i[k] ≤ t′i+1[k] if
f lag = ASC or t′i[k] ≥ t′i+1[k] if f lag = DESC, for each i ∈ {1, . . . , n− 1}.

Thereby, the graph pattern associated with the query is first evaluated according to
the encoding of its precise semantics. Then, the resulting solution mapping is ordered by
means of a function order. Currently, we only consider ordering with respect to one key,
which is a simplification of the ORDER BY operator in SPARQL. Finally, the encoding of
the evaluation of a limit query is defined as follows:

Definition 20 (Limit PACT Encoding). Let D be an RDF dataset, P be a graph pattern, m be
an integer such that m ≥ 0, and Q∗ = 〈P, m〉 be a limit query over D, the PACT Encoding of the
evaluation of Q∗ over D is defined as follows:

||Q∗||D = limit(||P||D , m)

where function limit is defined as follows:

limit(M, m) = M′

where M = {t1, . . . , tn} and M′ = {t′1, . . . , t′m} such that t′i ∈ M, |M′| = m and m ≥ 1.

In this way, once the graph pattern associated with the query is evaluated, the result is
shortened to consider only the m records according to the query. According to the SPARQL
semantics, if m > |M|, the result is equal to M.

4. Implementation

This section presents our last contribution. We implemented the transformations
described in Section 3 as a Java library [35]. According to Apache Flink [10], a Flink program
usually consists on four basic stages: (i) loading/creating the initial data, (ii) specifying the
transformations of the data, (iii) specifying where to put the results of the computations,
and (iv) triggering the program execution. The SPARQL2Flink [35] library—available on
Github under the MIT license, is focused on the first three stages of a Flink program, and it
is composed of two modules, called: Mapper and Runner, as shown in Figure 1. Apache
Jena ARQ and Apache Flink libraries are shared among both modules.
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Figure 1. SPARQL2Flink conceptual architecture.

The Mapper module transforms a declarative SPARQL query into an Apache Flink
program (Flink program), and it is composed of three submodules:

Load SPARQL Query File: this submodule loads the declarative SPARQL query from a
file with a .rq extension. Listing 1 shows an example of a SPARQL query that retrieves the
names of all the people with their email if they have it.

Listing 1. SPARQL query example.

1

2PREFIX f o a f : <ht tp :// xmlns . com/ f o a f /0.1/ >
3

4SELECT ? person ?name ?mbox
5WHERE {
6? person f o a f : name ?name .
7OPTIONAL { ? person f o a f : mbox ?mbox }
8 }

Translate Query To a Logical Query Plan: this submodule uses the Jena ARQ library to
translate the SPARQL query into a Logical Query Plan (LQP) expressed with SPARQL
Algebra operators. The LQP is represented with an RDF-centric syntax provided by Jena,
which is called SPARQL Syntax Expression (SSE) [36]. Listing 2 shows an LQP of the
SPARQL query example.

Listing 2. SPARQL Syntax Expression of the SPARQL query example.

1 ( p r o j e c t ( ? person ?name ?mbox)
2 ( l e f t j o i n
3 ( bgp ( t r i p l e ? person <http :// xmlns . com/ f o a f /0.1/name> ?name ) )
4 ( bgp ( t r i p l e ? person <http :// xmlns . com/ f o a f /0.1/mbox> ?mbox ) )
5 )
6 )

Convert Logical Query Plan into Flink program: this submodule converts each SPARQL
Algebra operator in the query to a transformation from the DataSet API of Apache Flink,
according to the correspondence described in Section 3. For instance, each triple pattern
within a Basic Graph Pattern (BGP) is encoded as a combination of filter and map transforma-
tions, the leftjoin operator is encoded as a leftOuterJoin transformation, whereas the project
operator is expressed as a map transformation. Listing 3 shows the Java Flink program
corresponding to the SPARQL query example.
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Listing 3. Java Flink program.

1 . . .
2 public c l a s s Query {
3 public s t a t i c void main ( S t r i n g [ ] a ) throws Exception {
4

5 /* * * Environment and Source ( s t a t i c RDF d a t a s e t ) * * */
6 f i n a l ExecutionEnvironment env = ExecutionEnvironment . getExecutionEnvironment ( ) ;
7 DataSet <Tr iple > d a t a s e t = LoadTriples . fromDataset ( env , params . get ( " d a t a s e t " ) ) ;
8

9 /* * * Applying Transformations * * */
10 DataSet <SolutionMapping > sm1 = d a t a s e t
11 . f i l t e r (new T r i p l e 2 T r i p l e ( null , " ht tp :// xmlns . com/ f o a f /0.1/name" , null ) )
12 . map(new Triple2SM ( " ? person " , null , " ?name" ) ) ;
13

14 DataSet <SolutionMapping > sm2 = d a t a s e t
15 . f i l t e r (new T r i p l e 2 T r i p l e ( null , " ht tp :// xmlns . com/ f o a f /0.1/mbox" , null ) )
16 . map(new Triple2SM ( " ? person " , null , " ?mbox" ) ) ;
17

18 DataSet <SolutionMapping > sm3 = sm1 . l e f t O u t e r J o i n ( sm2 )
19 . where (new Jo in KeySe le c tor (new S t r i n g [ ] { " ? person " } ) )
20 . equalTo (new Jo in KeySe lec tor (new S t r i n g [ ] { " ? person " } ) )
21 . with (new L e f t J o i n (new S t r i n g [ ] { " ? person " } ) ) ;
22

23 DataSet <SolutionMapping > sm4 = sm3
24 . map(new P r o j e c t (new S t r i n g [ ] { " ? person " , " ?name" , " ?mbox" } ) ) ;
25

26 // * * * Sink * * *
27 sm4 . writeAsText ( param . get ( " output " )+ " Resul t " , F i leSystem . WriteMode .OVERWRITE)
28 . s e t P a r a l l e l i s m ( 1 ) ;
29

30 env . execute ( "SPARQL Query to Fl ink Program " ) ;
31 }
32 }

The Runner module allows executing a Flink program (as a jar file) on an Apache
Flink stand-alone or local cluster mode. This module is composed of two submodules: Load
RDF Dataset, which loads an RDF dataset in N-Triples format, and Functions, which contain
several Java classes that allow us to solve the transformations within the Flink program.

5. Evaluation and Result

In this section, we present the evaluation of the performance of the SPARQL2Flink
library by reusing a subset of the queries defined by the Berlin SPARQL Benchmark
(BSBM) [27]. On the one hand, experiments were performed to empirically prove the
correctness of the results of a SPARQL query transformed into a Flink program. On the
other hand, experiments were carried out to show that our approach processes data that
can scale as much as permitted by the underlying technology, in this case, Apache Flink.
All experiments carried out in this section are available in [37].

The SPARQL2Flink library does not implement the SPARQL protocol and cannot be
used as a SPARQL endpoint. It is important to note that this does not impose a strong
limitation on our approach. This is an engineering task that will be supported in the future.
For this reason, we do not use the test drive proposed in BSBM. Hence, we followed the
following steps:

5.1. Generate Datasets from BSBM

BSBM is built around an e-commerce use case in which a set of products is offered by
different vendors while consumers post reviews about the products [27]. Different datasets
were generated using the BSBM data generator by setting up the number of products, number
of producers, number of vendors, number of offers, and number of triples, as shown in Table 1.
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Table 1. Datasets generated using the Berlin SPARQL Benchmark data generator.

Dataset Products Producers Vendors Offers No. Triples

ds20mb 209 5 2 4180 78,351
ds300mb 3255 69 35 65,100 1,166,387
ds600mb 6521 135 63 130,620 2,327,671

ds1gb 10,519 225 108 219,400 3,872,077
ds2gb 219,00 443 223 43,800 7,719,881

ds18gb 47,884 3956 2027 4,000,000 69,494,080

For each dataset, one file was generated in N-Triples format. The name of each dataset
is associated with the size of the dataset in gigabytes. The ds20mb dataset was used to
perform the correctness tests. ds300mb, ds600mb, ds1gb, ds2gb, and ds18gb datasets were
used to perform the scalability tests in the local cluster.

5.2. Verify Which SPARQL Query Templates Are Supported

The BSBM offers 12 different SPARQL query templates to emulate the search and
navigation pattern of a consumer looking for a product [27]. We modified the query
template omitting SPARQL operators and expressions that are not yet implemented in
the library. The SPARQL query templates Q1, Q2, Q3, Q4, Q5, Q7, Q8, Q10, and Q11
were instantiated. Table 2 summarizes the list of queries that are Supported (S), Partially
Supported (PS), and Not Supported (NS) by SPARQL2Flink library. In the case where
the query is Partially Supported, it is detailed how the query was modified to be able to
transform it into a Flink program. The SPARQL queries instantiated can be seen in [37].

Table 2. BSBM SPARQL query templates Supported (S), Partially Supported (PS), and Not Supported
(NS).

Query Support Reason Modificaton

Q1 S - -

Q2 S - -

Q3 PS The bound function within the
FILTER operator is not supported

The FILTER (!bound(?testVar))
expression is omitted

Q4 PS The OFFSET operator is not
supported

The OFFSET 5 expression is
omitted

Q5 PS

The condition within the FILTER
operator contains addition or

subtraction operations which are
not supported

The operations within the FILTER
condition are changed by a constant
in order to evaluate && operator

Q6 PS The regex function within the
FILTER operator is not supported The FILTER expression is omitted

Q7 S - -

Q8 PS
The langMatches and lang functions
within the FILTER operator are not

supported

The FILTER langMatches(lang(?text),
"EN") expression is omitted

Q9 NS DESCRIBE query type is not
supported

Q10 S - -

Q11 S - -

Q12 NS CONSTRUCT query type is not
supported -
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5.3. Transform SPARQL Query into a Flink Program through SPARQL2Flink

First, SPARQL2Flink converts each SPARQL query (i.e., Q1, Q2, Q3, Q4, Q5, Q7, Q8,
Q10, and Q11) into a Logical Query Plan expressed in terms of SPARQL Syntax Expression
(SSE). Then, each Logical Query Plan was transformed into a Flink program (packaged in a
.jar file) through the SPARQL2Flink [35]. The Logical Query Plans and the Flink Programs
can be seen in [37].

5.4. Perform Results Correctness Tests on a Standalone Environment

The formal correctness tests are beyond the scope of this paper. However, empirical
correctness tests were performed on the results of the nine queries that SPARQ2Flink
supports and partially supports. The nine queries were executed independently in Apache
Jena 3.6.0 and Apache Flink 1.10.0 without Hadoop using the ds20mb dataset. Both
applications were set up on a laptop with Intel Core Duo i5 2.8 GHz, 8 GB RAM, 1 TB
solid-state disk, and Mac Sierra operating system. In this test, we compared the results of
running each SPARQL query on Apache Jena and each corresponding Flink program on
Apache Flink. The results of each query were compared manually, checking if they were
the same. In all cases, they were. All results can be seen in [37].

5.5. Carry out Scalability Tests on a Local Cluster Environment

The Apache Flink local cluster needs at least one Job Manager and one or more Task
Managers. The Job Manager is the master that coordinates and manages the execution
of the program; the Task Managers are the workers or slaves that execute parts of the
parallel programs. The parallelism of task execution was determined by using the Task
Slots available on each Task Manager. In order to carry out scalability tests, we setup an
Apache Flink local cluster with one master node and fifteen slave nodes; each slave node
with one Task Slot. Table 3 shows an specifications of each node.

Table 3. Local cluster nodes specifications.

Node Specifications

master Model: iMac13.2, SO: Sierra 10.12.1, Processor: Intel Quad Core i7
3.4 GHz, RAM: 32 GB, HD: 1 TB

slave01 to slave13 Model: iMac13.2, SO: Mojave 10.14, Processor: Intel Quad Core i7
3.4 GHz, RAM: 32 GB, HD: 532 GB

slave14 Model: iMac13.2, SO: Mojave 10.14, Processor: Intel Quad Core i5
2.9 GHz, RAM: 32 GB, HD: 532 GB

slave15 Model: iMac13.2, SO: Mojave 10.14, Processor: Intel Quad Core i5
2.9 GHz, RAM: 16 GB, HD: 532 GB

The flink-conf.yaml file is part of the Job Manager and the Task Manager and contains
all cluster configurations as a flat collection of YAML(YAML Ain’t Markup Language–
https://yaml.org accessed on 23 March 2020) key-value pairs. Most of the configurations
are the same for the Job Manager node and the Task Manager nodes. The parameters listed
in Listing 4 were set up in order to carry out scalability tests. The parameters not listed
were maintained with default values. A detailed description of each parameter can be see
in [38].

Two scalability tests were conducted. In both tests, the primary measure evaluated
is the query execution time of nine queries on different datasets and number of nodes in
the cluster. Based on the number of available nodes, we configured five different clusters.
C1 cluster with one master node and four slave nodes; C2 cluster with one master node
and seven slave nodes; C3 cluster with one master node and eight slave nodes; C4 cluster
with one master node and eleven slave nodes; C5 cluster with one master node and fifteen
slave nodes.

https://yaml.org
https://yaml.org
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The first scalability test aims to evaluate the performance of SPARQL2Flink with
ds300mb, ds600mb, ds1gb, and ds2gb datasets with a different number of triples. The test
was performed on C1, C3, and C5 clusters. Each dataset was replicated on each node.
Each node was configured with Apache Flink 1.10.0. A query executed on a dataset and
a cluster configuration is considered an individual test. For instance, the query Q1 was
executed on the ds300mb dataset on cluster C1. After that, the same query was executed
on the same dataset on clusters C3 and C5. The remaining eight queries were executed on
the other datasets and clusters in the same way. Consequently, a total of 108 tests were
conducted. Figure 2 depicts the query execution times of nine queries after running the
first scalability test.

Listing 4. Apache Flink configuration: flink-conf.yml.

1 # Common
2 jobmanager . heap . s i z e : 20 ,480 m
3 taskmanager . memory . process . s i z e : 10 ,240 m
4 taskmanager . numberOfTaskSlots : 1
5 # Advanced
6 io . tmp . d i r s : /tmp
7 # Others
8 akka . ask . timeout : 10 min
9 akka . c l i e n t . t imeout : 20 min

10 h e a r t b e a t . t imeout : 90 ,000

Figure 2. Execution times of nine queries after running the first scalability test. The x-axis represents
the number of nodes on cluster C1, C3, and C5. The y-axis represents the time in seconds, which
includes the dataset loading time (dlt), the query execution time (qet), and the amount of time taken
in creating the file with query results. Additionally, on the top, the number of triples of each dataset
is shown.
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The second scalability test was performed on the C2, C4, and C5 clusters. For this test,
Apache Flink 1.10.0 and Hadoop 2.8.3 were configured to use HDFS in order to store the
ds18gb dataset. As in the first test, the nine queries were executed by changing the cluster
configuration, for a total of 27 additional tests. Figure 3 depicts the query execution times
of nine queries after running the second scalability test.

Figure 3. Execution times of nine queries after running the second scalability test. The x-axis
represents the number of nodes on cluster C2, C4, and C5. The y-axis represents the time in seconds,
which includes the dataset load time (dlt), the query execution time (qet), and the creation file time
with query results. Additionally, on the top, the number of dataset triples is shown.

Each SPARQL query transformed into a Flink program generates a plan with several
tasks. A task in Apache Flink is the basic unit of execution. It is the place where each
parallel instance of an operator is executed. In terms of tasks, Q1 query generates 14 tasks,
Q2 generates 31 tasks, Q3 generates 17 tasks, Q4 generates 28 tasks, Q5 generates 18 tasks,
Q7 generates 29 tasks, Q8 generates 23 tasks, Q10 generates 18 tasks, and Q11 generates 6
tasks. All Flink program plans are available at [37]. In particular, the first task of the Flink
program plan is associated with the dataset loading, the last task with the file creation
which contains the query results, and the intermediate tasks are related to query execution.
Table 4 describes the times of the dataset loading time, query execution time, and the sum
of both.
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Table 4. dlt+qet refers to the sum of dlt and qet times. dlt represents the dataset loading time which refers to the time spent
to move each triple from a file into Apache Flink local cluster. qet represents the query execution time. The file creation time
was ignored. In the worst case, it was less than or equal to 373 milliseconds. The times for query processing are in seconds.

Dataset 7,719,881 Triples 3,872,077 Triples 2,327,671 Triples 1,166,387 Triples 69,494,080 Triples

Times In Seconds

Query Nodes dlt + qet dlt qet dlt + qet dlt qet dlt + qet dlt qet dlt + qet dlt qet Nodes dlt + qet dlt qet

Q1
4 194 166 28 100 85 15 67 56 11 36 30 6 7 938 816 122
8 110 95 28 58 49 9 37 31 6 21 16 5 11 680 535 145

15 61 52 9 35 29 6 24 19 5 15 12 3 15 515 403 112

Q2
4 373 227 146 161 120 41 99 73 26 57 41 16 7 2191 1363 828
8 182 143 39 103 75 28 63 47 16 33 23 10 11 1125 770 355

15 105 78 27 56 42 14 39 27 12 22 16 6 15 937 586 351

Q3
4 212 175 37 107 88 19 70 55 15 40 31 9 7 1033 842 191
8 123 103 20 64 52 12 42 33 9 24 18 6 11 816 584 232

15 71 57 14 40 31 9 27 20 7 16 12 4 15 565 421 144

Q4
4 331 215 116 143 109 34 92 67 25 50 35 15 7 1587 1131 456
8 161 129 32 87 67 20 56 43 13 31 22 9 11 1121 717 404

15 97 75 22 53 38 15 36 25 11 21 15 6 15 805 536 269

Q5
4 224 173 51 113 88 25 76 54 22 41 29 12 7 1231 867 364
8 138 100 38 75 53 22 49 33 16 28 18 10 11 874 584 290

15 87 57 30 46 31 15 37 20 17 19 13 6 15 653 421 232

Q7
4 358 225 133 179 125 54 101 71 30 53 35 18 7 1978 1186 792
8 189 142 47 97 72 25 63 45 18 38 24 14 11 1208 741 467

15 112 77 35 61 39 22 42 27 15 24 15 9 15 881 553 328

Q8
4 310 209 101 130 99 31 80 60 20 45 32 13 7 1523 988 535
8 147 117 30 80 60 20 52 38 14 29 21 8 11 956 645 311

15 84 65 19 46 34 12 31 22 9 20 14 6 15 691 476 215

Q10
4 221 175 46 110 88 22 71 54 17 39 29 10 7 1322 884 438
8 131 103 28 66 51 15 44 33 11 26 18 8 11 810 563 247

15 75 57 18 42 31 11 27 20 7 18 12 6 15 604 434 170

Q11
4 166 147 19 83 74 9 52 46 6 28 24 4 7 823 719 104
8 92 80 12 47 41 6 30 26 4 17 15 2 11 537 466 71

15 54 47 7 28 25 3 19 17 2 12 10 2 15 407 350 57

6. Related Work

Several proposals have been documented in the use of Big Data technologies for
storing and querying RDF data [2–6]. The most common way so far to query massive
static RDF data has been rewriting SPARQL queries over the MapReduce Programming
Model [7] and executing them on Hadoop [8] Ecosystems. A detailed comparison of
existing approaches can be found in the survey presented in [3]. This work provides a
comprehensive description of RDF data management in large-scale distributed platforms,
where storage and query processing are performed in a distributed fashion, but under
centralized control. The survey classifies the systems according to how they implement
three fundamental functionalities: data storage, query processing, and reasoning; this
determines how the triples are accessed and the number of MapReduce jobs. Additionally,
it details the solutions adopted to implement those functionalities.

Another survey is [39], which presents a high-level overview of RDF data manage-
ment, focusing on several approaches that have been adopted. The discussion focused on
centralized RDF data management, distributed RDF systems, and querying over the Linked
Open Data. In particular, in the distributed RDF systems, it identifies and discusses four
classes of approaches: cloud-based solutions, partitioning-based approaches, federated
SPARQL evaluation systems, and partial evaluation-based approach.

Given the success of NoSQL [40] (for “not only SQL”) systems, a number of authors
have developed RDF data management systems based on these technologies. The survey
in [41] provides a comprehensive study of the state of the art in data storage techniques,
indexing strategies, and query execution mechanisms in the context of the RDF data
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processing. Part of this study summarizes the approaches that exploit NoSQL database
systems for building scalable RDF management systems. In particular, [42] is recent
example under NoSQL umbrella for efficiently evaluating SPARQL queries using MongoDB
and Apache Spark. This work proposes an effective data model for storing RDF data in
a document database, called node-oriented partition, using maximum replication factor
of 2 (i.e., in the worst-case scenario, the data graph will be doubled in storage size). Each
query is decomposed into a set of generalized star queries, which ensures that no joining
operations over multiple datasets are required. The authors propose an efficient and simple
distributed algorithm for partitioning large RDF data graphs based on the fact that each
SPARQL query Q can be decomposed into a set of generalized star queries which can be
evaluated independently of each other and can be used to compute the answers of the
initial query Q [43].

In recent years, new trends in Big Data Technologies such as Apache Spark [9], Apache
Flink [10], and Google DataFlow [11] have been proposed. They use distributed in-memory
processing and promise to deliver higher performance data processing than traditional
MapReduce platforms [12]. In particular, Apache Spark implements a programming model
similar to MapReduce but extends it with two abstractions: Resilient Distributed Datasets
(RDDs) [44] and Data Frames (DF) [45]. RDDs are a distributed, immutable, and fault-tolerant
memory abstraction and DF is a compressed and schema-enabled data abstraction.

The survey [46] summarizes the approaches that use Apache Spark for querying large
RDF data. For example, S2RDF [47] proposes a novel relational schema and relies on a trans-
lation of SPARQL queries into SQL for being executed using Spark SQL. The new relational
partitioning schema for RDF data is called Extended Vertical Partitioning (ExtVP) [48].
In this schema, the RDF triples are distributed in pairs of columns, each one corresponding
to an RDF term (the subject and the object). The relations are computed at the data load
time using semi-joins, akin to the concept of Join Indices [49] in relational databases, to limit
the number of comparisons when joining triple patterns. Each triple pattern of a query is
translated into a single SQL query, and the query performance is optimized using the set
of statistics and additional data structures computed during the data pre-processing step.
The authors in [50] propose and compare five different query processing approaches based
on different join execution models (i.e., partitioned join and broadcast join) on Spark com-
ponents like RDD, DF, and SQL API. Morever, they propose a formalization for evaluating
the cost of SPARQL query processing in a distributed setting. The main conclusion is that
Spark SQL does not (yet) fully exploit the variety of distributed join algorithms and plans
that could be executed using the Spark platform and propose some guidelines for more
efficient implementations.

Google DataFlow [11] is a Programming Model and Cloud Service for batch and stream
data processing with a unified API. It is built upon Google technologies, such as MapReduce
for batch processing, FlumeJava [51] for programming model definition, and MillWheel [52]
for stream processing. Google released the Dataflow Software Development Kit (SDK) as
an open-source Apache project, named Apache Beam [53]. There are no works reported
to the best of our knowledge that use Google Data-Flow to process massive static RDF
datasets and RDF streams.

In a similar line to our approach, the authors in [54] propose FLINKer, which is a
proposal to manage large RDF datasets and resolve SPARQL queries on top of Flink/Gelly.
In practice, FLINKer makes use of Gelly to provide the vertex-centric view on graph
processing, and the some DatasSet API operator to support each of the transformations
required to resolve SPARQL queries. FLINKer uses the Jena ARQ SPARQL processor to
parse a given SPARQL query and generate a parsing tree of operations, which are then
resolved through the existing operators in the DataSet API of Flink, i.e., map, flatmap,
filter, project, flatjoin, reducegroup, and iteration operators. The computation is performed
through a sequence of iterations steps called supersteps. The main advantage of using
Gelly as a backend is that Flink has native iterative support, i.e., the iterations do not
require new job scheduling overheads to be performed.
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The main difference between FLINKer and our proposal is the formalization of a
set of PACT transformations implemented in the Apache Flink DataSet API and a formal
mapping to translate a SPARQL query to a program based on the DataSet Flink program.
We also provide an open-source implementation of our proposal as a Java library, available
on Github under the MIT license. Besides, unlike FLINKer, we present an evaluation of
the correctness and the performance of our tool by reusing a subset of the queries defined
by the Berlin SPARQL Benchmark (BSBM). We did not find a FLINKer implementation
available to perform a comparison against our proposal.

Table 5 summarizes a comparison of the main features of the approaches that use
Apache Flink, like FLINKer and SPARQL2Flink, and Apache Spark in combinations
with MongoDB.

Table 5. The main features of the approaches that use Flink, Spark, and MongoDB.

SPARQL2Flink FLINKer [54] Spark + MongoDB [42]

Formalization of the
transformations or actions

DataSet API operators;
Apache Flink: map, reduce,

filter, join, leftOuterJoin,
coGroup, project, union,
sortPartition, first, cross,

distinct

Not present Not present

Query transformation process
and workflow

SPARQL query→ Logical
Query Plan expressed with

SPARQL Algebra operators→
DataSet API operator→ Java
Flink program→ Submit to

Flink cluster

SPARQL query→ Logical
Query Plan expressed with

SPARQL Algebra operators→
Gelly API Operations→
Submit to Flink cluster

SPARQL query→ sub-queries
→MongoDB queries→ Spark
job→ Submit to Spark cluster

SPARQL Algebra operators

Algebra operators present in 9
queries of the Berlin SPARQL

Benchmark (BSBM): Basic
Graph Pattern, AND (Join),

OPTIONAL (LeftJoin),
PROJECT, DISTINCT, ORDER
BY, UNION, LIMIT, FILTER

expressions: (variable op
variable), (variable op

constant), and (constant op
variable)

Filter and Join. Other
operators are not specified

Algebra operators present in
17 WatDiv benchmark queries

Dataset/RDF Graph load

Loading using the Apache
Flink readTextFile operator

into a Dataset API. This
operator was extended to read

a file in the RDF N-Triples
format. Depending on the

cluster configuration:
replication or HDFS

Triples are read from the RDF
N-Triples format and

converted into the
corresponding Gelly graph

representation using a custom
algorithm

RDF Graph partitions are
stored and managed by

MongoDB

Correctness test Empirical correctness tests
using 9 queries of the BSBM

Not present Not present

Scalability test

Using a cluster with 4 to 16
nodes and a dataset with 78K
to 69M triples. The BSBM is

used to generate six different
datasets

Not present

Using a cluster with 10 VMS
running a Spark and

MongoDB cluster(Single
configuration). Four datasets

with 8.7 M to 35 M triples,
which are generated by The

WatDiv benchmark
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Table 5. Cont.

SPARQL2Flink FLINKer [54] MongoDB + Spark [42]

Performance test Dataset loading time and
Query execution time

Not present Query execution time

Source code Available in Github under the
MIT license

Not present Not present

Optimization Not present No present
RDF Graph partition:
node-oriented partition.

SPARQL query decomposed

7. Conclusions and Future Work

We have presented an approach for transforming SPARQL queries into Apache Flink
programs for querying massive static RDF data. The main contributions of this paper are
the formal definitions of the Apache Flink’s subset transformations, the definition of the
semantic correspondence between Apache Flink’s subset transformations and the SPARQL
Algebra operators, and the implementation of our approach as a library.

For the sake of simplicity, we limit to SELECT queries with SPARQL Algebra operators
such as Basic Graph Pattern, AND (Join), OPTIONAL (LeftJoin), PROJECT, DISTINCT, OR-
DER BY, UNION, LIMIT, and specific FILTER expressions of the form (variable operator vari-
able), (variable operator constant), and (constant operator variable). The operator within FILTER
expression are logical connectives (&&, ‖), inequality symbols (<,≤,≥,>, !), and equal-
ity symbol (=). Our approach does not support queries containing clauses or operators
FROM, FROM NAMED, CONSTRUCT, DESCRIBE, ASK, INSERT, DELETE, LOAD, CLEAR,
CREATE/DROP GRAPH, MINUS, or EXCEPT.

This work is the first step towards building up a Hybrid (batch and streaming)
SPARQL query system on a Big Data scalable ecosystem. In this respect, the prelimi-
nary scalability tests with SPARQL2Flink show promising results in the processing of
SPARQL queries over static RDF data. We can see that in all cases (i.e., Figures 2 and 3),
the query execution time decreases as the number of nodes in the cluster increases. However,
improvements are still needed to optimize the processing of queries. It is important to
note that our proposed approach and its implementation did not apply any optimization
techniques. The generated Flink program process raw triples datasets.

The static RDF dataset used in our approach is serialized in a traditional plain format
called N-Triples, which is the simplest form of the textual representation of RDF data but is
also the most difficult to use because it does not allow URI abbreviation. The triples are
given in subject, predicate, and object order as three complete URIs separated by spaces and
encompassed by angle brackets (< and >). Each statement is given on a single line ended
by a period (.). This approach results in a painful task requiring a great effort in terms of
time and computational resources. Performance and scalability arise as significant issues in
this scenario, and their resolution is closely related to the efficient storage and retrieval of
the semantic data. Loading the raw triples to RAM significantly affects the dataset loading
time (dlt), as can be seen in Table 4, more specifically, in the column labeled dlt. This value
increases as the size of the dataset increases as well. For example, for the dataset with
69,494,080 triples, the loading time value is 938 s, using 4 nodes of the local cluster, when
processing the Q1 query. This is because the SPARQL2Flink library does not yet implement
optimization techniques. In future works, we will focus on two aspects: optimization
techniques and RDF stream processing. We will study how to adapt some optimization
techniques inherent in the processing of SPARQL queries like HDT compression [55–57]
and multi-way join operators [58,59].

For RDF stream processing, we will extend the PACT Data Model to describe a
formal interpretation of the data stream notion, the different window types, and the
windowing operation necessary to establish an encoding to translate CQELS-QL [60]
queries to DataStream PACT transformations. In practice, the DataStream API of the
Apache Flink comes with predefined window assigners for the most common use cases,
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namely tumbling windows, sliding windows, session windows, and global windows.
The window assigner defines how elements are assigned to windows. In particular, we
focus on tumbling windows and sliding windows assigners in combination with time-based
windows and count-based windows.
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